в какой ткани нет кровеносных сосудов

Соединительные ткани

Группа соединительных тканей объединяет собственно соединительные ткани (РВСТ и ПВСТ), соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая, пигментная), скелетные соединительные ткани (хрящевая и костная). В рамках школьного курса к соединительным тканям относят жидкую подвижную кровь, строение которой мы изучим в разделе «Кровеносная система».

в какой ткани нет кровеносных сосудов. 758. в какой ткани нет кровеносных сосудов фото. в какой ткани нет кровеносных сосудов-758. картинка в какой ткани нет кровеносных сосудов. картинка 758. Группа соединительных тканей объединяет собственно соединительные ткани (РВСТ и ПВСТ), соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая, пигментная), скелетные соединительные ткани (хрящевая и костная). В рамках школьного курса к соединительным тканям относят жидкую подвижную кровь, строение которой мы изучим в разделе "Кровеносная система".

Что же общего между жидкой подвижной кровью и плотной неподвижной костью? Общим оказываются три основополагающих признака соединительных тканей:

Межклеточное вещество соединительных тканей состоит из волокон и основного аморфного вещества (неволокнистый компонент). Волокна могут быть коллагеновыми, эластическими и ретикулярными.

Очевидно, что соединительная ткань образована тремя компонентами: клетки, волокна, основное аморфное вещество.

Собственно соединительные ткани

Собственно соединительные ткани объединяет то, что они содержат коллагеновые волокна (одни или вместе с эластическими), не отличаются высоким содержанием минеральных соединений.

Рыхлая волокнистая соединительная ткань (РВСТ) содержит клетки разной формы: фибробласты (юные), фиброциты (зрелые). РВСТ содержится во всех внутренних органах (образует строму большинства органов), она располагается по ходу прохождения кровеносных, лимфатических сосудов и нервов, образует соединительнотканные прослойки, сосочковый слой дермы.

Особенности рыхлой волокнистой соединительной ткани: преобладает основное аморфное вещество (отсюда «рыхлая», не плотная), коллагеновые и эластические волокна лежат произвольно, не ориентированы в одном направлении.

в какой ткани нет кровеносных сосудов. 759. в какой ткани нет кровеносных сосудов фото. в какой ткани нет кровеносных сосудов-759. картинка в какой ткани нет кровеносных сосудов. картинка 759. Группа соединительных тканей объединяет собственно соединительные ткани (РВСТ и ПВСТ), соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая, пигментная), скелетные соединительные ткани (хрящевая и костная). В рамках школьного курса к соединительным тканям относят жидкую подвижную кровь, строение которой мы изучим в разделе "Кровеносная система".

Волокна могут быть ориентированы в одном направлении (оформленная ПВСТ) или нет (неоформленная ПВСТ).

Неоформленной ПВСТ образован сетчатый (глубокий) слой дермы. Оформленной ПВСТ образованы связки, сухожилия, фасции мышц, капсулы внутренних органов.

в какой ткани нет кровеносных сосудов. 760. в какой ткани нет кровеносных сосудов фото. в какой ткани нет кровеносных сосудов-760. картинка в какой ткани нет кровеносных сосудов. картинка 760. Группа соединительных тканей объединяет собственно соединительные ткани (РВСТ и ПВСТ), соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая, пигментная), скелетные соединительные ткани (хрящевая и костная). В рамках школьного курса к соединительным тканям относят жидкую подвижную кровь, строение которой мы изучим в разделе "Кровеносная система".

Соединительные ткани со специальными свойствами

в какой ткани нет кровеносных сосудов. 761. в какой ткани нет кровеносных сосудов фото. в какой ткани нет кровеносных сосудов-761. картинка в какой ткани нет кровеносных сосудов. картинка 761. Группа соединительных тканей объединяет собственно соединительные ткани (РВСТ и ПВСТ), соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая, пигментная), скелетные соединительные ткани (хрящевая и костная). В рамках школьного курса к соединительным тканям относят жидкую подвижную кровь, строение которой мы изучим в разделе "Кровеносная система".

Функции жировой ткани:

в какой ткани нет кровеносных сосудов. 762. в какой ткани нет кровеносных сосудов фото. в какой ткани нет кровеносных сосудов-762. картинка в какой ткани нет кровеносных сосудов. картинка 762. Группа соединительных тканей объединяет собственно соединительные ткани (РВСТ и ПВСТ), соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая, пигментная), скелетные соединительные ткани (хрящевая и костная). В рамках школьного курса к соединительным тканям относят жидкую подвижную кровь, строение которой мы изучим в разделе "Кровеносная система".

Слизистая (студенистая) ткань встречается в норме только между плодными оболочками и в составе пупочного канатика зародыша. Ее относят к эмбриональным тканям, на постэмбриональном этапе развития она отсутствует.

в какой ткани нет кровеносных сосудов. 2014. в какой ткани нет кровеносных сосудов фото. в какой ткани нет кровеносных сосудов-2014. картинка в какой ткани нет кровеносных сосудов. картинка 2014. Группа соединительных тканей объединяет собственно соединительные ткани (РВСТ и ПВСТ), соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая, пигментная), скелетные соединительные ткани (хрящевая и костная). В рамках школьного курса к соединительным тканям относят жидкую подвижную кровь, строение которой мы изучим в разделе "Кровеносная система".

в какой ткани нет кровеносных сосудов. 763. в какой ткани нет кровеносных сосудов фото. в какой ткани нет кровеносных сосудов-763. картинка в какой ткани нет кровеносных сосудов. картинка 763. Группа соединительных тканей объединяет собственно соединительные ткани (РВСТ и ПВСТ), соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая, пигментная), скелетные соединительные ткани (хрящевая и костная). В рамках школьного курса к соединительным тканям относят жидкую подвижную кровь, строение которой мы изучим в разделе "Кровеносная система".

Скелетные соединительные ткани

К скелетным тканям относятся хрящевая и костная ткани, которые создают опорно-двигательный аппарат, выполняют защитную, механическую и опорную функции, принимают активное участие в минеральном обмене (обмен кальция, фосфора). Играют формообразующую роль в процессе эмбриогенеза и постэмбрионального развития (на месте многих будущих костей вначале образуется хрящ).

Хрящевая ткань может быть 3 видов: гиалиновая, эластическая и волокнистая.

Гиалиновая хрящевая ткань образует суставные поверхности костей, метафизы трубчатых костей в период их роста, хрящи воздухоносных путей (гортани, трахеи и крупных бронхов), передние отделы ребер. Эластическая хрящевая ткань образует ушные раковины, хрящи носа, средних бронхов, надгортанник. Волокнистая хрящевая ткань формирует межпозвоночные диски.

в какой ткани нет кровеносных сосудов. 764. в какой ткани нет кровеносных сосудов фото. в какой ткани нет кровеносных сосудов-764. картинка в какой ткани нет кровеносных сосудов. картинка 764. Группа соединительных тканей объединяет собственно соединительные ткани (РВСТ и ПВСТ), соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая, пигментная), скелетные соединительные ткани (хрящевая и костная). В рамках школьного курса к соединительным тканям относят жидкую подвижную кровь, строение которой мы изучим в разделе "Кровеносная система".

Хрящевая ткань выстилает поверхность костей в месте образования суставов. При нарушении в ней обменных процессов хрящевая ткань начинает заменяться костной, что сопровождается скованностью и болезненностью движений, возникает артроз.

в какой ткани нет кровеносных сосудов. 770. в какой ткани нет кровеносных сосудов фото. в какой ткани нет кровеносных сосудов-770. картинка в какой ткани нет кровеносных сосудов. картинка 770. Группа соединительных тканей объединяет собственно соединительные ткани (РВСТ и ПВСТ), соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая, пигментная), скелетные соединительные ткани (хрящевая и костная). В рамках школьного курса к соединительным тканям относят жидкую подвижную кровь, строение которой мы изучим в разделе "Кровеносная система".

Костная ткань состоит из клеток и хорошо развитого межклеточного вещества, пропитанного минеральными солями (составляют около 60-70%), преобладающим из которых является фосфат кальция Ca3(PO4)2.

в какой ткани нет кровеносных сосудов. 768. в какой ткани нет кровеносных сосудов фото. в какой ткани нет кровеносных сосудов-768. картинка в какой ткани нет кровеносных сосудов. картинка 768. Группа соединительных тканей объединяет собственно соединительные ткани (РВСТ и ПВСТ), соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая, пигментная), скелетные соединительные ткани (хрящевая и костная). В рамках школьного курса к соединительным тканям относят жидкую подвижную кровь, строение которой мы изучим в разделе "Кровеносная система".

Компактное вещество почти не имеет промежутков, костные пластинки имеют концентрическую форму (полые цилиндры, вложенные друг в друга). Компактное вещество образует поверхности плоских и губчатых костей, поверхностный слой эпифиза и основную часть диафиза.

в какой ткани нет кровеносных сосудов. 766. в какой ткани нет кровеносных сосудов фото. в какой ткани нет кровеносных сосудов-766. картинка в какой ткани нет кровеносных сосудов. картинка 766. Группа соединительных тканей объединяет собственно соединительные ткани (РВСТ и ПВСТ), соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая, пигментная), скелетные соединительные ткани (хрящевая и костная). В рамках школьного курса к соединительным тканям относят жидкую подвижную кровь, строение которой мы изучим в разделе "Кровеносная система".

в какой ткани нет кровеносных сосудов. 767. в какой ткани нет кровеносных сосудов фото. в какой ткани нет кровеносных сосудов-767. картинка в какой ткани нет кровеносных сосудов. картинка 767. Группа соединительных тканей объединяет собственно соединительные ткани (РВСТ и ПВСТ), соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая, пигментная), скелетные соединительные ткани (хрящевая и костная). В рамках школьного курса к соединительным тканям относят жидкую подвижную кровь, строение которой мы изучим в разделе "Кровеносная система".

Минеральный компонент обеспечивает прочность кости. Благодаря нему костная ткань выполняет опорную функцию и способна выдерживать значительные нагрузки.

в какой ткани нет кровеносных сосудов. 765. в какой ткани нет кровеносных сосудов фото. в какой ткани нет кровеносных сосудов-765. картинка в какой ткани нет кровеносных сосудов. картинка 765. Группа соединительных тканей объединяет собственно соединительные ткани (РВСТ и ПВСТ), соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая, пигментная), скелетные соединительные ткани (хрящевая и костная). В рамках школьного курса к соединительным тканям относят жидкую подвижную кровь, строение которой мы изучим в разделе "Кровеносная система".

в какой ткани нет кровеносных сосудов. 769. в какой ткани нет кровеносных сосудов фото. в какой ткани нет кровеносных сосудов-769. картинка в какой ткани нет кровеносных сосудов. картинка 769. Группа соединительных тканей объединяет собственно соединительные ткани (РВСТ и ПВСТ), соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая, пигментная), скелетные соединительные ткани (хрящевая и костная). В рамках школьного курса к соединительным тканям относят жидкую подвижную кровь, строение которой мы изучим в разделе "Кровеносная система".

Органический компонент превалирует в костях новорожденных. Их кости очень эластичные. Постепенно минеральные соли накапливаются, и кости становятся твердыми, способными выдержать значительные физические нагрузки.

Происхождение

в какой ткани нет кровеносных сосудов. 771. в какой ткани нет кровеносных сосудов фото. в какой ткани нет кровеносных сосудов-771. картинка в какой ткани нет кровеносных сосудов. картинка 771. Группа соединительных тканей объединяет собственно соединительные ткани (РВСТ и ПВСТ), соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая, пигментная), скелетные соединительные ткани (хрящевая и костная). В рамках школьного курса к соединительным тканям относят жидкую подвижную кровь, строение которой мы изучим в разделе "Кровеносная система".

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

В какой ткани нет кровеносных сосудов

Структура костной ткани и кровообращение

в какой ткани нет кровеносных сосудов. kost large. в какой ткани нет кровеносных сосудов фото. в какой ткани нет кровеносных сосудов-kost large. картинка в какой ткани нет кровеносных сосудов. картинка kost large. Группа соединительных тканей объединяет собственно соединительные ткани (РВСТ и ПВСТ), соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая, пигментная), скелетные соединительные ткани (хрящевая и костная). В рамках школьного курса к соединительным тканям относят жидкую подвижную кровь, строение которой мы изучим в разделе "Кровеносная система".

Кость представляет собой сложную материю, это сложный анизотропный неравномерный жизненный материал, обладающий упругими и вязкими свойствами, а также хорошей адаптивной функцией. Все превосходные свойства костей составляют неразрывное единство с их функциями.

в какой ткани нет кровеносных сосудов. kost large. в какой ткани нет кровеносных сосудов фото. в какой ткани нет кровеносных сосудов-kost large. картинка в какой ткани нет кровеносных сосудов. картинка kost large. Группа соединительных тканей объединяет собственно соединительные ткани (РВСТ и ПВСТ), соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая, пигментная), скелетные соединительные ткани (хрящевая и костная). В рамках школьного курса к соединительным тканям относят жидкую подвижную кровь, строение которой мы изучим в разделе "Кровеносная система".

Форма и структура костей являются различными в зависимости от выполняемых ими функций. Разные части одной и той же кости вследствие своих функциональных различий имеют разную форму и структуру, например, диафиз бедренной кости и головка бедренной кости. Поэтому полное описание свойств, структуры и функций костного материала является важной и сложной задачей.

Структура костной ткани

«Ткань» представляет собой комбинированное образование, состоящее из особых однородных клеток и выполняющих определенную функцию. В костных тканях содержатся три компонента: клетки, волокна и костный матрикс. Ниже представлены характеристики каждого из них:

Клетки: В костных тканях существуют три вида клеток, это остеоциты, остеобласт и остеокласт. Эти три вида клеток взаимно превращаются и взаимно сочетаются друг с другом, поглощая старые кости и порождая новые кости.

Костные клетки находятся внутри костного матрикса, это основные клетки костей в нормальном состоянии, они имеют форму сплющенного эллипсоида. В костных тканях они обеспечивают обмен веществ для поддержания нормального состояния костей, а в особых условиях они могут превращаться в два других вида клеток.

Остеобласт имеет форму куба или карликового столбика, они представляют собой маленькие клеточные выступы, расположенные в довольно правильном порядке и имеют большое и круглое клеточное ядро. Они расположены в одном конце тела клетки, протоплазма имеет щелочные свойства, они могут образовывать межклеточное вещество из волокон и мукополисахаридных белков, а также из щелочной цитоплазмы. Это приводит к осаждению солей кальция в идее игловидных кристаллов, расположенных среди межклеточного вещества, которое затем окружается клетками остеобласта и постепенно превращается в остеобласт.

Остеокласт представляет собой многоядерные гигантские клетки, диаметр может достигать 30 – 100 µm, они чаще всего расположены на поверхности абсорбируемой костной ткани. Их цитоплазма имеет кислотный характер, внутри ее содержится кислотная фосфотаза, способная растворять костные неорганические соли и органические вещества, перенося или выбрасывая их в другие места, тем самым ослабляя или убирая костные ткани в данном месте.

Костные волокна в основном состоит из коллагенового волокна, поэтому оно называется костным коллагеновым волокном, пучки которого расположены послойно правильными рядами. Это волокно плотно соединено с неорганическими составными частями кости, образуя доскообразную структуру, поэтому оно называется костной пластинкой или ламеллярной костью. В одной и той же костной пластинке большая часть волокон расположена параллельно друг другу, а слои волокон в двух соседних пластинках переплетаются в одном направлении, и костные клетки зажаты между пластинками. Вследствие того, что костные пластинки расположены в разных направлениях, то костное вещество обладает довольно высокой прочностью и пластичностью, оно способно рационально воспринимать сжатие со всех направлений.

Морфология кости

С точки зрения морфологии, размеры костей неодинаковы, их можно подразделить на длинные, короткие, плоские кости и кости неправильной формы. Длинные кости имеют форму трубки, средняя часть которых представляет собой диафиз, а оба конца – эпифиз. Эпифиз сравнительно толстый, имеет суставную поверхность, образованную вместе с соседними костями. Длинные кости главным образом располагаются на конечностях. Короткие кости имеют почти кубическую форму, чаще всего находятся в частях тела, испытывающих довольно значительное давление, и в то же время они должны быть подвижными, например, это кости запястья рук и кости предплюсны ног. Плоские кости имеют форму пластинок, они образуют стенки костных полостей и выполняют защитную роль для органов, находящихся внутри этих полостей, например, как кости черепа.

Кость состоит из костного вещества, костного мозга и надкостницы, а также имеет разветвленную сеть кровеносных сосудов и нервов, как показано на рисунке. Длинная бедренная кость состоит из диафиза и двух выпуклых эпифизарных концов. Поверхность каждого эпифизарного конца покрыта хрящом и образует гладкую суставную поверхность. Коэффициент трения в пространстве между хрящами в месте соединения сустава очень мал, он может быть ниже 0.0026. Это самый низкий известный показатель силы трения между твердыми телами, что позволяет хрящу и соседним костным тканям создать высокоэффективный сустав. Эпифизарная пластинка образована из кальцинированного хряща, соединенного с хрящом. Диафиз представляет собой полую кость, стенки которой образованы из плотной кости, которая является довольно толстой по всей ее длине и постепенно утончающейся к краям.

Костный мозг заполняет костномозговую полость и губчатую кость. У плода и у детей в костномозговой полости находится красный костный мозг, это важный орган кроветворения в человеческом организме. В зрелом возрасте мозг в костномозговой полости постепенно замещается жирами и образуется желтый костный мозг, который утрачивает способность к кроветворению, но в костном мозге по-прежнему имеется красный костный мозг, выполняющий эту функцию.

Надкостница представляет собой уплотненную соединительную ткань, тесно прилегающую к поверхности кости. Она содержит кровеносные сосуды и нервы, выполняющие питательную функцию. Внутри надкостницы находится большое количество остеобласта, обладающего высокой активностью, который в период роста и развития человека способен создавать кость и постепенно делать ее толще. Когда кость повреждается, остеобласт, находящийся в состоянии покоя внутри надкостницы, начинает активизироваться и превращается в костные клетки, что имеет важное значение для регенерации и восстановления кости.

Микроструктура кости

Костное вещество в диафизе большей частью представляет собой плотную кость, и лишь возле костномозговой полости имеется небольшое количество губчатой кости. В зависимости от расположения костных пластинок, плотная кость делится на три зоны, как показано на рисунке: кольцевидные пластинки, гаверсовы (Haversion) костные пластинки и межкостные пластинки.

Кольцевидные пластинки представляют собой пластинки, расположенные по окружности на внутренней и внешней стороне диафиза, и они подразделяются на внешние и внутренние кольцевидные пластинки. Внешние кольцевидные пластинки имеют от нескольких до более десятка слоев, они располагаются стройными рядами на внешней стороне диафиза, их поверхность покрыта надкостницей. Мелкие кровеносные сосуды в надкостнице пронизывают внешние кольцевидные пластинки и проникают вглубь костного вещества. Каналы для кровеносных сосудов, проходящие через внешние кольцевидные пластинки, называются фолькмановскими каналами (Volkmann’s Canal). Внутренние кольцевидные пластинки располагаются на поверхности костномозговой полости диафиза, они имеют небольшое количество слоев. Внутренние кольцевидные пластинки покрыты внутренней надкостницей, и через эти пластинки также проходят фолькмановские каналы, соединяющие мелкие кровеносные сосуды с сосудами костного мозга. Костные пластинки, концентрично расположенные между внутренними и внешними кольцевидными пластинками, называются гаверсовыми пластинками. Они имеют от нескольких до более десятка слоев, расположенных параллельно оси кости. В гаверсовых пластинках имеется один продольный маленький канал, называемый гаверсовым каналом, в котором находятся кровеносные сосуды, а также нервы и небольшое количество рыхлой соединительной ткани. Гаверсовы пластинки и гаверсовы каналы образуют гаверсову систему. Вследствие того, что в диафизе имеется большое число гаверсовых систем, эти системы называются остеонами (Osteon). Остеоны имеют цилиндрическую форму, их поверхность покрыта слоем цементина, в котором содержится большое количество неорганических составных частей кости, костного коллагенового волокна и крайне незначительное количество костного матрикса.

Межкостные пластинки представляют собой пластинки неправильной формы, расположенные между остеонами, в них нет гаверсовых каналов и кровеносных сосудов, они состоят из остаточных гаверсовых пластинок.

Внутрикостное кровообращение

В кости имеется система кровообращения, например, на рисунке показа модель кровообращения в плотной длинной кости. В диафизе есть главная питающая артерия и вены. В надкостнице нижней части кости имеется маленькое отверстие, через которое внутрь кости проходит питающая артерия. В костном мозге эта артерия разделяется на верхнюю и нижнюю ветви, каждая из которых в дальнейшем расходится на множество ответвлений, образующих на конечном участке капилляры, питающие ткани мозга и снабжающие питательными веществами плотную кость.

Кровеносные сосуды в конечной части эпифиза соединяются с питающей артерией, входящей в костномозговую полость эпифиза. Кровь в сосудах надкостницы поступает из нее наружу, средняя часть эпифиза в основном снабжается кровью из питающей артерии и лишь небольшое количество крови поступает в эпифиз из сосудов надкостницы. Если питающая артерия повреждается или перерезается при операции, то, возможно, что снабжение кровью эпифиза будет заменяться на питание из надкостницы, поскольку эти кровеносные сосуды взаимно связываются друг с другом при развитии плода.

Кровеносные сосуды в эпифизе проходят в него из боковых частей эпифизарной пластинки, развиваясь, превращаются в эпифизарные артерии, снабжающие кровью мозг эпифиза. Есть также большое количество ответвлений, снабжающих кровью хрящи вокруг эпифиза и его боковые части.

Верхняя часть кости представляет собой суставный хрящ, под которым находится эпифизарная артерия, а еще ниже ростовой хрящ, после чего имеются три вида кости: внутрихрящевая кость, костные пластинки и надкостница. Направление кровотока в этих трех видах кости неодинаково: во внутрихрящевой кости движение крови происходит вверх и наружу, в средней части диафиза сосуды имеют поперечное направление, а в нижней части диафиза сосуды направлены вниз и наружу. Поэтому кровеносные сосуды во всей плотной кости расположены в форме зонтика и расходятся лучеобразно.

Поскольку кровеносные сосуды в кости очень тонкие, и их невозможно наблюдать непосредственно, поэтому изучение динамики кровотока в них довольно затруднительно. В настоящее время с помощью радиоизотопов, внедряемых в кровеносные сосуды кости, судя по количеству их остатков и количеству выделяемого ими тепла в сопоставлении с пропорцией кровотока, можно измерить распределение температур в кости, чтобы определить состояние кровообращения.

В процессе лечения дегенеративно-дистрофических заболеваний суставов безоперационным методом в головке бедренной кости создается внутренняя электрохимическая среда, которая способствует восстановлению нарушенной микроциркуляции и активному удалению продуктов обмена разрушенных заболеванием тканей, стимулирует деление и дифференциацию костных клеток, постепенно замещающих дефект кости.

Источник

БИОЛОГИЧЕСКИЙ ОТДЕЛ ЦЕНТРА ПЕДАГОГИЧЕСКОГО МАСТЕРСТВА

в какой ткани нет кровеносных сосудов. cytology histology inv. в какой ткани нет кровеносных сосудов фото. в какой ткани нет кровеносных сосудов-cytology histology inv. картинка в какой ткани нет кровеносных сосудов. картинка cytology histology inv. Группа соединительных тканей объединяет собственно соединительные ткани (РВСТ и ПВСТ), соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая, пигментная), скелетные соединительные ткани (хрящевая и костная). В рамках школьного курса к соединительным тканям относят жидкую подвижную кровь, строение которой мы изучим в разделе "Кровеносная система".

Ткани человека

Автор статьи Зыбина А.М.

Ткань – это совокупность клеток и межклеточного вещества, имеющих схожее строение, происхождение и выполняемые ими функции. В организме человека выделяют 4 типа тканей: эпителиальную, соединительную, мышечную и нервную.

Эпителиальные ткани делятся на два типа: покровные и железистые. Основные ее функции:

Расположение и функции эпителиальных тканей весьма разнообразно, поэтому он может образовываться из любого из трех зародышевых листков.

Покровный эпителий (рис.1) отделяет организм от внешней среды и выстилает внутренние органы. Таким образом, он с одной стороны является барьерной, а с другой – обменной тканью. В связи с этим главной особенностью строения эпителия является большое количество плотно сомкнутых клеток и малое количество межклеточного вещества. Эпителий лежит на базальной мембране (слой из белков и полисахаридов), под которой расположена соединительная ткань. В эпителиальной ткани не проходят сосуды. Они располагаются в соединительной ткани и питание осуществляется за счет диффузии газов и питательных веществ.

В зависимости от формы клеток покровный эпителий делится на плоский, кубический и призматический (цилиндрический). Клетки призматического эпителия в зависимости от выполняемых функций могут иметь микроворсинки или реснички (мерцательный эпителий) (рис.2) При этом, сами клетки могут располагаться в один или несколько слоев (однослойный и многослойный эпителий соответственно). Последнее свойство больше присуще плоскому эпителию. Многослойный кубический и призматический эпителии встречаются, но редко, в основном в местах перехода многослойного плоского в однослойный кубический или призматический эпителий.

Многослойный плоский эпителий может быть ороговевающим и неороговевающим. В однослойном эпителии все клетки контактируют с базальной мембраной. Если внутри однослойного эпителия клетки одинакового размера и все ядра расположены на одном уровне, то он называется однорядным, если нет – многорядным. Отдельно выделяют переходный эпителий (уроэпителий), выстилающий мочевой пузырь, мочевыводящие пути и аллантоис. Он содержит несколько слоев: базальный, промежуточный, состоящий из грушевидных клеток, покровный, состоящий из крупных клеток, покрытых слизью. Толщина этого эпителия меняется в зависимости от степени растяжения стенки мочевыводящих органов (рис.3).

Рис. 2. Электронные микрофотографии эпителия микроворсинками (а) и с ресничками (б).

Расположение основных видов эпителия следующее:

Многослойный эпителий неоднороден по клеточному составу. Ороговевающий эпителий может иметь до пяти слоев (на примере эпидермиса кожи):

Многослойный плоский неороговевающий эпителий состоит из трех слоев: базального, шиповатого и поверхностного, который сотоит из плоских постоянно отшелушивающийся клеток.

Несмотря на разнообразие строения различных видов эпителия, все они выполняют свои функции и строго контролируют поступление и выведение веществ из организма. Для предотвращения транспорта в организм нежелательных водорастворимых соединений, клетки снабжены плотными контактами, предотвращающими парацеллюлярный (межклеточный) (рис.5) транспорт. В таком контакте мембраны клеток максимально сближены и сшиты белками клаудинами и окклюдинами. При наличии плотного контакта все водорастворимые соединения переносятся строго через клетку, снабженную для них специальными транспортерами или каналами. Липофильные соединения могут свободно проходить через мембрану. Поэтому для защиты от нежелательных липофильных соединений клетки снабжены ABC-транспортерами (AТР binding cassette). Это суперсемейство белков, способных с затратой энергии АТФ переносить самые различные соединения из клетки во внешнюю среду.

Рис.5. Строение плотного контакта (а) и электронная микрофотография плотного контакта (стрелка) между двумя энтероцитами тощей кишки кролика, х 50 000 (по В. А. Шахламову) (б). Источник строения плотного контакта Википедия плотные контакты

Железистый эпителий образует железы внутренней (эндокринные), внешней (эндокринные) и смешанной секреции. Покровный эпителий может содержать в себе множество мелких желез.

Эндокринные железы (рис. 6б) не имеют выводных протоков и окружены капиллярами. Они секретируют биологически активные вещества в кровоток. Экзокринные железы (рис. 6а) имеют выводные протоки и выводят секрет через них во внешнюю среду или полости тела. Железы смешанной секреции состоят из эндо- так и экзокринных частей.

Соединительная ткань является самой распространенной тканью во всем организме (более 50%). Она имеет мезодермальное происхождение. Особенность этой ткани – большой объем межклеточного вещества со сравнительно небольшим объемом клеток. В состав межклеточного вещества может входить коллаген, эластин и минеральные вещества. Соединительная ткань организма находится в нескольких состояниях:

Рис.7. Разнообразие соединительных тканей. Слева направо: рыхлая соединительная ткань, плотная соединительная ткань, хрящ, кость, кровь.

Соединительная ткань имеет сложную классификацию (рис. 8). К ней относят кровь, лимфу, кроветворные ткани, кости, хрящи, связки, жировую ткань и т.д. Разнообразное строение и расположение позволяет ей выполнять разнообразные функции:

Рис. 9. Состав плазмы крови.

Рис. 10. Форменные элементы крови. Слева направо эритроцит, тромбоцит, лейкоцит.

Вторыми по численности являются тромбоциты (рис. 10) (250-350 тыс/мкл). Это небольшие безъядерные пластинки диаметром 2-4 мкм. Это постклеточные структуры, образующиеся из мегакариоцитов, расположенных в красном костном мозге. Они защищают наш организм от избыточной потери крови при травмах.

Самыми малочисленными форменными элементами являются лейкоциты (рис.10). Это группа клеток, обеспечивающих все виды иммунитета. Их численность в крови невелика (4-8 тыс/мл), так как большинство из них мигрирует в ткани или локализуются в иммунных органах.

Лимфа – это прозрачная соединительная ткань, лишенная эритроцитов. Однако, она богата лейкоцитами. По составу лимфа похожа на плазму крови. Функция лимфатической системы – дренаж лишней жидкости, вышедшей из капилляров в ткани и ее возврат в кровоток.

Кроветворные ткани взрослого человека – это красный костный мозг (рис. 11). В эмбриональном периоде кроветворную функцию также могут выполнять селезенка и печень. Красный костный мозг располагается в эпифизах крупных трубчатых костей. Он состоит из ретикулярной соединительной ткани, стволовых клеток и незрелых клеток крови. В среднем, костный мозг составляет примерно 4% массы тела. У детей он полностью занят кроветворением. У взрослых людей примерно половина костного мозга образует кровь, а вторая половина является недеятельной и называется желтым костным мозгом.

Рис. 11. Расположение красного костного мозга.

Волокнистые соединительные ткани могут быть рыхлыми и плотными.

Рыхлая волокнистая соединительная ткань располагается преимущественно по ходу кровеносных и лимфатических сосудов, нервов, образует строму многих внутренних органов, а также подслизистую, подсерозную и адвентициальную оболочку.

Плотная волокнистая соединительная ткань благодаря хорошо развитым волокнистым структурам выполняет в основном опорную и защитную функции. В ее межклеточном веществе преобладают волокна. Соединительнотканные волокна могут переплетаться в разных направлениях (неоформленная плотная волокнистая ткань), или располагаться параллельно друг другу (оформленная плотная волокнистая ткань).

Неоформленная плотная волокнистая соединительная ткань оплетает нервы и окружает органы. Эта ткань образует склеру глаза, надкостницу и надхрящницу, волокнистый слой суставных капсул, сетчатый слой дермы, клапаны сердца, перикард и твердую мозговую оболочку. Оформленная плотная волокнистая соединительная ткань образует сухожилия, связки, фасции, межкостные мембраны.

Жировая ткань (рис. 12) состоит из клеток (адипоцитов), в которых запасены жировые капли и развитого слабо межклеточного вещества (коллагеновые и эластические волокна, аморфное вещество). В цитоплазме адипоцита имеется одна большая капля жира, а ядро и органоиды оттеснены к периферии. Белая жировая ткань составляет 15-20% — у мужчин и 20-25% — у женщин от массы тела.

Новорожденные и дети первых месяцев жизни помимо белой, имеют бурую жировую ткань. С возрастом бурая жировая ткань подвергается атрофии. У взрослых она встречается: между лопатками, около почек и около щитовидной железы. Ядро бурых жировых клеток расположено по центру клетки, а в цитоплазме имеется много мелких капелек жира.

Рис. 12. Гистологические препараты бурой (слева) и белой (справа) жировой ткани.

Ретикулярная соединительная ткань образует селезенку, лимфатические узлы и красный костный мозг. Она является остовом для кроветворных клеток и лимфоцитов. Участвует в регуляции гемопоэза и иммунитета.

Слизистая соединительная ткань состоит из слабодифференцированных клеток – фибробластов и большого количества межклеточного вещества (волокна и аморфное вещество с гиалуроновой кислотой). Она входит в состав пупочного канатика зародыша. Обеспечивает тургор (упругость) тканей пупочного канатика и предотвращают возможность пережима кровеносных сосудов, питающих зародыш.

Скелетные соединительные ткани делят на костные и хрящевые.

Костная ткань отличается твердостью и прочностью. Эта ткань является важной частью скелета. Она состоит из костных клеток – остеобластов, которые откладывают большое количество межклеточного вещества и, замуровывая себя, утрачивают способность к делению, и превращаются в остеоциты. Пространство вокруг остеоцита называют лакуной. Межклеточное вещество содержит коллагеновые волокна, пропитанные неорганическими соединениями, среди которых превалируют фосфаты кальция. Костные клетки располагаются концентрически вокруг Гаверсова канала, в котором проходят кровеносные сосуды, питающие кость. Гаверсов канал с расположенными вокруг клетками называется остеон и является структурной единицей кости (рис. 13, 14). Направление остеонов зависит от нагрузки, действующей на кость.

Костная ткань обновляется в течение всей жизни. Разрушение старой кости осуществляют остеокласты, мигрирующие по гаверсову каналу. Новую костную ткань строят остеобласты.

Рис. 14. (компактное вещество диафиза трубчатой кости, поперечный срез). Видны остеоны (1) и вставочные костные пластинки (6). В остеоне хорошо различимы канал остеона (2), концентрические костные пластинки (3), костные полости или тельца (лакуны, содержащие остеоциты) (4), спайная линия (5). Окраска по Шморлю. Источник http://vmede.org/sait/?page=7&id=Gistologija_atlas_boi4uk_2008&menu=Gistologija_atlas_boi4uk_2008

Хрящевая ткань, по сравнению с костью, содержит больше воды и органических веществ, и меньше минералов. Клетки хрящевой ткани, или хондроциты, расположены в полостях (лакуны) и окружены межклеточным веществом. Различают три вида хряща:

Рис. 15. Гистологические срезы гиалинового (а), эластического (б) и волокнистого (в) хрящей.

Мышечные ткани выполняют двигательную функцию. Важным их свойством является способность к возбуждению и сокращению. Мышечные ткани имеют мезодермальное происхождение. Различают три типа мышечных тканей: скелетные, гладкие и сердечные.

Скелетные мышцы образованы цилиндрическими волокнами длиной 1-40 мм и толщиной 0,1 мкм. Клетки многоядерные и имеют поперечно-полосатую исчерченность (рис. 16). Исчерченность появляется благодаря упорядоченному расположению сократительных волокон в клетке. В совокупности они образуют саркомер – функциональную и сократительную единицу мышцы (рис. 17). Тонкие волокна называются актин, толстые – миозин. Актин прикрепляется к Z-пластинке и является пассивной частью саркомера. Миозин обладает АТФазной активностью и активно участвует в сокращении. Он имеет головки, с помощью которых он прикрепляется к актину и сближает актиновые волокна во время сокращения. Такое строение ткани позволяет совершать быстрые и сильные сокращения, однако, скелетная мускулатура относительно быстро утомляется. Под действием импульсов из ЦНС она сокращается и позволяет осуществлять произвольные движения и перемещения тела в пространстве.

Рис. 16. Схематичное строение (а) и гистологический срез (б) поперечно-полосатой скелетной мышцы.

Рис. 17. Схема строения и работы (а) и электронная микрофотография (б) саркомера.

Гладкие мышцы – это одноядерные клетки веретенообразной формы, не имеющие исчерченности. Сокращение этих клеток осуществляется за счет актина и миозина, однако, их распределение отличается от скелетных мышц (рис. 18). Сократительные фибриллы в клетках гладких мышц расположены по диагонали и прикрепляются к плотным тельцам. Из-за отсутствия параллельного расположения сократительных волокон, поперечно-полосатая исчерченность в этих клетках отсутствует. В отличие от скелетной мускулатуры, энергия АТФ расходуется не на каждый гребок миозина, что позволяет расходовать энергию более экономно.

Гладкие мышцы располагаются преимущественно в стенках органов и сосудов и управляются с помощью непроизвольной вегетативной нервной системы.

Рис. 18. Схема строения и сокращения (а) и гистологический срез (б) гладкой мышцы.

Сердечная мышца состоит из одноядерных клеток, имеющих поперечно-полосатую исчерченность. Миофибриллы располагаются вдоль клеток и образуют саркомеры. Для быстрой и эффективной передачи электрического импульса с одной клетки на другую, на границе клеток располагаются щелевые контакты, или коннексоны. Они соединяют цитоплазмы соседних клеток каналом так, что ионы могут свободно перемещаться из клетки в клетку. Концентрируясь на полюсах, щелевые контакты образуют вставочные диски (рис. 19).

Рис. 19. Гистологический срез сердечной мышцы. Стрелками обозначены вставочные диски и щелевыми контактами.

Сердечная мускулатура, как очевидно из названия, образует стенку сердца.

Нервная ткань образует все отделы нервной системы. Она имеет эктодермальное происхождение. Основные характеристики нервной ткани – это способность к восприятию, проведению и передаче нервных импульсов. Она состоит из нервных клеток, или нейронов, и клеток нейроглии (рис. 20).

Рис. 20. Строение нервной ткани.

Нейрон является структурно-функциональной единицей нервной системы. Он состоит из (рис. 21):

Рис. 21. Строение нейрона.

Таким образом, нейрон может передавать импульс только в одном направлении. Он получает множество сигналов по дендритам, затем, они передаются на тело, и, далее, на аксон. Аксон с дендритом образует специальный контакт, который называют синапсом (рис. 22).

Рис. 22. Строение синапса.

Передача информации с аксона на дендрит в синапсе осуществляется с помощью химических веществ, которые называются нейромедиаторами, или нейротрансмиттерами.

Клетки нейроглии – это совокупность вспомогательных клеток нервной системы. Их делят на микроглию и макроглию.

Микроглиальные клетки происходят от клеток-предшественников макрофагов. Таким образом, их происхождение отличается от всех остальных клеток нервной ткани. Они способны к фагоцитозу чужеродных частиц головного мозга, а также играют важную роль в развитии и регенерации ЦНС.

Макроглия включает несколько типов клеток: астроциты, олигодендроциты и эпендимальные клетки.

Астроциты – это звездчатые клетки с большим количеством отростков. Они поддерживают и разграничивают нейроны на группы, регулируют состав межклеточной жидкости, запасают питательные вещества, регулируют рост, развитие, репарацию и активность нейронов, участвуют в удалении нейромедиатора из щели, образуют гематоэнцефалический барьер (ГЭБ). Астроциты обеспечивают жизнедеятельность нейронов и делают их жизнь максимально комфортной.

Олигодендроциты – это клетки ЦНС, обеспечивающие миелинизацию аксонов. Миелин – это электроизолирующая оболочка, ускоряющая проведение нервного импульса. Миелин образуется как плоский вырост мембраны олигодендроцита, который многократно наматывается на аксон. В периферической нервной системе клетки, выполняющие аналогичную функцию называются Шванновскими клетками.

Эпендимальные клетки выстилают стенки желудочков головного мозга и спинномозговой канал. Это клетки с ресничками, биение которых обеспечивает циркуляцию ликвора. Также они способны выполнять секреторную функцию.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *