что такое серединный перпендикуляр треугольника

Треугольник. Серединный перпендикуляр (медиатриса), средняя линия треугольника.

что такое серединный перпендикуляр треугольника. 559815586b85b2880c7.73368148. что такое серединный перпендикуляр треугольника фото. что такое серединный перпендикуляр треугольника-559815586b85b2880c7.73368148. картинка что такое серединный перпендикуляр треугольника. картинка 559815586b85b2880c7.73368148. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

Характерные особенности медиатрисы треугольника.

Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

Центр описанной окружности находится в месте пресечения медиатрис треугольника. Следует отметить, что у остроугольного треугольника эта точка размещается внутри, у тупоугольного — за пределами треугольника, у прямоугольного — посредине гипотенузы.

Средняя линия трехугольника – отрезок, соединяющий середины двух его сторон. Общеизвестно, что у треугольника три стороны, и логично, что и три средние линии.

что такое серединный перпендикуляр треугольника. 827415586b88e29c586.62158159. что такое серединный перпендикуляр треугольника фото. что такое серединный перпендикуляр треугольника-827415586b88e29c586.62158159. картинка что такое серединный перпендикуляр треугольника. картинка 827415586b88e29c586.62158159. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

MN, MК, КN — средние линии для треугольника ABC.

Характерные особенности средней линии треугольника.

Средняя линия трехугольника всегда параллельна одной из сторон и равна 1/2 этой стороны.

Средняя линия отделяет трехугольник, который подобен первоначальному, а их площади соотносятся ¼.

При пересечении всех трёх средних линий образуются четыре одинаковых треугольника, подобных первоначальному, но с коэффициентом подобия 0,5.

Источник

Серединный перпендикуляр

Что такое серединный перпендикуляр к отрезку? Что можно сказать о пересечении серединных перпендикуляров к сторонам треугольника? К сторонам многоугольника?

Серединный перпендикуляр к отрезку — это прямая, перпендикулярная данному отрезку и проходящая через его середину.

что такое серединный перпендикуляр треугольника. 0 eb531 df7fe2a9 orig. что такое серединный перпендикуляр треугольника фото. что такое серединный перпендикуляр треугольника-0 eb531 df7fe2a9 orig. картинка что такое серединный перпендикуляр треугольника. картинка 0 eb531 df7fe2a9 orig. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

m — серединный перпендикуляр к отрезку AB, если

точка C — середина отрезка AB,

что такое серединный перпендикуляр треугольника. quicklatex.com 7f1cd120e9a24123b6e62afa0621ba56 l3. что такое серединный перпендикуляр треугольника фото. что такое серединный перпендикуляр треугольника-quicklatex.com 7f1cd120e9a24123b6e62afa0621ba56 l3. картинка что такое серединный перпендикуляр треугольника. картинка quicklatex.com 7f1cd120e9a24123b6e62afa0621ba56 l3. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

что такое серединный перпендикуляр треугольника. quicklatex.com c80465e97fa5bb41f09cebd8c7e55495 l3. что такое серединный перпендикуляр треугольника фото. что такое серединный перпендикуляр треугольника-quicklatex.com c80465e97fa5bb41f09cebd8c7e55495 l3. картинка что такое серединный перпендикуляр треугольника. картинка quicklatex.com c80465e97fa5bb41f09cebd8c7e55495 l3. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

Чтобы построить серединный перпендикуляр к данному отрезку с помощью угольника, нужно:

1) найти середину отрезка;

2) провести через эту точку прямую, перпендикулярную данному отрезку (для этого угольник прикладываем прямым углом к середине отрезка так, чтобы она сторона угольника проходила через отрезок, а через другую сторону проводим прямую):

что такое серединный перпендикуляр треугольника. 0 eb530 b4c43252 orig. что такое серединный перпендикуляр треугольника фото. что такое серединный перпендикуляр треугольника-0 eb530 b4c43252 orig. картинка что такое серединный перпендикуляр треугольника. картинка 0 eb530 b4c43252 orig. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

что такое серединный перпендикуляр треугольника. 0 eb52f 48a732e0 orig. что такое серединный перпендикуляр треугольника фото. что такое серединный перпендикуляр треугольника-0 eb52f 48a732e0 orig. картинка что такое серединный перпендикуляр треугольника. картинка 0 eb52f 48a732e0 orig. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

Свойства серединного перпендикуляра.

1) Геометрическое место точек, равноудаленных от двух данных точек, есть серединный перпендикуляр к отрезку, соединяющему эти точки.

Например, прямая m — геометрическое место точек, равноудаленных от точек A и B (рисунок 1).

что такое серединный перпендикуляр треугольника. 0 eb534 e0057955 orig. что такое серединный перпендикуляр треугольника фото. что такое серединный перпендикуляр треугольника-0 eb534 e0057955 orig. картинка что такое серединный перпендикуляр треугольника. картинка 0 eb534 e0057955 orig. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

2) Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. Эта точка является центром описанной около треугольника окружности.

3) Если около многоугольника можно описать окружность, то центр этой описанной окружности является точкой пересечения серединных перпендикуляров к сторонам многоугольника.

Источник

Серединный перпендикуляр

что такое серединный перпендикуляр треугольника. 200px Center of line segment.svg. что такое серединный перпендикуляр треугольника фото. что такое серединный перпендикуляр треугольника-200px Center of line segment.svg. картинка что такое серединный перпендикуляр треугольника. картинка 200px Center of line segment.svg. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

что такое серединный перпендикуляр треугольника. magnify clip. что такое серединный перпендикуляр треугольника фото. что такое серединный перпендикуляр треугольника-magnify clip. картинка что такое серединный перпендикуляр треугольника. картинка magnify clip. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

Серединный перпендикуляр (срединный перпендикуляр или медиатрисса) — прямая, перпендикулярная к данному отрезку и делящая его на две равные части.

Свойства

Смотреть что такое «Серединный перпендикуляр» в других словарях:

Словарь терминов планиметрии — Здесь собраны определения терминов из планиметрии. Курсивом выделены ссылки на термины в этом словаре (на этой странице). # А Б В Г Д Е Ё Ж З И К Л М Н О П Р С … Википедия

Коллинеарные точки — Здесь собраны определения терминов из планиметрии. Курсивом выделены ссылки на термины в этом словаре (на этой странице). # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф … Википедия

Конкурентные прямые — Здесь собраны определения терминов из планиметрии. Курсивом выделены ссылки на термины в этом словаре (на этой странице). # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф … Википедия

Окружность Аполония — Здесь собраны определения терминов из планиметрии. Курсивом выделены ссылки на термины в этом словаре (на этой странице). # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф … Википедия

Преобразование плоскости — Здесь собраны определения терминов из планиметрии. Курсивом выделены ссылки на термины в этом словаре (на этой странице). # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф … Википедия

Чевиана — Здесь собраны определения терминов из планиметрии. Курсивом выделены ссылки на термины в этом словаре (на этой странице). # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф … Википедия

Глоссарий планиметрии — Эта страница глоссарий. См. также основную статью: Планиметрия Здесь собраны определения терминов из планиметрии. Курсивом выделены ссылки на термины в этом словаре (на этой странице) … Википедия

Задача Аполлония — Задача Аполлония построить с помощью циркуля и линейки окружность, касающуюся трех данных окружностей. По легенде, задача сформулирована Аполлонием Пергским примерно в 220 г. до н. э. в книге «Касания», которая была потеряна … Википедия

Задача Аполония — Задача Аполлония построить с помощью циркуля и линейки окружность, касающуюся трех данных окружностей. По легенде, задача сформулирована Аполлонием Пергским примерно в 220 г. до н. э. в книге «Касания», которая была потеряна, но была… … Википедия

Диаграмма Вороного — случайного множества точек на плоскости Диаграмма Вороного конечного множества точек S на плоскости представляет такое разбиение плоскости, при котором ка … Википедия

Источник

что такое серединный перпендикуляр треугольника. seredinnyy perpendikulyar. что такое серединный перпендикуляр треугольника фото. что такое серединный перпендикуляр треугольника-seredinnyy perpendikulyar. картинка что такое серединный перпендикуляр треугольника. картинка seredinnyy perpendikulyar. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

Общие сведения

Серединным перпендикуляром отрезка называют прямую, которая проходит под прямым углом через среднюю точку, т. е. середину отрезка. Для полного понимания материала следует остановиться на базовых элементах геометрии.

что такое серединный перпендикуляр треугольника. obschie svedeniya seredinnom. что такое серединный перпендикуляр треугольника фото. что такое серединный перпендикуляр треугольника-obschie svedeniya seredinnom. картинка что такое серединный перпендикуляр треугольника. картинка obschie svedeniya seredinnom. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

Точка — единица, при помощи которой строятся прямые, отрезки, лучи и фигуры. Прямая — простая фигура в форме бесконечной линии, состоящей из множества точек, лежащих в одной плоскости. Луч — базовая геометрическая фигура в виде бесконечной линии с одной стороны и точки-ограничителя — с другой. Иными словами, луч имеет начало, но не имеет конца. Отрезок — некоторая часть прямой (луча или другого отрезка), ограниченная двумя точками.

Кроме того, в геометрии серединный перпендикуляр встречается в треугольниках. Из определения можно сделать вывод, что им может быть прямая, отрезок и даже луч.

Аксиомы геометрии Евклида

Евклидовой геометрией называется наука о фигурах на плоскости, основанная на аксиомах и теоремах. Аксиома — базовое утверждение, не требующее доказательства. Оно используется для доказательства каких-либо теорем. Математики выделяют пять аксиом:

что такое серединный перпендикуляр треугольника. dokazatelstvo teoremy. что такое серединный перпендикуляр треугольника фото. что такое серединный перпендикуляр треугольника-dokazatelstvo teoremy. картинка что такое серединный перпендикуляр треугольника. картинка dokazatelstvo teoremy. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

Формулировка первой имеет такой вид: если существует в геометрическом пространстве плоскость, состоящая из множества точек, то через любые из них можно провести только одну прямую. Иными словами, можно взять произвольные две точки и провести через них одну прямую. Чтобы начертить еще одну прямую, следует взять две другие точки.

Следующее утверждение называется аксиомой порядка. Она гласит, что существует точка, которая лежит между двумя другими на прямой. Значение слова «конгруэнтность» не совсем понятно для новичка, однако нужно постепенно привыкать к терминологии. Оно обозначает «равенство». Третий геометрический факт формулируется таким образом: когда два отрезка или угла конгруэнтны третьему, тогда они равны между собой. Аксиома касается только отрезков и углов.

Чтобы убедиться в ее правильности, нужно разобрать следующий пример: длина первого отрезка составляет 10 см, второго — тоже, а третий равен первому. Необходимо доказать, что они равны между собой. Это делается очень просто:

что такое серединный перпендикуляр треугольника. evklidova geometriya osnovnye. что такое серединный перпендикуляр треугольника фото. что такое серединный перпендикуляр треугольника-evklidova geometriya osnovnye. картинка что такое серединный перпендикуляр треугольника. картинка evklidova geometriya osnovnye. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

Следует отметить, что данные действия оказались лишними — было потрачено время на понимание простой «истины». Параллельность прямых является также аксиомой и формулируется таким образом: если существует некоторая прямая на плоскости и точка, не лежащая на ней, то через последнюю можно провести только одну параллельную ей прямую.

И последняя аксиома называется Архимедовой. Ее формулировка имеет такой вид: для произвольных отрезков, лежащих на одной прямой, существует некоторая последовательность базовых элементов (точек), лежащих на одном и другом отрезках, таких, что заданные их части равны между собой. Иными словами, на одной прямой могут быть расположены равные между собой отрезки.

Информация о треугольниках

Треугольником является любая фигура, состоящая из трех вершин (точек) соединенных отрезками (сторонами), причем точки не лежат на одной прямой в одной плоскости. Они классифицируются по такому типу:

что такое серединный перпендикуляр треугольника. primer resheniya slozhnoy. что такое серединный перпендикуляр треугольника фото. что такое серединный перпендикуляр треугольника-primer resheniya slozhnoy. картинка что такое серединный перпендикуляр треугольника. картинка primer resheniya slozhnoy. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

В первом случае фигуры делятся на остроугольные, тупоугольные и прямоугольные. Остроугольным называется треугольник, у которого все углы острые (меньше 90 градусов). У тупоугольного — один угол тупой (> 90), а в прямоугольном — один из углов равен 90 градусам. Следует отметить, что сумма градусных мер углов любого треугольника эквивалентна 180.

Когда стороны у треугольника неравны между собой, тогда его называют разносторонним. При равенстве двух боковых сторон он считается равнобедренным, у которого третья сторона — основание. Если все стороны равны, то значит, фигура является равносторонней или правильной.

У треугольника есть еще и другие параметры. Их называют медианой, биссектрисой и высотой. Первый параметр является отрезком, который проводится из любой вершины на среднюю точку стороны. Высота — часть прямой, которая проводится из произвольной вершины и перпендикулярна противоположной стороне. Биссектрисой называется прямая, делящая угол на две равные части.

Медиана, высота и биссектриса, проведенные из вершины к основанию, совпадают и эквивалентны серединному перпендикуляру в треугольниках равнобедренного и равностороннего типов. Это очень важно при решении задач. Еще одним признаком, по которому выполняется классификация — подобность треугольников. У них могут быть равными только углы и некоторые стороны. Они отличаются между собой по определенному параметру, который называется коэффициентом подобия. Последний влияет только на размерность сторон. Говорят, что фигуры подобны по определенному признаку (их всего три).

Основные теоремы

что такое серединный перпендикуляр треугольника. svoystva sootnosheniya. что такое серединный перпендикуляр треугольника фото. что такое серединный перпендикуляр треугольника-svoystva sootnosheniya. картинка что такое серединный перпендикуляр треугольника. картинка svoystva sootnosheniya. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

Теорема — гипотеза (предположение), которую нужно доказать. Они применяются для оптимизации расчетов и вычисления отдельных параметров заданной фигуры. Кроме того, существуют следствия, полученные при доказательстве таких научных предположений. Эти аспекты упрощают и автоматизируют вычисления. Например, при вычислении площади треугольника нет необходимости выводить формулу, достаточно воспользоваться уже готовой.

Математики выделяют всего три теоремы о СП, которые могут значительно упростить расчеты. К ним можно отнести следующие:

Первая теорема называется прямой о СП. Она показывает, каким свойством обладают точки серединного перпендикуляра. Ее формулировка следующая: произвольная точка, которая взятая на перпендикуляре, удалена на равные расстояния от конечных точек отрезка, ограничивающих его на плоскости.

что такое серединный перпендикуляр треугольника. chertezh zadache. что такое серединный перпендикуляр треугольника фото. что такое серединный перпендикуляр треугольника-chertezh zadache. картинка что такое серединный перпендикуляр треугольника. картинка chertezh zadache. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

Для доказательства следует рассмотреть два прямоугольных треугольника с общей вершиной (искомая точка), общей стороной — катетом и равными катетами (по определению). Фигуры равны по одному из признаков равенства треугольников. Следовательно, их гипотенузы (стороны, равенство которых нужно доказать), равны между собой. Первая теорема доказана.

Следующая теорема — обратная: если точка удалена на равные расстояния от концов отрезка, то значит, она лежит на СП. В этом случае следует рассматривать равнобедренный треугольник, вершиной которого она является. Удалена точка на одинаковые расстояния от вершин основания по условию. Следовательно, этот факт доказывает, что полученный треугольник является равнобедренным, а в нем медиана, проведенная к основанию, является биссектрисой и высотой. Значит, она лежит на серединном перпендикуляре. Утверждение доказано.

Следующую теорему нет необходимости доказывать, поскольку известно, что в равнобедренном и равностороннем треугольниках высоты (медианы и биссектрисы) имеют общую точку пересечения. Они являются также и СП. Следовательно, это утверждение справедливо для них.

Важные свойства

Иногда трех теорем недостаточно для решения какой-либо сложной задачи. В этом случае необходимо знать еще и некоторые свойства СП:

В первом случае все зависит от типа треугольника. Если он является остроугольным, то центр лежит внутри него. Для тупоугольного — во внешнем пространстве, а в прямоугольном — на середине гипотенузы.

Следует отметить, что есть формулы для его расчета. Если предположить, что существует некоторый произвольный треугольник со сторонами а, b и с. Кроме того, для них выполняется условие a >= b >= c. Исходя из полученных данных, можно записать формулы перпендикуляров (Р), проведенных к определенной стороне:

Иными словами, Р является отношением удвоенного произведения стороны на площадь треугольника к сумме квадратов смежных сторон без квадрата противоположной. Кроме того, справедливы неравенства: Pa >= Pb и Pс >= Pb. Стороны — известные параметры, а вот площадь находится по некоторым соотношениям, которые выглядят следующим образом:

В основном по таким соотношениям и нужно определить площадь. Полупериметр вычисляется таким образом: р = (а + b + с) / 2.

Бывают задачи, в которых необходимо просто подставить значения в формулу. Они называются простейшими. Однако встречаются и сложные. К ним относятся все виды без некоторых промежуточных параметров фигуры.

Пример решения задачи

В интернете попадаются примеры решения простых задач, а сложные приходится решать самостоятельно, просить помощи у кого-нибудь или покупать на сайтах готовое решение. Для примера нужно решить задание с такими данными:

что такое серединный перпендикуляр треугольника. ponyatie seredinnom perpendikulyare. что такое серединный перпендикуляр треугольника фото. что такое серединный перпендикуляр треугольника-ponyatie seredinnom perpendikulyare. картинка что такое серединный перпендикуляр треугольника. картинка ponyatie seredinnom perpendikulyare. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

Нужно найти: углы, указанные на рисунке, стороны и ОЕ. Кроме того, дополнительные данные можно узнать из чертежа, который используется для решения задачи (рис. 1). К любому заданию нужно делать графическое представление, поскольку оно позволяет избежать ошибок при вычислении

Рисунок 1. Чертеж для решения задачи.

Числовых значений нет, тогда необходимо решать в общем виде. Углы можно найти по такому алгоритму:

Таким образом, нахождение серединного перпендикуляра позволяет значительно уменьшить объемы вычислений. Однако для этого нужно знать не только основные теоремы, но и его свойства.

Источник

Отрезок. Серединный перпендикуляр.

теория по математике 📈 планиметрия

Перпендикуляр и наклонная

Отрезок – это часть прямой, ограниченная двумя точками. Точки, которые его ограничивают, называю концами отрезка. Обозначают концы отрезка заглавными латинскими буквами.

что такое серединный перпендикуляр треугольника. image1 1228l324t166r587b324w103h. что такое серединный перпендикуляр треугольника фото. что такое серединный перпендикуляр треугольника-image1 1228l324t166r587b324w103h. картинка что такое серединный перпендикуляр треугольника. картинка image1 1228l324t166r587b324w103h. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

На рисунке изображен отрезок АВ, также можно сказать, что изображен отрезок ВА.

Серединным перпендикуляром является прямая, которая проходит через середину данного отрезка и перпендикулярна ему.

что такое серединный перпендикуляр треугольника. image2 138l300t1256r510b304w155h. что такое серединный перпендикуляр треугольника фото. что такое серединный перпендикуляр треугольника-image2 138l300t1256r510b304w155h. картинка что такое серединный перпендикуляр треугольника. картинка image2 138l300t1256r510b304w155h. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

Серединный перпендикуляр к отрезку AB.

На данном рисунке мы видим, что отрезок разделен на две равные части (показаны штрихами), а через середину проведена прямая а под углом 90 0 к данному отрезку АВ. Следовательно, прямая а – серединный перпендикуляр к отрезку АВ.

Свойство серединного перпендикуляра

Все точки серединного перпендикуляра равноудалены от концов данного отрезка.

что такое серединный перпендикуляр треугольника. image3 90l434t1494r329b337w318h. что такое серединный перпендикуляр треугольника фото. что такое серединный перпендикуляр треугольника-image3 90l434t1494r329b337w318h. картинка что такое серединный перпендикуляр треугольника. картинка image3 90l434t1494r329b337w318h. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

На данном рисунке через середину О отрезка АВ проходит прямая m, которая является серединным перпендикуляром. На этой прямой взята некоторая точка М. По свойству серединного перпендикуляра к отрезку, расстояния от точки М до концов отрезка АВ будут равны, то есть АМ=МВ.

Если прямая, проведённая через данную точку, пересекает прямую (отрезок), но не перпендикулярна к ней, то ее называют наклонной. Наклонная всегда больше перпендикуляра.

что такое серединный перпендикуляр треугольника. image4 1285l194t229r660b396w219h. что такое серединный перпендикуляр треугольника фото. что такое серединный перпендикуляр треугольника-image4 1285l194t229r660b396w219h. картинка что такое серединный перпендикуляр треугольника. картинка image4 1285l194t229r660b396w219h. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Правильна будут и такая формулировка: любая точка, равноудаленная от концов отрезка, размещена на серединном перпендикуляре к нему.

На данном рисунке АВ – перпендикуляр, а АС – наклонная к прямой а. Видим, что действительно АС>ВС. Точку В называют основанием перпендикуляра, а точку С – основанием наклонной.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *