что такое осветление в силикатных расплавах
Вспомогательные сырьевые материалы
Ускорители. Для ускорения варки стекла применяют соединения фтора и хлора, а также нитраты натрия, калия, бария и аммонийные соли, способствующие появлению жидкой фазы при более низких температурах и тем самым увеличению скорости процесса силикатообразования. Шихта с добавкой 1 % фтора при 1450°С проваривается в два раза быстрее, чем шихта без фтора.
Кремнефтористый натрий Na2SiF6 — отход химических производств, сильно летуч, токсичен. Вводят в состав шихты из расчета 03 — 0,5 % фтора сверх основного состава стекла. Наряду с положительными факторами применение фторидов вызывает ряд отрицательных явлений. Фториды усиливают разрушение огнеупорных материалов стекловаренных печей и вследствие большой летучести вместе с дымовыми газами выделяются в окружающую среду. В связи с этим при использовании фторидов необходимо учитывать не только экономические предпосылки, но и охрану окружающей среды.
Хлористый натрий NaCl (поваренную соль) вводят в состав шихты от 1,5 до 3 % ее массы. Как и фториды, NaCl сильно летуч. В процессе стекловарения теряется по массе от 30 до 35 % хлорида.
Осветлители. Осветлители вводят в шихту для того, чтобы способствовать освобождению стекломассы от видимых пузырей, т. е. ее осветлению. Этим ускоряют процесс стекловарения.
Действие осветлителей заключается в том, что при нагревании они разлагаются с выделением большого количества газообразных продуктов. Улетучиваясь из стекломассы, они способствуют удалению из нее и других газов (пузырей).
Количество осветлителя, вводимого в стекломассу, % от массы шихты:
NH4NO3. 2,5
NH4Cl. 2,5
(NH4)2SO4. 0,5-3,0
NaCl. 0,5—1
Na2SO4. 0,5—1
NaNO3. 1—1,5
Обесцвечиватели. Обесцвечиватели вводят в стекломассу, чтобы устранить нежелательные сине-зеленые или желто-зеленые оттенки, которые стекломасса приобретает из-за примесей железа в сырьевых материалах.
Стекло обесцвечивают химическим и физическим способами.
Обесцвечиватели для химического обесцвечивания. Закисное железо FеО сильнее закрашивает стекло, чем окисное Fe2O3. Интенсивность окраски зависит от общего содержания в стекле оксидов железа. При производстве многих видов изделий из стекла такая окраска не допускается, поэтому для ее устранения и применяют обесцвечивающие материалы.
Сущность химического обесцвечивания стекла состоит в том, чтобы перевести при образовании стекла закисную форму железа в окисную. С этой целью и используют такие сырьевые материалы, которые при нагревании разлагаются с выделением свободного кислорода. Наличие кислорода является непременным условием для успешного протекания основной реакции обесцвечивания:
2FeO + 1/2O2=Fe2O3
Для химического обесцвечивания используют следующие материалы.
Трехокись мышьяка As2O3 при нагревании (при сравнительно низкой температуре) поглощает кислород, превращаясь в пятиокись As2O5. Затем уже при высоких температурах (близких к температурам осветления стекломассы) пятиокись разлагается на трехокись As2O3 с выделением свободного кислорода O2, который и обеспечивает химическое обесцвечивание.
Для обесцвечивания стекла As2O3 рекомендуется вводить 0,3 — 0,5%.
Селитра NaNO3 разлагается с выделением кислорода уже при температурах 400° С. Ее рекомендуется вводить совместно с As2O3: 0,3% трехокиси мышьяка, 1—1,5% селитры.
Сульфат натрия Na2SO4 разлагается при высоких температурах с частичным выделением кислорода.
Двуокись церия CeO2 при высокой температуре разлагается с выделением кислорода: 2 CeO2 = Ce2O3+ 1/2 O2.
Обесцвечиватели для физического обесцвечивания. Сущность физического обесцвечивания состоит в том, что в стекломассу вводят вещества (обесцвечиватели), которые окрашивают стекло, в цвет, дополнительный к существующему, как бы накладывают один цвет на другой. Цвета подбирают таким образом, чтобы уменьшить интенсивность окраски стекла. Однако хотя интенсивность окраски при этом уменьшается, в то же время понижается общая светопрозрачность. В качестве обесцвечивателей используют соединения марганца, селена, кобальта, никеля и редкоземельных элементов.
Окись марганца Mn2O3 придает стеклу фиолетовый цвет, который дополняет желтую окраску стекла от действия окиси железа.
Селен Se применяют в виде металлического селена или селенистонатриевой соли Na2SeO3. В качестве обесцвечивателя он сообщает стеклу большую прозрачность, чем другие окислители. Особенно эффективно его применение совместно с окисью кобальта.
Закись никеля NiO придает стеклу дополнительный бледно-фиолетовый цвет, используют ее в основном при производстве калиевых и свинцовых стекол.
Окись кобальта CoO придает стеклу дополнительный синий цвет. Ее чаще используют совместно, с закисью никеля и селеном.
Двуокись церия CeO2, окись неодима Nd2O3, окись празеодима Pr2O3 — резкоземельные материалы, которые наиболее часто используют для обесцвечивания.
Стекловарение. Этапы стекловарения. Осветление
Стекловарение – это термический процесс, при котором смесь разнородных компонентов шихты образует однородный расплав (стекломассу).Протекает в значительном температурном интервале. При варке различают 5 этапов стекловарения.
3. Осветление (дегозация)
4. Гомогенизация (усреднение состава)
5. Охлаждение (студка)
1 и 2 протекают почти одновременно.
Осветление стекломассы (дегазация):
Наиболее длительная и ответственная стадия варки стекла. Проводят при максимальных Т варки около 1600 С. Из расплава удаляются видимые газовые включения (крупные пузырьки) и выравнивается состав стекломассы. В готовом стекле всегда есть остаточное количество газов (пузыри или твердый раствор). Задача третей стадии – свести к минимуму число пузырей в готовом стекле. Источники газа:
1) Химически связанные газы шихты CO2, SO2
2) Адсорбционные газы на поверхности зерен N2, O2
3) Газы пламенного пространства печи SO2, H2O
Скорость 3-ей стадии зависит от Т, вязкости, поверхностного натяжения и давления газа. Для лучшего осветления в стекломассу вводят специальные добавки, которые вызывают бурное газообразование и уменьшает поверхностное натяжение ( нитраты, сульфаты, CaF2)
44. Стекловарение. Этапы стекловарения. Этап гомогенизации. Факторы, влияющие на процесс.
Стекловарение – это термический процесс, при котором смесь разнородных компонентов шихты образует однородный расплав (стекломассу).Протекает в значительном температурном интервале. При варке различают 5 этапов стекловарения.
3. Осветление (дегозация)
4. Гомогенизация (усреднение состава)
5. Охлаждение (студка)
1 и 2 протекают почти одновременно.
Гомогенизация (усреднение)- происходит усреднение расплава по составу и он становится химически однородным. Гомогенизация и осветление проходит при одинаковой Т. Факторы влияющие на осветление, влияют и на гомогенизацию. Причиной неоднородности стекломассы является недостаточная однородность исходной шихты, расслоение во время транспортировки к загрузки, ячеистый характер структуры стекломассы. Образование ячеистой структуры связано с тем, что шихта силикатных стекол на 75 % состоит из кварцевого зерна (0,2-0,5мм). Из-за различия в размере зерна и медленной диффузии образуется сферическая зона-ячейки, которая ограничивает реакционную зону исчезнувшего кварцевого зерна. Задача гомогенизации разрушение ячеистой структуры. Этому способствует: Т при увеличении которой уменьшается вязкость и увеличивается скорость диффузии и массообмена. Этому способствует механическое перемешивание, бурление стекломасс с помощью сжатых газов и выделения газовых пузырей.
45. Стекловарение. Этапы стекловарения. Студка. Факторы, влияющие на процесс.
Стекловарение – это термический процесс, при котором смесь разнородных компонентов шихты образует однородный расплав (стекломассу).Протекает в значительном температурном интервале. При варке различают 5 этапов стекловарения.
3. Осветление (дегозация)
4. Гомогенизация (усреднение состава)
5. Охлаждение (студка)
1 и 2 протекают почти одновременно
Студка – завершает этап стекловарения, на котором происходит подготовка стекломассы к формованию. Для этого Т уменьшается равномерно до 300 С, что бы достигнуть вязкости, необходимой для выработки изделий стекла. Охлаждение проводят очень медленно, чтобы избежать в расплаве конвекционных потоков. Т.к. такие процессы могут вызвать неконкретный перенос поверхностных слоев в объем расплава, состав изменяется и появляется негомогенные области. Кроме того, если охладить быстро, не успеют пройти диффузионные процессы, которые способствуют установлению равновесной системы при Т.
Разделение стекловарения на 5 этапов является условным. В реальных условиях эти этапы перекрывают друг друга.
46. Пороки стекла. Газовые, стекловидные, кристаллические пороки. Методы борьбы с пороками.
Пороки – это инородные включения, ухудшающие качество изделий стекла.
Различают пороки:
— газовые пузыри разные по размеру, цвету и форме, которые могут быть заполнены газами CO2, SO2, O2 Пузыри ухудшают прозрачность, химическую стойкость и механическую прочность. По происхождению пузыри могут быть : первичные и вторичные. Первичные образуются при неполном удалении газообразных продуктов при разложении шихты, при нарушении режима осветления. Вторичные недостаточно медленное охлаждение стекломассы или при повторном нагреве. Кроме того вторичные могут образоваться при взаимодействии стекломассы с материалом горшка, ванны, печи
— стекловидные – включение стекла др. состава, которые образуют в основном стекле нити. Имеют другую плотность, состав, цвет и коэффициент преломления. Силы образуются как на поверхности. Так и в объеме. Причины: плохое смешение шихты, нарушение химического состава, конвекционное перемешивание расплава при быстром охлаждении.
— кристаллические – образуются в результате кристаллизации стекломассы или попадании в стекломассу посторонних нерастворимых включений
Методы борьбы с пороками: тщательная разработка и соблюдение ТП варки и выработки стекла.
47. Формование стекла. Стадии процесса формования.
В процессе формования движение стекломассы сопровождается интенсивными стеклообменами с окружающей средой. Особенность процесса массопереноса при формовании является то, что стекломасса – это упруго-вязкая среда и ее реалогические свойства зависят от химического состава и Т. Теплопередача определяется тепло-физическими свойствами стекла (коэффициент теплопроводности, Т, удельная теплоемкость и т.д.)
Стадии процесса формования:
В соответствии с двумя основными этапами, определяется его ход:
Следовательно процесс формования делится на 2 стадии:
2) придание (фиксация) формы
Разделение формования на 2 стадии является условным.
Процессы формования стекла делятся в технологическом отношении на:
1. непрерывные
2. циклические.
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.12 сек.)
Ускорители варки и осветлители
Ускорители варки и осветлители
Ускорители варки, введенные в стекломассу, способствуют интенсификации процессов стекловарения.
Среди ускорителей особое место занимают фториды, способствующие появлению жидкой фазы при более низких температурах и увеличению скорости процесса силикатообразования. Фториды – наиболее эффективные ускорители, шихта, содержащая фториды, значительно быстрее проваривается и осветляется; в качестве ускорителя варки обычно применяют кремнефторид натрия.
Ускорению процессов варки также способствует ввод гидратов оксидов натрия и калия, окислителей. К ускорителям варки с известной долей условности можно отнести также осветлители, которые способствуют при высоких температурах освобождению стекломассы от крупных и мелких пузырей.
Некоторые осветлители вводятся в стекло основными компонентами, к примеру, сульфатом натрия, селитрами, другие вводятся в состав шихты специально, например, оксиды мышьяка и сурьмы, оксид церия, хлористый натрий; в качестве ускорителей применяют также соли аммония.
Для облегчения процессов варки применяется также стекольный бой в количестве 20-50% к массе шихты. Стекольный бой должен быть чистым, свободным от загрязняющих примесей, желательно однородный по величине кусков, Целесообразно применять бой, одинаковый по составу с применяемым стеклом. Это условие применяется в производстве сортовой посуды, где имеется значительное количество отходов после резки колпачка.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
Читайте также
Приложение I. Ракетные самолеты и ускорители старта
Приложение I. Ракетные самолеты и ускорители старта История создания ракетного самолета является частью истории развития ракет, а сам ракетный самолет может быть назван побочным продуктом ракетных исследований. Свыше 20 лет тому назад (1928 год) Макс Валье предлагал
4.5.2. Ускорители нанотехнологии. Квантовое моделирование и масштабные эксперименты
4.5.2. Ускорители нанотехнологии. Квантовое моделирование и масштабные эксперименты Выше говорилось о том, что научные достижения имеют тенденцию «эмигрировать» из лабораторий и превращаться в инновационные проекты, причем этот процесс протекает ускоренно, что и
Красители, обесцвечиватели и глушители
Красители, обесцвечиватели и глушители
Красители. Красители входят в группу вспомогательных материалов. Обычно в качестве красителей используют различные соединения металлов; эти соединения распределяются в стекле на ионном, молекулярном и коллоидном уровнях.
К молекулярным относятся те красители, которые при введении в стекломассу растворяются в ней. Окраска таких стекол не изменяется при повторной тепловой обработке. К этой группе красителей относятся главным образом окислы тяжелых металлов: марганца, кобальта, никеля, урана, хрома и др.
К коллоидным красителям относятся те, которые при введении в стекломассу равномерно распределяются в виде мельчайших коллоидных частиц; к ним относятся соединения серебра, золота, меди, селена и др.
Соединения марганца в виде окиси марганца или перекиси марганца придают стеклу различные оттенки фиолетового цвета; в качестве исходного сырья используют пиролюзит и марганцовокалиевую соль.
Соединения кобальта придают стеклу синий цвет; чаще всего для этого используется закись кобальта, являющуюся сильным красителем, поэтому ее вводят в стекломассу в весьма небольших количествах. Закись кобальта является стойким красителем, на нее не влияют условия варки стекла.
Соединения хрома придают стеклу зеленый цвет; в качестве красителей используется окись хрома, хромокалиевая соль и хромонатриевая соль.
Соединения железа в зависимости от его вида придают различную окраску стеклу. Закись железа окрашивает стекло в сине-зеленый цвет; окись железа дает желтый или коричневый, а в смеси с углем и серой – в оранжевый свет; смесь окиси и закиси железа придают стеклу зеленый цвет.
Соединения никеля окрашивают стекло в красно-фиолетовый цвет; для этого используется закись никеля, окись никеля и гидрат закиси никеля.
Соединения урана придают стеклу желто-зеленый цвет; для придания желто-зеленого цвета используется закись урана, треокись урана и натриевая соль урановой кислоты.
Окись меди окрашивает стекло в зеленовато-голубой цвет.
В качестве красителей при производстве сортовых стекол применяются окислы редкоземельных элементов. Чаще других используется двуокись церия, дающая золотисто-желтый цвет; окись празеодима окрашивает стекло в зелено-золотистый цвет; окись неодима окрашивает стекло в пурпурно-красный цвет.
Соединения серебра придают стеклу золотисто-желтый цвет; в качестве красителей обычно используют азотнокислое серебро.
Соединения золота окрашивают стекло от нежно-розового до темно-красного цвета (так называемый золотой рубин); в качестве красителя чаще всего применяют хлорное золото, содержащее 4,96% чистого золота; розовую окраску стекла получают уже при введении 0,01% металлического золота, а для получения темно-красного цвета (золотого рубина) вводят 0,02% золота.
Закись меди в восстановительных условиях варки придает стеклу ярко-красный цвет (медный рубин), а в окислительных условиях варки окрашивает стекло в синий цвет.
Обесцвечиватели. Обесцвечиватели вводят в стекломассу для устранения нежелательного сине-зеленого или желто-зеленого цвета стекла, который придают ему соединения железа, присутствующие в сырьевых материалах.
Закисная форма железа окрашивает стекло в десятки раз сильнее, чем окисная. Для обесцвечивания стекла при его образовании необходимо перевести закисную форму железа в окисную. Для этого применяют такие сырьевые материалы, которые при нагревании разлагаются с выделением свободного кислорода. Наличие кислорода является непременным условием успешного протекания основной реакции обесцвечивания.
В качестве обесцвечивателей применяют перекись мышьяка, селитру, сульфат натрия, двуокись церия и др. Наиболее часто для химического обесцвечивания стекла применяются комбинации оксида мышьяка: трехокись мышьяка при нагревании при сравнительно низкой температуре поглощает кислород, превращаясь в пятиокись азота; затем – уже при высоких температурах, близких к температурам осветления стекломассы – пятиокись разлагается на трехокись с выделением свободного кислорода, который и обеспечивает протекание реакции обесцвечивания. Для обесцвечивания стекла таким способом достаточно ввести в стекломассу 0,3-0,5% трехокиси мышьяка.
Селитра разлагается с выделением кислорода уже при температуре 400 градусов С; ее вводят совместно с трехокисью мышьяка.
Соединения мышьяка ввиду их большой ядовитости часто заменяют оксидом сурьмы.
В качестве химического обесцвечивателя применяю также оксид церия. Двуокись церия разлагается при высокой температуре с выделением кислорода. Оксид церия является весьма эффективным обесцвечивателем, к тому же его применение исключает использование ядовитых соединений мышьяка и сурьмы.
Физическое обесцвечивание состоит в том, что в стекломассу вводят вещества, которые окрашивают стекло в цвет, дополнительный к существующему, т.е. как бы накладывают один цвет на другой. Подбор цветов ведется таким образом, чтобы уменьшить интенсивность окраски стекла, при этом с уменьшением интенсивности окраски стекла снижается общая светопрозрачность стекла. В качестве физических обесцвечивателей используют оксиды марганца, кобальта, никеля, неодима и эрбия, элементарный селен.
Глушители. Для придания стеклу светорассеивающих свойств в стекломассу вводят глушители. Так называемые глушеные стекла широко применяются в светотехнике: стеклянные абажуры, колпаки и т.д. В качестве глушителей обычно применяются фтористые или фосфорнокислые соединения.
Соединения фтора вводятся через фторид кальция, камнефторид натрия, криолит и хиолит. Соединения фосфора применяются в виде костной муки, фосфата кальция, кислой фосфорнонатриевой соли, апатита.
Заглушенность в стеклах достигается также за счет кристаллизации определенных соединений, а также введением в сваренную стекломассу тугоплавких соединений или пузырьков воздуха.
Данный текст является ознакомительным фрагментом.
Варка. Способы обработки. Материалы и инструменты. Декоративное покрытие. Гравёрные работы
Книга подробно расскажет о процессе варки стекла, о способах обработки стекла, материалах и инструментах, применяемых для обработки стеклоизделий, декорировании выдувных изделий (гутном, рельефном, вплавлением различных материалов, с применением стеклянной крошки и проч.), а также о нанесении декоративных покрытий и гравёрных работах.
Оглавление
Приведённый ознакомительный фрагмент книги Варка. Способы обработки. Материалы и инструменты. Декоративное покрытие. Гравёрные работы предоставлен нашим книжным партнёром — компанией ЛитРес.
Физико-химические основы стекловарения
Варка стекла является основным технологическим процессом при производстве стеклянных изделий. Стекловарение — сложный физико-химический процесс, который протекает при изменяющихся высоких температурах в шихте и движущейся среде (стекломассе) переменного и сложного состава и зависит от состава стекла, условий теплообмена, вида топлива, характера движения стекломассы и газов.
Процесс получения готовой к выработке стекломассы обычно делят на пять стадий: силикатообразование, стеклообразование, осветление, гомогенизации и охлаждение стекломассы.
Силикатообразование. Первая стадия — силикатообразование — характеризуется тем, что к ее концу в шихте нет отдельных компонентов, большинство газообразных компонентов, образующихся в процессе разложения и взаимодействия составляющих, улетучилось, а реакции между отдельными компонентами шихты в твердом состоянии заканчиваются. Шихта превращается в спекшуюся массу, сырьевые материалы, находящиеся в шихте, претерпевают ряд изменений: влага испаряется; гидраты, соли, перекиси разлагаются и теряют летучие формы: кремнезем подвергается полиморфным превращениям. В итоге шихта превращается в спекшуюся массу, состоящую из силикатов и кремнезема. Для обычных натрий-кальций-силикатных стекол этот этап завершается при температуре 900-1150 градусов С.
Стеклообразование. Эта стадия характеризуется тем, что к ее окончанию стекломасса становится прозрачной, т.е. в ней отсутствуют непроваренные частицы шихты, но она еще пронизана большим количеством пузырей и свилей, т.е. она продолжает оставаться химически неоднородной. Для сортовых и тарных стекол эта стадия завершается при температуре 1150-1250 градусов С. Скорость протекания процесса стеклообразования в 8-9 раз выше скорости силикатообразования. К концу стеклообразования в основном протекают все химические реакции: разложение гидратов, карбонатов, сульфатов; взаимодействие компонентов шихты с образованием силикатов.
Осветление. Как уже было сказано, к концу стеклообразования расплав продолжает оставаться пронизанным большим количеством неоднородностей — свилей и пузырей, хотя нерастворенных частичек шихты уже нет. Для ликвидации остаточных включений свилей и пузырей служат третья и четвертая стадии стекловарения: осветление о гомогенизация.
Механизм осветления стекломассы заключается в создании равновесных условий между газами, растворенными в стекломассе, и газами, заключенными в пузырьках, при определенных условиях атмосферы печи; это происходит следующим образом: большие пузыри поднимаются к поверхности, лопаются и переходят в атмосферу печи, а маленькие пузыри растворяются в расплаве.
Для сортовых и тарных стекол осветление завершается при температуре 1450-1550 градусов С.
Гомогенизация — это следующий этап, цель которого освобождение стекломассы от свилей и создание полной ее однородности. Процесс гомогенизации в некоторой степени содействует процесс осветления. Для этого стекломассу длительное время выдерживают при высоких температурах или перемешивают. На гомогенизацию, так же как и на процесс осветления, влияет главным образом температура; гомогенизация протекает одновременно с осветлением при тех же температурах.
Охлаждение стекломассы — это последняя стадия стекловарения. Перед заключительной стадией температура стекломассы лостигает наивысшего значения — около 1500 градусов С, а вязкость — наименьшего значения. Для подготовки стекла к выработке необходимо понизить ее температуру и довести значения вязкости до рабочего состояния; для этого температуру стекломассы снижают примерно на 200-300 градусов.
Следует иметь в виду, что при нарушении режимов охлаждения стекломассы может измениться равновесие между жидкой и газовой фазами, что может в свою очередь привести к возникновению газообразных включений в стекле, так называемых повторных пузырей и мошки (мельчайших пузырей). Это — пороки стекла, избавиться от которых чрезвычайно трудно.
Варка стекла в горшковых печах
Горшковые печи применяют в производстве изделий сортовой посуды из окрашенных стекол. Для производства сортовых изделий высокого качества из цветного и свинецсодержащего стекла применяют многогоршковые регенеративные печи с нижним приводом пламени. При варке в горшке на стекломассу легко воздействовать путем перемешивания, бурления и установления необходимого режима. К стекловаренным горшкам предъявляются высокие требования, так как от их качества во многом зависит качество стекломассы. Наиболее часто встречаемый брак при варке в горшковых печах — это шамотный камень, продукт разрушения стенки горшка. Стекловаренные горшки изготовляют из шамотной массы путем трамбовки. К стекловаренным горшкам предъявляют высокие требования, так как от их качества во многом зависит качество стекломассы. Размеры горшков бывают различными. Наибольшее распространение получили горшки на 250-300 л (оптическое стекло) и на 150-160 л (сортовое стекло). Полезная емкость горшка намного меньше геометрической вследствие потерь стекла при бурлении, недостаточного заполнения горшка и остатка стекла после выработки; обычно используется 70-80% сваренного стекла.
Горшковые печи с нижним подводом пламени, предназначенные для варки цветных и хрустальных стекол, обычно имеют до 16 горшков полезной вместимостью 300-500 кг каждый. Стекловаренные горшки устанавливают по периметру печи у боковых стен. Шихта в стекловаренном горшке получает тепло главным образом за счет излучения от свода печи: чем ниже свод, тем интенсивнее прогрев горшка и находящейся в нем шихты. Шихту загружают только в горячие горшки, имеющие на дне подушку из расплавленного стекла толщиной до 10 см.
При варке в горшковых печах все процессы — силикатообразование, стеклообразование, осветление и охлаждение — чередуются. Варку стекла в горшковых печах принято условно делить на четыре стадии: разогрев печи, наварка стекла, осветление и студка до температуры выработки. Примерный график варки натрий-кальций-силикатного стекла для производства сортовой посуды и художественных изделий приведен на риcунке.
Варка стекла в ванных печах
Процесс варки стекла в ванных печах аналогичен процессу варки в горшковых печах. В ванных печах непрерывного действия засыпка шихты, варка стекла и выработка стеклоизделий происходят одновременно. Ванная стекловаренная печь представляет собой сложный теплотенический агрегат. Варка стекла в ванных печах непрерывного действия протекает в иных условиях, чем варка в горшках: силикато — и стеклообразование, осветление и студка в них осуществляется одновременно и непрерывно на соответствующих участках по длине печи. Течение этих процессов осуществляется в условиях непрерывного смещения поверхностных слоев расплава. Главной причиной движения стекломассы в ванной печи является разность уровней, которая возникает в условиях отбора стекломассы на выработочном конце печи. Следовательно, в ванной печи постоянно существует выработочный поток, который питается за счет свежих порций шихты, превращающихся в стекломассу. Непрерывность процесса варки позволяет обеспечивать в ванных печах постоянство технологических режимов и уровня стекломассы.
Варка окрашенных и глушеных стекол. Обесцвечивание стекла
В производстве полых стеклоизделий большое значение имеют окрашивание, глушение и обесцвечивание стекла. В производстве сортовой посуды цвет имеет декоративное значение. Глушение и обесцвечивание стекла можно считать разновидностями окрашиванияю. Окрашивание, глушение и обесцвечивание производятся при стекловарении в результате ввода в шихту различных красителей, глушителей, обесцвечивателей.
Стекломасса окрашивается при растворении красителей в период варки. Для варки цветных стекол используют горшковые и ванные печи непрерывного и периодического действия. Температурный режим варки и выработки цветных стекол зависит от вида применяемого красителя. Стекла, содержащие оксид кобальта, никеля, железа (синее и дымчатое стекло) обладают меньшей теплопрозрачностью; их варят при температуре около 1490 градусов С. Выработка изделий из этих стекол из-за большой скорости твердения также производится при более высоких температурах. Стекла, окрашенные соединениями марганца, селенового рубина, можно варить при температуре 1400-1420 градусов С. Чтобы добиться расширения гаммы цветных стекол, необходимо соблюдать последовательность ввода красителей при варке. При смене цвета нужно учитывать близость цветовых тонов, к примеру, лучше варить стекло, окрашенное соединениями марганца, после варки стекол зеленого цвета, так как соединения хрома окисляют соединения марганца и способствуют получению интенсивных фиолетовых тонов. Недопустима варка натрий-кальций-силикатных стекол, окрашенных селеном малых концентраций (розалин, неодимовый рубин), после варки селенового рубина, так как это приводит к выделению пузырей из-за ограниченной растворимости в стеклах этого состава. Желательно первоначально варить стекла с красителями, которые легко окисляются или восстанавливаются, к примеру, с серой, с селеном, соединениями марганца. Переход от варки стекла одного цвета к другому без остановки печи требует много меньше затрат труда и меньше времени, чем при сливе стекломассы и наполнении ее стеклом нового состава. Нужно иметь в виду, что при непосредственном переходе от варки стекла одного цвета к другому могут возникнуть пузырьки воздуха, полосы другого цвета и свили.
Большинство цветных стекол относится к группе натрий-кальций-силикатных. Кроме того, используются составы стекол с повышенным содержанием оксида цинка для варки селенового рубина, а также составы свинцовых хрусталей с различным содержанием оксида свинца.
Глушение стекла можно определить как разновидность окрашивания стекла. Глушение стекла вызывается частицами, выделяющимися в стекле при охлаждении или дополнительной тепловой обработке вследствие ограниченной растворимости некоторых веществ в стеклах. Размер частиц здесь значительно больше, чем при коллоидном окрашивании, поэтому рассеяние света значительно преобладает над поглощением и пропусканием. Поскольку частиц в стекле выделяется много, рассеяние света идет во все стороны. В зависимости от размеров и количества выделившихся частиц можно получить эффект глушения от слабого — опаловые стекла, до интенсивного — молочные стекла. Сами частицы могут быть белыми или цветными Глушеные фторидами и фосфатами стекла имеют, к примеру, белые частицы, а типа хромового и медного авантюрита — цветные частицы. Цветное глушение происходит также при укрупнении размеров частиц при коллоидном окрашивании. Глушение может быть достигнуто при образовании неодноростей при расслоении стекла; известно глушение стекла пузырьками газов.