что такое результат сложения
Сложение натуральных чисел
Пройти тест по теме «Сложение и вычитание натуральных чисел» можно по ссылке. Проверьте свои знания!
Сумма чисел – это такое число, которое получается после объединения всех единиц других данных натуральных чисел.
Слагаемые – это числа, над которыми мы выполняем действие сложения. Иными словами, это те числа, количество единиц которых мы объединяем в новом числе.
Арифметическое действие – это нахождение нового числа при помощи двух или нескольких других данных чисел.
В курсе математики 5 класса изучаются основные арифметические действия – сложение, вычитание, умножение и деление.
Сложение – это арифметическое действие, которое выполняется для получения суммы нескольких чисел.
Или другими словами:
Сложение – это действие увеличения числа на количество единиц, содержащихся в другом числе.
Сумма – это результат действия сложения.
Компоненты действия сложения для двух слагаемых:
Компоненты сложения для трех слагаемых:
Рисунок 1. Сумма двух чисел на координатном луче.
Основные свойства суммы натуральных чисел
Переместительный закон сложения
Сумма двух или нескольких чисел от изменения порядка сложения слагаемых не меняется.
Это значит, что значение суммы не зависит от порядка выполнения действия сложение.
Сочетательный закон сложения
Сумма нескольких чисел не поменяется, если некоторые слагаемые заменить их суммой.
Это значит, что мы можем группировать слагаемые как угодно, а также выполнять действия сложения в любом порядке.
Например, если в нашем примере мы заменим слагаемые 2 и 3 их суммой, то результат останется такой же, как и при обычном сложении слагаемых:
или
или
Для прибавления суммы некоторых чисел к числу или некоторого числа к сумме чисел, нужно сложить это число с одним из слагаемых суммы, а получившийся результат сложить последовательно с остальными слагаемыми.
Пример 1. Прибавление числа к сумме чисел:
Можно сразу вычислить сумму чисел в скобках и сложить ее с первым слагаемым:
325 +( 12 + 64 + 5 ) = 325 +81 = 406
Также можно использовать правило прибавления слагаемого и суммы. Результат при этом не поменяется
Пример 2. Прибавление суммы чисел к другому числу:
Можно сразу вычислить сумму чисел в скобках и сложить ее со вторым слагаемым
( 54 + 240 + 189 )+ 37 = 483+ 37 = 520
Или можно использовать правило прибавления суммы чисел к числу. Результат останется тот же.
Изменение суммы чисел с изменением слагаемых
При увеличении одного из слагаемых на какое-то число (на какое-то количество единиц), сумма тоже увеличится на это же число (на это же количество единиц).
При уменьшении одного из слагаемых на какое-то число (на какое-то количество единиц), сумма тоже уменьшится на это же число (на это же количество единиц).
Эти два свойства справедливы и в обратную сторону. То есть, если увеличить или уменьшить сумму на какое-то число, тогда для сохранения равенства нужно соответственно увеличить или уменьшить одно из слагаемых.
Простой пример увеличения суммы при увеличении слагаемого: у вас есть 700 рублей; 200 рублей лежит в левом кармане, а 500 – в правом. Вы нашли на улице 300 рублей и положили их в левый карман, после чего там стало 200+300=500 рублей. Таким образом, всего у вас оказалось 500+500=1000 рублей, то есть, сумма всех ваших денег увеличилась на 300 рублей.
Попробуйте самостоятельно придумать примеры для всех трех правил.
Сложение однозначных чисел
Сложение двух однозначных чисел выполняется так: одно число увеличивается на количество единиц другого числа. То есть, единицы одного числа присоединяются к единицам другого числа.
Сложение многозначного числа с однозначным
Чтобы найти сумму многозначного числа и однозначного, можно действовать двумя способами. Оба они основаны на свойствах суммы чисел. Рассмотрим их на примерах.
То есть, мы проделываем такие действия:
88+5 = 80+8+5 = 80+13 = 80+10+3 = 90+3=93.
То есть, ход вычисления был такой:
88+5 = 88+2+3 = 90+3 = 93.
Сложение в столбик многозначных чисел
Сложение в столбик – это способ нахождения суммы чисел путем их записи друг под другом таким образом, чтобы соответствующие разряды разных чисел находились на одной вертикали (один под другим).
Итак, допустим, что нам нужно найти сумму : 5728+803
После нахождения суммы чисел методом сложения столбиком, записываем результат решения в исходном строчном примере:
5728+803 = 6531
Сложение в столбик нескольких многозначных чисел
Рассмотрим пример: 12044+28609+1358
Сложив простые единицы, мы получим 21, то есть, 2 десятка и 1 единицу. Записываем под чертой в разряде единиц цифру 1, а 2 отмечаем «в уме».
Нам остается только записать результат в начальном примере:
12044+28609+1358
Свойства сложения — основные законы, формулы и правила
Сложение является простейшей математической операцией, представляющей собой объединение нескольких чисел в одно. Результатом этого арифметического действия будет сумма, включающая в себя столько единиц, сколько содержится во всех слагаемых. Свойства сложения упрощают процесс складывания величин и ускоряют счет.
Базовые свойства
Главными элементами сложения являются аргументы (слагаемые). Сумма — результат увеличения значений первого и второго аргументов. На письме эта математическая операция обозначается символом +. Основными свойствами сложения в математике являются:
Базовые свойства сложения изучаются в начальной школе со 2 класса. Процесс обучения начинается с простых заданий с двумя компонентами, представленными натуральными числами. По мере обучения увеличивается сложность задач и количество слагаемых. В школе большинство вычислений производится в десятичной системе счисления, поэтому в качестве памятки рекомендуется предоставить ученикам таблицу сложения, где представлены суммы пар чисел от 1 до 10.
Нахождение суммы многозначных чисел
Многозначными называются числа, состоящие из двух и более цифр. Для нахождения их суммы необходимо знание численных разрядов. Цифра, стоящая последней, показывает количество единиц. Далее идут десятки, сотни, тысячи, десятки тысяч, сотни тысяч и миллионы. Многозначные числа складываются столбиком. Сложить можно только одинаковые разряды.
Пример: найти сумму многозначных чисел 125 и 234. Отдельно складываются единицы, десятки и сотни: 5 + 4 = 9, 2 + 3 = 5, 1 + 2 = 3. Суммой является число 359.
Для проверки правильности вычислений нужно вычесть из суммы одно из слагаемых. Если разность равна второму слагаемому, то пример решен правильно. Проверку можно осуществить также при помощи калькулятора или иных вычислительных устройств.
Прибавление дробей и смешанных значений
Дробь — часть от целого числа, записываемая в виде x / y. Значение x называется числителем, y — знаменателем. Дробное число представляет собой операцию деления, где делимым является числитель, а делителем — знаменатель. Дробь считается правильной, если числитель не больше знаменателя.
При складывании дробей с одинаковыми знаменателями необходимо прибавлять только их числители (например, 1/5 + 3/5 = 4/5). Если значения, стоящие под знаком дроби, разные, то необходимо привести выражение к единому знаменателю:
Для упрощения этой процедуры рекомендуется приобрести таблицу умножения. С ее помощью можно легко найти общий знаменатель и дополнительные множители.
Десятичной называется дробь, знаменатель которой равен 10. Она состоит из целой и дробной частей, отделенных запятой. При нахождении суммы десятичные дроби записываются столбиком. Важно, чтобы запятые находились на одном уровне. При неравном количестве разрядов с правой стороны дописываются нули. Если в результате после запятой стоит 0, то он опускается.
Смешанное число — сумма обыкновенной дроби (дробная часть) и целого числа (целая часть).
Для определения суммы чисел в смешанной записи необходимо отделить целую часть от дроби и сложить их по отдельности, применяя базовые свойства сложения. Если в результате вычислений получилась неправильная дробь, то нужно следовать следующему алгоритму действий:
В математике процесс преобразования неправильной дроби в смешанное число называется выделением целой части. Если числитель полностью делится на знаменатель, то неправильную дробь можно записать в виде целого числа.
Складывание векторов, пределов и матриц
Вектор — отрезок, имеющий длину и направление. Он является одним из основополагающих понятий линейной алгебры. В буквенном виде он записывается двумя заглавными символами латинского алфавита или одной маленькой латинской буквой. Существует два основных способа сложения векторов:
Для нахождения суммы трех и более векторов необходимо отметить на плоскости произвольную точку и последовательно отложить от нее исходные векторы. Отрезок, соединяющий начало первого вектора и конец последнего, является суммой. При сложении важно учитывать, что результат сложения противоположно направленных векторов равен 0. Наглядно способы нахождения суммы векторов проиллюстрированы ниже.
Пределом функции является число, к которой стремится значение функции f (x) при стремлении ее аргумента к заданной точке на графике. Является одним из разделов математического анализа. Предел функции вычисляется по следующей формуле: limx →∞ f (x)= C, где C — число, к которому стремится аргумент функции. Для нахождения предела суммы необходимо сложить функции, стремящиеся к идентичным точкам на заданном графике.
Матрица — элемент высшей математики, представленный в виде таблицы прямоугольной формы. Она состоит из неограниченного количества строк и столбцов, где записываются целые, действительные, иррациональные и комплексные числа. В квадратных матрицах количество столбцов и строк совпадает. Нулевой называется таблица, где все компоненты равны 0. Матрицы нашли применение в записи алгебраических и дифференциальных уравнений.
Складывать можно только одноразмерные матрицы (число строк и столбцов совпадает). В противном случае может измениться их исходный размер. При нахождении суммы матриц каждые элементы складываются по отдельности. Нельзя сложить компоненты, находящиеся в разных строках или столбцах. В результате получится матрица с исходным размером. При сложении применяются свойства коммутативности и ассоциативности. Для складывания нулевых матриц важно знать правило нейтрального элемента.
Сложение в двоичной системе счисления
В двоичной системе счисления математические операции выполняются на электронно-вычислительных машинах. В ней применяются только две цифры: 0 и 1. Сложение в этой системе счисления выполняется в столбик. Для вычислений требуется следующая таблица:
Условие математической операции |
0 + 0 = 0 |
0 + 1 = 1 |
1 + 0 = 1 |
1 + 1 = 10 |
Числа, записываемые в столбик, выравниваются по разделителю целой и дробной частей. Если количество разрядов не совпадает, то с правой стороны необходимо добавить нули. При складывании нескольких чисел возможен перенос через 2 и более разряда.
Для упрощения математической операции можно перевести числа из двоичной системы счисления в десятичную. Для этого над каждой цифрой исходного числа слева направо ставится степень, начиная от 0. Каждый элемент умножается на цифру 2, возведенную в соответствующую степень. Результаты вычислений суммируются. С помощью этого способа можно также переводить в восьмеричную и шестнадцатеричную системы счисления.
Числа. Сложение натуральных чисел. Свойства сложения натуральных чисел.
Сложение натуральных чисел основывается на сложении 2-х натуральных чисел. Сложение 3-х и больше чисел выглядит как последовательное сложение 2-х чисел. Кроме того, в силу переместительного и сочетательного свойства сложения, числа, которые складываются можно менять местами и заменять любые 2 из складываемых чисел их суммой.
Действие сложения маленьких натуральных чисел можно производить в уме либо на бумаге по разрядам слагаемых, учитывая то, что каждый полный десяток разряда это 1 единица следующего (более высокого) разряда.
Например: 235 + 672 = (200 + 600) + (30 + 70) + (5 + 2) = 907.
Складывать большие (многозначные) натуральные числа лучше методом сложения в столбик.
Сочетательное свойство сложения доказывает, что результат сложения 3-х чисел a, b и c не зависит от места скобок. Т.о., суммы a+(b+c) и (a+b)+c можно записать как a+b+c. Это выражение называется суммой, а числа a, b и c – слагаемыми.
Аналогично, в силу сочетательного свойства сложения, равны суммы (a+b)+(c+d), (a+(b+c))+d, ((a+b)+c)+d, a+(b+(c+d)) и a+((b+c)+d). Т.е., итог сложения 4-х натуральных чисел a, b, c и d не зависит от места расположения скобок. В аком случае сумму записывают как: a+b+c+d.
Если в выражении не расставлены скобки, а оно состоит из более,чем двух слагаемых, вы сами можете расставить скобки как вам больше нравится и, последовательно сложить по 2 числа, получив ответ. Т.е., процесс сложения 3-х и более чисел сводится к последовательной замене 2-х соседних слагаемых их суммой.
Для примера вычислим сумму 1+3+2+1+5. Рассмотрим 2 способа из большого количества существующих.
Первый способ. На каждом шаге заменяем первые 2 слагаемых суммой.
Т.к. сумма чисел 1 и 3 равна 4, значит:
1+3+2+1+5=4+2+1+5 (мы заменили сумму 1+3 числом 4).
Т.к. сумма 4 + 2 равна 6, то:
Т.к. сумма чисел 6 и 1 равна 7, то:
И последний шаг, 7+5=12. Т.о.:
Мы произвели сложение, расставив скобки следующим образом: (((1+3)+2)+1)+5.
Второй способ. Расставим скобки таким образом: ((1+3)+(2+1))+5.
Сумма 4-х и 3-х равна 7, значит:
И последний шаг: 7+5=12.
На результат сложения 2-х, 3-х, 4-х и т.д. чисел не влияет не только расстановка скобок, но и порядок, записывания слагаемых. Т.о., при суммировании натуральных чисел можно изменять места слагаемых. Иногда это дает более рациональный процесс решения.
Свойства сложения натуральных чисел.
Например: 3 + 1 = 4; 39 + 1 = 40.
Это свойство сложения называется переместительным законом.
Например: 3 + ( 7 + 2 ) = ( 3 + 7 ) + 2 = 12 ;
Поэтому вместо 3 + ( 7 + 2 ) пишут 3 + 7 + 2 и складывают числа по порядку, слева на право.
Это свойство сложения называют сочетательным законом сложения.
И наоборот, при прибавлении числа к нулю, сумма равна числу.
Сложение
Сложение — арифметическая операция, которая выполняется над двумя числами и заключается в нахождении числа, означающим количество, которое соответствует этим двум исходным числом, если взять их вместе. Число, являющееся результатом операции сложения двух чисел, называется суммой этих чисел.
Сложение обозначается знаком «+» (плюс), который ставится между двумя операндами. Например, запись «A + B» означает «заключить A и B» или «сумма A и B». Запись «A + B = C» означает: число C есть сумма чисел A и B.
Сложение просто иллюстрируется на уровне быта. Например, можно представить себе, что два числа соответствуют количеству обитателей двухэтажного дома. Тогда сумма этих чисел обозначает количество жителей всего дома.
Формально операция сложения натуральных чисел может быть определена следующим образом:
где S(x) — число, следующее после x.
В соответствии с этим результат сложения (сумма) двух однозначных чисел определяется следующим образом:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
2 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
3 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
4 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
5 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
6 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
7 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
8 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
9 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
[править] Алгоритм сложения многозначных натуральных чисел
Сложение многозначных чисел в системе позиционных чисел может быть сведено к добавлению однозначных чисел путем побитового сложения с переносом, то есть добавлению тех же цифр компонентов, что и отдельных номеров. Результатом добавления цифр будет значение той же суммы цифр; если сумма цифр дает двузначное число, то берется младшая цифра, а старшая цифра переводится в следующую (по номеру) цифру, которая добавляется к сумме следующих цифр.
Таким образом, сложение многозначных чисел осуществляется по следующему алгоритму:
1) сложите младшие цифры (единицы). Если результат сложения не превышает 9, это будет самая низкая цифра суммы.
Если в результате сложения получилось двузначное число, вторая (младшая) цифра определяет количество единиц в сумме, а первая переводится в старшую категорию (десятки).
2) добавить следующие категории (десятки); если был перевод из предыдущей категории, добавьте его к сумме. Определить вторую цифру суммы, а также осуществить перевод так же, как и для первой категории (пункт 1);
3) повторить пункт 2, перемещаясь от младших цифр к старшим (справа налево), пока все цифры компонентов не будут добавлены.
Если размер битов компонентов не совпадает, то в недостающие старшие цифры меньших компонентов добавляются нули.
При ручном сложении чисел для удобства записывают друг под другом так, чтобы одинаковые цифры появлялись в одном столбце. Единицу, которая переводится в старшую категорию, записывают поверх первого составного номера или просто запоминают.
[править] Сложение положительных и отрицательных чисел
Если среди сумм есть отрицательные числа, сложение может быть сведено к сложению или вычитанию положительных чисел. А именно,
−22 + (−17) = −(22 + 17) = −39 −14 + 40 = 40 − 14 = 26 23 + (−27) = −(27 − 23) = −4
Эти правила вытекают из того факта, что сумма противоположных чисел равна нулю:
a + b = a + b − 0 = a + b − (b + (−b)) = a − (−b).
То есть сложение можно заменить вычитанием, изменив знак второго компонента на противоположный. И наоборот, вычитание может быть заменено сложением путем замены на противоположный знак вычитаемого числа.
Математика. 2 класс
Конспект урока
Математика, 2 класс
Урок № 16. Свойства сложения. Применение переместительного и сочетательного свойств сложения
Перечень вопросов, рассматриваемых в теме:
— Что такое сочетательное свойство сложения?
-В каких случаях можно использовать свойства сложения?
Переместительное свойство сложения: слагаемые можно переставлять местами, при этом значение суммы не изменится.
Сочетательное свойство сложения: результат сложения не изменится, если соседние слагаемые заменить их суммой.
Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):
1. Математика. 2 класс. Учебник для общеобразовательных организаций. В 2 ч. Ч.1/ М. И. Моро, М.А.Бантова, Г.В.Бельтюкова и др. –8-е изд. – М.: Просвещение, 2017. – с.44-47
2. Математика. КИМы. 2 кл: учебное пособие для общеобразовательных организаций/ Глаголева Ю.И., Волкова А.Д.-М.: Просвещение, Учлит, 2017, с.18, 19
3. Математика. Проверочные работы. 2 кл: учебное пособие для общеобразовательных организаций/ Волкова С.И.-М.: Просвещение, 2017.- с.28, 29
Теоретический материал для самостоятельного изучения
Сравним выражения и их значения:
Сумма чисел шесть и девять равна сумме чисел девять и шесть.
Сумма чисел сорок пять и пять равна сумме чисел пять и сорок пять.
Значения выражений равны, так как от перестановки слагаемых значение суммы не меняется. Вспомним, как в математике называется данное свойство сложения?
Правильно, оно называется переместительным свойством сложения.
В школьном спортзале 3 волейбольных мяча, 5 баскетбольных мячей и 4 футбольных мяча. Сколько всего мячей в спортзале?
Первый способ решения.
Сначала узнаем, сколько волейбольных и баскетбольных мячей, затем прибавим число футбольных мячей. Запишем: к сумме чисел три и пять прибавить четыре, получится двенадцать.
Второй способ решения.
Прибавим к числу волейбольных мячей сумму баскетбольных и футбольных мячей. Запишем: к трем прибавить сумму чисел пять и четыре равно двенадцать.
В обоих случаях получили одинаковый результат, значит, выражения равны между собой. Можем записать так: (3+5)+4=3+(5+4)
Теперь ты знаешь еще одно свойство сложения: результат сложения не изменится, если соседние слагаемые заменить их суммой. Это свойство называется сочетательным свойством сложения.
Знание этих двух свойств сложения позволит нам решать примеры на сложение удобным способом.
Решим выражение: 1+7+9+3=?
Мы знаем, что слагаемые можно менять местами и соседние слагаемые заменять их суммой. Воспользуемся свойствами сложения и найдем сумму.
В данном случае удобно сложить попарно 1 и 9, 7 и 3. А затем сложить полученные результаты. Получим 20.
Делаем вывод: используя переместительное и сочетательное свойства сложения можно складывать числа в любом порядке, как удобнее.
1. Вычислите суммы удобным способом
30 + 3 + 7 + 40 = _________ 4 + 10 + 6 + 70=_______________
1. 30 + 3 + 7 + 40 = (3+7)+(30+40)=80 2. 4 + 10 + 6 + 70= (10+70)+(4+6)
2. Совместите название математического свойства с его значением и выражением
Результат сложения не изменится, если соседние слагаемые заменить их суммой.
Слагаемые можно переставлять местами, при этом значение суммы не изменится.
Результат сложения не изменится, если соседние слагаемые заменить их суммой.
Слагаемые можно переставлять местами, при этом значение суммы не изменится.