в какой части клетки происходит синтез белка

В какой части клетки происходит синтез белка

Наследственная информация в клетке не является монолитной, она разбита на отдель­ ные «слова» — гены.

Ген — это элементарная единица генетической информации. У человека всего около 25–30 тыс. генов.

Генетический код. Наследственная информация организмов зашифрована в ДНК в ви­ де определенных сочетаний нуклеотидов и их последовательности — генетического кода.

Его свойствами являются: триплетность, специфичность, универсальность и избыточность. Кроме того, в генетическом коде отсутствуют «знаки препинания». 23

Каждая аминокислота закодирована в ДНК тремя нуклеотидами — триплетом, напри­мер, метионин закодирован триплетом ТАЦ. Каждый триплет кодирует только
одну аминокислоту, в чем заключается его специфичность или однозначность. Генетический код универсален для всех живых организмов, то есть наследственная информация о белках человека может считываться бактериями и наоборот. Это свидетельствует о единстве проис­ хождения органического мира. Однако 64 комбинациям нуклеотидов по три соответствует только 20 аминокислот, вследствие чего одну аминокислоту могут кодировать 2–6 трипле тов и имеется три стоп­кодона, то есть генетический код избыточен, или вырожден. Три триплета не имеют соответствующих аминокислот, их называют стоп­кодонами, так как они обозначают окончание синтеза полипептидной цепи.

Репликация ДНК, а также синтез РНК и белков в клетках осуществляются по принципу матричного синтеза, который заключается в том, что новые молекулы белков и нуклеи­ новых кислот синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул нуклеиновых кислот (ДНК или РНК).

Репликация ДНК. Процесс самовоспроизведения молекулы ДНК, обеспечивающий точное копирование наследственной информации и передачу ее из поколения в поколение, называет­ ся репликацией (от лат. репликацио — повторение). В результате репликации образуются две абсолютно точные копии материнской молекулы ДНК, каждая из которых несет по одной копии материнской (рис. 42). Ключевым ферментом репликации является ДНК­полимераза. Репликация ДНК является полуконсервативной, так как молекула ДНК расплетается, и на каждой из ее цепей синтезируется новая цепь по принципу комплементарности.

Образовавшиеся в результате репликации две молекулы ДНК в процессе деления расхо­ дятся по двум вновь образующимся дочерним клеткам.

Ошибки в процессе репликации возникают крайне редко, но если они происходят, то устраняются ДНК­полимеразами или ферментами репарации.

Биосинтез белка является сложнейшим клеточным процессом — в нем участвуют до трехсот различных ферментов и других макромолекул. Выделяют два основных этапа синтеза белка: транскрипцию и трансляцию.

Транскрипция (от лат. транскрипцио — переписывание) — это биосинтез молекул иРНК на соответствующих участках ДНК (рис. 43).

в какой части клетки происходит синтез белка. %D0%A1%D0%BD%D0%B8%D0%BC%D0%BE%D0%BA%20%D1%8D%D0%BA%D1%80%D0%B0%D0%BD%D0%B0%202016 02 02%20%D0%B2%2017.21.32. в какой части клетки происходит синтез белка фото. в какой части клетки происходит синтез белка-%D0%A1%D0%BD%D0%B8%D0%BC%D0%BE%D0%BA%20%D1%8D%D0%BA%D1%80%D0%B0%D0%BD%D0%B0%202016 02 02%20%D0%B2%2017.21.32. картинка в какой части клетки происходит синтез белка. картинка %D0%A1%D0%BD%D0%B8%D0%BC%D0%BE%D0%BA%20%D1%8D%D0%BA%D1%80%D0%B0%D0%BD%D0%B0%202016 02 02%20%D0%B2%2017.21.32. Наследственная информация в клетке не является монолитной, она разбита на отдель­ ные «слова» — гены.

Синтезированные в процессе транскрипции в ядре молекулы иРНК проходят сложный процесс подготовки к трансляции, после чего они выходят в цитоплазму.

Трансляция (от лат. транс­ ляцио — передача) — это био­ синтез полипептидной цепи на матрице иРНК, при котором происходит перевод генети­ ческой информации в после­ довательность аминокислот полипептидной цепи (рис. 44).

в какой части клетки происходит синтез белка. %D0%A1%D0%BD%D0%B8%D0%BC%D0%BE%D0%BA%20%D1%8D%D0%BA%D1%80%D0%B0%D0%BD%D0%B0%202016 02 02%20%D0%B2%2017.23.29. в какой части клетки происходит синтез белка фото. в какой части клетки происходит синтез белка-%D0%A1%D0%BD%D0%B8%D0%BC%D0%BE%D0%BA%20%D1%8D%D0%BA%D1%80%D0%B0%D0%BD%D0%B0%202016 02 02%20%D0%B2%2017.23.29. картинка в какой части клетки происходит синтез белка. картинка %D0%A1%D0%BD%D0%B8%D0%BC%D0%BE%D0%BA%20%D1%8D%D0%BA%D1%80%D0%B0%D0%BD%D0%B0%202016 02 02%20%D0%B2%2017.23.29. Наследственная информация в клетке не является монолитной, она разбита на отдель­ ные «слова» — гены.

Трансляция чаще всего происходит в цитоплазме, на­пример на шероховатой ЭПС.
Для синтеза белка необходима предварительная активация аминокислот, в ходе кото­ рой аминокислота присоединяется к соответствующей тРНК. Этот процесс катализируется специальным фер­ментом и требует затраты АТФ.

Для начала трансляции (инициации) к готовой к син­ тезу молекуле иРНК присоединяется малая субъединица рибосомы, а затем к первому кодону (АУГ) иРНК подби­ рается тРНК с комплементарным антикодоном, несущая аминокислоту метионин. Лишь после этого присоединя­ ется большая субъединица рибосомы. В пределах собран­ ной рибосомы оказываются два кодона иРНК, первый из которых уже занят. К соседнему с ним кодону под­ бирается вторая тРНК, также несущая аминокислоту, после чего между остатками аминокислот с помощью ферментов образуется пептидная связь. Рибосома передвигается на один кодон иРНК; пер­ вая из тРНК, освободившаяся от аминокислоты, покидает рибосому, а фрагмент синте­ зирующейся полипептидной цепи удерживается на оставшейся тРНК. К новому кодону, оказавшемуся в пределах рибосомы, присоединяется следующая тРНК, процесс повторяется и шаг за шагом полипептидная цепь удлиняется, т. е. происходит ее элонгация.

Окончание синтеза белка (терминация) происходит, когда рибосома сдвинется на не­ кодирующую последовательность нуклеотидов — стоп­кодон. После этого рибосома, иРНК и полипептидная цепь разделяются, а вновь синтезированный белок транспортируется в ту часть клетки, где он будет выполнять свои функции.

Источник

Биосинтез белка кратко и понятно

Процесс синтеза в биологии, как и в любой другой отрасли — это образование сложных структур из менее сложных. При этом строение составных элементов может частично, или даже полностью сохраняться в неизменном виде, а может полностью изменяться. В первом случае синтез напоминает строительство конструкций из кубиков Лего, а во втором — образование сложных сплавов, солей и гидроксидов, свойства которых совершенно другие и ничем не напоминают исходные элементы.

Биосинтез — один из самых сложных видов таких преобразований исходных компонентов. Сюда входят процессы формирования ДНК из отдельных нуклеотидов, строительство белков из аминокислот, фотосинтез. Биосинтез может происходить (и происходит как естественным путем, в организме человека, животных и некоторых растений, так и искусственным — производство белковых питательных веществ.

Биосинтез белка

Это один из самых важных процессов в организме человека. Все характерные признаки и функции каждой клетки определяются белковой структурой. Сложность существования организма на клеточном уровне определяется тем, что длительность жизни белка непродолжительна. Без постоянного синтеза новых молекул клетки не смогут восстанавливаться и функционировать надлежащим образом. Синтезируются тысячи белковых структур, и это только в пределах одной клетки.

Рис.1. Структура ДНК

Исследования в области биосинтеза белков начались в 40-х годах прошлого столетия и дляться до сих пор. Самые важные открытия совершили Макс Бергманн, Джек Шульц, Торбьерн Касперссон, Раймонд Джиннер и другие ученые. В 50-х годах Ф.Крик установил правило синтеза, ставшее аксиомой — ДНК → РНК → белок. Свойства конкретного белка определяются последовательностью расположения аминокислот в молекулах. За правильное размещение структурных элементов отвечают гены — части ДНК, в которых зашифрована минимальная часть наследственной информации.

Этапы биосинтеза

Каждый белок синтезируется по одной схеме, состоящей из двух этапов, получивших название транскрипции и ретрансляции. В свободном переводе, это снятие информации с гена ДНК и передаче ее на строящиеся аминокислоты. Техника такой передачи достаточно сложная и энергоемкая, без притока внешней энергии она невозможна.

Рис 2. Схема биосинтеза

Транскрипция

На первом этапе транскрипции с цепочки ДНК снимается абсолютно точная копия, в результате которой получается идентичная с исходной цепочка РНК. Для такой информационной копии нужен катализатор, в роли которого выступают ферменты, и источник питания, в случае синтеза белка — это АТФ. Процесс синтеза происходит с высокой скоростью — в пределах одного организма за минуту осуществляется до 60 000 связей на уровне пептидов.

Рис 3. Сравнение ДНК и РНК.

Двойная цепочка ДНК расположена в ядре клетки в виде спирали. В начале транскрипции она разматывается и на одной из частей начинается синтез иРНК, так называемая информационная. Это одинарная цепь, точно повторяющая структуру ДНК. Поэтому реакции биосинтеза белка называют матричными. Вместо тимина, находящегося в нематричной цепочке ДНК, в иРНК используется урацил. В качестве катализатора «работает» РНК-полимераза.

Сложность возникает в том, что генов в молекуле ДНК очень много, а копировать нужно только один из них, причем, строго определенный. То есть, начинать снятие информации РНК должна не только в заданный момент, но и с заданного места. Для исключения ошибок в начале каждого фрагмента ДНК расположен специальный маркер, комбинация нуклеотидов под названием «промотор». Копирование с такого маркера начинается и на таком же, но с противоположной стороны, заканчивается. Конечный маркер получил название «терминатор».

Трансляция

Для построения нового белка в клетке должен быть набор необходимых аминокислот, которые вырабатываются в организме, или получаются при переваривании поступающей извне пищи. Это говорит о том, что для полноценной деятельности организма питание должно быть полным и сбалансированным, с достаточным количеством белка. Аминокислоты, в основном, поступают после расщепления пищевого белка.

Поступающие аминокислоты переносятся специальными транспортными РНК, которые реагируют на информацию в виде кодона, единицы генетического кода. На аминокислоте должен быть соответствующий тринуклелеотид — антикодон. На рибосоме закрепится только та аминокислота, код которой подходит. На каждый элемент цепочки уходит 0,2 с. Именно на такое время останавливается рибосома, движущаяся по цепочке иРНК.

Между аминокислотами, поступающими на рибосому на каждом последующем участке, формируются пептидные связи. Они возникают благодаря наличию в начале участка одной аминокислоты аминогруппы, а на соответствующем конце соседней — карбоксильной группы. Связь возникает прочная и неразрывная.

Белковая цепочка заканчивает формирование после контакта рибосомы к определенным маркером, обозначающим конец этого этапа синтеза. Цепочка аминокислот отрывается от иРНК и передвигается в цитоплазму, для формирования вторичных и третичных структур. Процесс синтеза происходит непрерывно, после перехода рибосомы на следующую позицию на ее место тут же заступает другая и копирует цепочку с иРНК. Выполнившая свою задачу рибосома переходит на другую РНК и формирует другой белок.

Источник

Как клетка синтезирует белок

(Статья для аудитории детей 12 лет)

Роль основных «рабочих лошадок» в клетках и, следовательно, во всем нашем организме исполняют разнообразные белки. Мы – многоклеточные существа (у шестиклассника, например, 30 триллионов клеток!), следовательно, белков нам нужно много. И это должны быть не те же самые белки, которых в целом литре газировки всего 1 грамм, а в одной котлете – 25. Это наши собственные белки, только нам свойственные, по крупинкам собранные из того, что мы съели, переварили и усвоили. Итак, если белок – главный работник, то его надо много, и он должен быть качественным, именно тем, какой положен (запрограммирован, зашифрован!). Значит клетка, словно завод по производству белков, должна иметь, во-первых, надежные станки по производству этих белков, а во-вторых, надежную программу-инструкцию для производства каждого конкретного белка.

Мы решаем контрольную или спим на уроке, мерзнем на остановке или едим дома горячую котлету – и организм постоянно приспосабливает работу наших клеток, а стало быть белков, под набор тех условий, в которые мы его, организм, поместили. Поэтому так не бывает, чтобы один белок работал вечно. Поработал – клетка его расщепила и чаще всего пересобрала во что-то другое, в другой белок. И эта белковая карусель крутится все время, пока живет организм. А мы еще помним, что белков очень много – и по общему количеству молекул, и по их разновидностям. И для каждого вида белка при каждом станке – своя инструкция по сборке. Имеет смысл микроскопической клетке хранить килограмм инструкций у каждого станка на все случаи жизни? Разумеется, нет.

В работе у занятой делом клетки должны быть только самые нужные на данный момент инструкции, а остальные пусть хранятся в сборниках инструкций в библиотеке. Нужна инструкция – библиотекарь нашел нужную страницу в сборнике – помощник откопировал ее – персонал, обслуживающий станок, по инструкции собрал нужное количество белка – белок пошел работать, пока не настанет срок разобрать его на запчасти, да и отслужившая инструкция тоже разбирается. В клетке никакое добро не пропадает. А кто все эти сотрудники клетки? Разумеется, это тоже белки, точнее – особый их класс – ферменты. Белки, управляющие процессами в клетках и многократно ускоряющие их.

Итак, давайте все-таки ближе к биологии. Библиотека – это набор наших хромосом в ядре каждой клетки. Основа каждой хромосомы – длинная молекула под названием ДНК* (шестиклассник про ДНК уж наверняка хоть раз, да слышал). Сборник инструкций – одна нить ДНК. Но чтобы заработало производство конкретного белка, весь сборник не нужен, нужна только инструкция-информация о составе этого белка. Эта информация – малая часть цепочки ДНК под названием «ген». (Тоже наверняка знакомое слово. Если у вас абсолютный музыкальный слух – как у мамы, то она всем радостно хвастает, что это у вас ее гены). Текст гена в каком-то смысле гораздо проще, чем любой текст на любом языке. Он написан только четырьмя буквами! Откуда же тогда такое многообразие кодируемых генами белков и признаков? В «тексте» гена чаще всего сотни или тысячи «букв», и комбинация букв может быть любой. (Кстати, «буквы» – это структурные части молекулы ДНК, ее блоки под названием нуклеотиды, запоминайте. Их четыре типа: А, Т, Г и Ц**).

Копирование инструкции по сборке белка, т. е. гена, – это процесс транскрипции (дословно – переписывание). Он происходит в ядре клетки. Образуется копия гена – молекула-матрица, или матричная РНК*. Но она, как ни странно, не очень-то похожа на исходный ген ДНК. Более того, она является в некотором смысле «копией наоборот», как негативное фотоизображение, где белое становится черным, а черное – белым. К слову, РНК тоже состоит из нуклеотидов, и их тоже четыре типа – те же А, Г, Ц, но есть замена: вместо Т – У**. Как получается «негативная» копия, да еще и с заменой буквы? В клетке работает особое правило – комплементарности. Разбираемся.

Комплимент/комплемент – дословно – дополнение! Вам сделали комплимент? Это такое приятное дополнение к вашей неотразимости. Комплимент от шефа – вкусное бесплатное дополнение к вашему заказу в ресторане. Комплементарность в биологии – взаимная дополняемость биологических молекул или их частей. Согласно правилу комплементарности фермент-копировальщик, собирающий РНК, напротив «буквы»-нуклеотида А в образце, молекуле ДНК, обязан поставить «букву» У в РНК, напротив Т – А, напротив Г – Ц, напротив Ц – Г. (Проще всего запомнить Г–Ц и наоборот, не так ли?). Например, в ДНК было ГТАЦ, а в РНК станет ЦАУГ. И так далее – десять тысяч раз подряд и без ошибок! А главное – с умопомрачительной скоростью, которую обеспечивают быстрые и точные работники-ферменты.

Итак, непохожая, перешифрованная, но все-таки копия (!) фрагмента ДНК – матричная РНК готова, ее можно «выносить» за пределы «библиотеки». Именно она послужит той матрицей-инструкцией, по которой персонал по обслуживанию «станка» по производству белка осуществит его многократный синтез. Синтез белка, к сведению, идет уже не в ядре, а в более просторной цитоплазме клетки. Белка, мы помним, надо много, а в ядре – тесно, да и не надо его лишний раз беспокоить такой суетой: хромосомы должны храниться в тишине и порядке. Всё как в настоящей библиотеке.

Матричная РНК выходит на работу. По записанной в ней инструкции клеточный органоид (маленький орган) рибосома будет синтезировать белок. Именно рибосома является тем самым «станком» по производству белка. Но белки состоят не из нуклеотидов. Белки – тоже длинные молекулы, состоящие из других блоков – аминокислот. Их 20 разновидностей. Т. е. «язык» белков – это целых 20 букв! Как текст-комбинацию из 4 букв перевести в текст-комбинацию из 20 букв? Просто. Каждая аминокислота белка зашифрована последовательностью из трех нуклеотидов матричной РНК, каждой из комбинаций трех нуклеотидов РНК соответствует одна аминокислота (за исключением трех случаев – последовательностей УАГ, УГА и УАА). Таких комбинаций получается 61, а вместе с тремя исключениями – 64. Это число всех возможных комбинаций трех нуклеотидов четырех разновидностей. Хотите – проверьте перебором.

Чтобы было понятнее, поясним на примере. Возьмем последовательность нуклеотидов ГЦУ на матрице РНК. Ей, к сведению, соответствует аминокислота под названием аланин. И – о радость! – никто не заставит учить наизусть, какая аминокислота какой последовательности нуклеотидов в РНК соответствует – на это есть специальная таблица генетического кода. А в ней, кстати, есть повторы нуклеотидных последовательностей. Мы помним, аминокислот 20, а кодирующих комбинаций из трех нуклеотидов – 61, поэтому повторы неизбежны.

Рибосома-«станок» нанизывается на свою инструкцию, матричную РНК, как бусина на нитку. (А чтобы не терять время, обычно сразу много «станков»-рибосом по очереди нанизывается на инструкцию-матрицу). И начинается настоящий балет с участием обслуживающих его ферментов и еще одного вида РНК – транспортных РНК. Именно они помогают расшифровать код матричной РНК (они знают таблицу генетического кода наизусть!) и собрать аминокислоты в единую белковую цепочку.

Транспортные молекулы тоже состоят из нуклеотидов, все те же «положенные» для РНК знакомые А, У, Г и Ц. Но только в отличие от матричной РНК, транспортная гораздо более легкая и компактная, специально свернутая для мобильности наподобие листа клевера. И на верхушке этого «листа» находится ключевая последовательность из трех нуклеотидов, комплементарных трем кодирующим «буквам» матричной РНК. Так, например, уже знакомую аминокислоту аланин принесет транспортная РНК с «ключом» ЦГА на верхушке, встанет рядом с ГЦУ в матричной РНК – ага, подошло! Таких транспортных РНК (тРНК для краткости) – 61 вид.

Итак, создаем белок из аминокислот по нуклеотидной инструкции матричной РНК на «станке»-рибосоме. В активном центре рибосомы как на парковке встают рядом две комплементарно подходящие к матрице транспортные РНК со своими «ключами» на макушке – тройками нуклеотидов, и «прицепами» на хвосте – соответствующими аминокислотами. Предположим, это только начало синтеза: у каждой транспортной молекулы по одному прицепу. Но особый фермент-сшивальщик, который всегда рядом, соединяет между собой оказавшиеся рядом «прицепы»-аминокислоты. А со стороны выглядит это так, словно одна тРНК, к примеру, правая на «парковке», говорит левой «подержи мой прицеп, а я сейчас…» – и быстро-быстро улепетывает. И у доброй левой тРНК оказывается уже двойной прицеп – из двух аминокислот: ближайший к ней – свой, а дальний – чужой.

И тут рибосома сдвигается на три нуклеотида влево. Не удивляйтесь, «гаражи»-рибосомы сами тоже вполне мобильны и, как мы помним, норовят по очереди нанизаться на нитку матричной РНК. В итоге бывшая левая тРНК со своим двойным прицепом становится правой. Слева, соответственно, освобождается новое парковочное место». Приходит новая тРНК, паркуется слева. И тут уже уставшая держать двойной «хвост» из аминокислот поумневшая правая тРНК говорит левой «подержи мой прицеп, а я сейчас…» – и быстро-быстро… Ну вы поняли. Так образуется цепочка-хвост из трех, потом четырех… до многих тысяч аминокислот. Процесс называется трансляция (дословно – перенос, перемещение, передача).

Синтез белковой цепочки обрывается, когда в активном центре рибосомы оказывается одна из трех последовательностей нуклеотидов матричной РНК, у которых нет в принципе соответствующих аминокислот. Это те самые исключения УАГ, УГА или УАА. На этих последовательностях нарастание белковой нитки прекращается, поскольку не бывает тРНК с «ключами» АУЦ, АЦУ или АУУ на верхушке, некому везти «прицепы»-аминокислоты к месту сборки.

Белковая цепочка сворачивается в компактную структуру и отправляется на работу. Если на сегодня всё, и белка такого типа клетке больше не нужно, она с помощью специальных ферментов разбирает инструкцию по его сборке, т. е. матричную РНК, на нуклеотиды, чтобы потом повторно их использовать. А если и сам белок уже свое отработал – то и его разбирает. На аминокислоты, конечно же. И карусель транскрипции-трансляции работает дальше, обслуживая новые потребности клетки. Шестиклассник написал контрольную – пора есть котлету.

Источник

Транскрипция и трансляция. Образование белков в клетке

Вопрос 1. Что такое транскрипция?
Транскрипцией называют биосинтез РНК на матрице ДНК. Это первая стадия реализации генетической информации, в процессе которой определенные участки нуклеотидной последовательности ДНК «переписываются» в комплементарные одноцепочечные молекулы РНК. В результате транскрипции образуются мРНК, кодирующие аминокислотные последовательности белков, а также тРНК, рРНК и другие виды РНК, выполняющие структурные, регуляторные и каталитические функции. Синтезированная мРНК поступает в цитоплазму на рибосомы, где и идёт синтез белка. В основе транскрипции лежит фундаментальный принцип комплементарности азотистых оснований полинуклеотидных цепей ДНК и РНК, а сам процесс осуществляется с участием соответствующих ферментов — РНК-полимераз, и большой группы белков — регуляторов транскрипции.

Вопрос 2. Что такое трансляция?
Перенос информации с иРНК на белок во время его синтеза называется трансляцией. Собранные в полисомы рибосомы двигаются по иРНК; движение происходит последовательно, по триплетам. В месте контакта рибосомы с иРНК работает фермент, собирающий белок из аминокислот, доставляемых к рибосомам тРНК. При этом происходит сравнение кодона иРНК с антикодоном тРНК: если они комплементарны, фермент (синтетаза) «сшивает» аминокислоты, а рибосома продвигается вперед на один кодон.
Таким образом, трансляция — это перевод последовательности нуклеотидов молекулы иРНК в последовательность аминокислот синтезируемого белка.

Вопрос 3. Где происходят транскрипция и трансляция?
Транскрипция у эукариот осуществляется в ядре, а трансляция — в цитоплазме на рибосомах.

Вопрос 4. Что такое полисома?
Полисома – функциональная субъединица, состоящая из 5-6 рибосом, способная синтезировать один и тот же белок, закодированный в данной иРНК.

Вопрос 5. Почему в различных клетках какого-либо организма «работает» только часть генов?
Все клетки, например, человеческого организма, имеющие одинаковый набор хромосом, способны синтезировать различные белки: в одних клетках синтез белков идет с помощью одних генов, а в других — задействованы совсем иные гены. Итак, в каждой клетке реализуется только часть генетической информации, содержащейся в ее генах. Разным клеткам организма необходимы разные белки. Поэтому в каждой клетке реализуется только та часть генетической информации, которая отвечает за синтез именно этих белков.

Вопрос 6. Может ли существовать клетка, неспособная к самостоятельному синтезу веществ?
В процессе жизнедеятельности органические вещества клетки постепенно разрушаются, особенно это касается белков — обязательных компонентов мембранных структур. Поэтому в период активного функционирования каждая клетка обязательно должна самостоятельно синтезировать необходимые ей вещества. Тем не менее существование клетки, неспособной к самостоятельному синтезу веществ, возможно. Это специализированные клетки, например эритроциты. Эти клетки в зрелом состоянии живут ограниченное время (у человека — около 120 суток) и отмирают по мере старения.

Источник

Синтез белков в клетке

в какой части клетки происходит синтез белка. dark fb.4725bc4eebdb65ca23e89e212ea8a0ea. в какой части клетки происходит синтез белка фото. в какой части клетки происходит синтез белка-dark fb.4725bc4eebdb65ca23e89e212ea8a0ea. картинка в какой части клетки происходит синтез белка. картинка dark fb.4725bc4eebdb65ca23e89e212ea8a0ea. Наследственная информация в клетке не является монолитной, она разбита на отдель­ ные «слова» — гены. в какой части клетки происходит синтез белка. dark vk.71a586ff1b2903f7f61b0a284beb079f. в какой части клетки происходит синтез белка фото. в какой части клетки происходит синтез белка-dark vk.71a586ff1b2903f7f61b0a284beb079f. картинка в какой части клетки происходит синтез белка. картинка dark vk.71a586ff1b2903f7f61b0a284beb079f. Наследственная информация в клетке не является монолитной, она разбита на отдель­ ные «слова» — гены. в какой части клетки происходит синтез белка. dark twitter.51e15b08a51bdf794f88684782916cc0. в какой части клетки происходит синтез белка фото. в какой части клетки происходит синтез белка-dark twitter.51e15b08a51bdf794f88684782916cc0. картинка в какой части клетки происходит синтез белка. картинка dark twitter.51e15b08a51bdf794f88684782916cc0. Наследственная информация в клетке не является монолитной, она разбита на отдель­ ные «слова» — гены. в какой части клетки происходит синтез белка. dark odnoklas.810a90026299a2be30475bf15c20af5b. в какой части клетки происходит синтез белка фото. в какой части клетки происходит синтез белка-dark odnoklas.810a90026299a2be30475bf15c20af5b. картинка в какой части клетки происходит синтез белка. картинка dark odnoklas.810a90026299a2be30475bf15c20af5b. Наследственная информация в клетке не является монолитной, она разбита на отдель­ ные «слова» — гены.

в какой части клетки происходит синтез белка. caret left.c509a6ae019403bf80f96bff00cd87cd. в какой части клетки происходит синтез белка фото. в какой части клетки происходит синтез белка-caret left.c509a6ae019403bf80f96bff00cd87cd. картинка в какой части клетки происходит синтез белка. картинка caret left.c509a6ae019403bf80f96bff00cd87cd. Наследственная информация в клетке не является монолитной, она разбита на отдель­ ные «слова» — гены.

Биосинтез белков идет в каждой живой клетке. Наиболее активен он в молодых растущих клетках, где синтезируются белки на построение их органоидов, а также в секреторных клетках, где синтезируются белки-ферменты и белки-гормоны.

Основная роль в определении структуры белков принадлежит ДНК. Отрезок ДНК, содержащий информацию о структуре одного белка, называют геном. Молекула ДНК содержит несколько сотен генов. В молекуле ДНК записан код о последовательности аминокислот в белке в виде определенно сочетающихся нуклеотидов. Код ДНК удалось расшифровать почти полностью. Сущность его состоит в следующем. Каждой аминокислоте соответствует участок цепи ДНК из трех рядом стоящих нуклеотидов.

Например, участок Т—Т—Т соответствует аминокислоте лизину, отрезок А—Ц—А — цистину, Ц—А—А — валину н т. д. Разных аминокислот — 20, число возможных сочетаний из 4 нуклеотидов по 3 равно 64. Следовательно, триплетов с избытком хватает для кодирования всех аминокислот.

Синтез белка — сложный многоступенчатый процесс, представляющий цепь синтетических реакций, протекающих по принципу матричного синтеза.

Поскольку ДНК находится в ядре клетки, а синтез белка происходит в цитоплазме, существует посредник, передающий информацию с ДНК на рибосомы. Таким посредником является и-РНК. :

В биосинтезе белка определяют следующие этапы, идущие в разных частях клетки:

1. Первый этап — синтез и-РНК происходит в ядре, в процессе которого информация, содержащаяся в гене ДНК, переписывается на и-РНК. Этот процесс называется транскрипцией (от лат. «транскриптик» — переписывание).

2. На втором этапе происходит соединение аминокислот с молекулами т-РНК, которые последовательно состоят из трех нуклеотидов — антикодонов, с помощью которых определяется свой триплет-кодон.

3. Третий этап — это процесс непосредственного синтеза полипептидных связей, называемый трансляцией. Он происходит в рибосомах.

4. На четвертом этапе происходит образование вторич ной и третичной структуры белка, то есть формирование окончательной структуры белка.

Таким образом, в процессе биосинтеза белка образуются новые молекулы белка в соответствии с точной информацией, заложенной в ДНК. Этот процесс обеспечивает обновление белков, процессы обмена веществ, рост и развитие клеток, то есть все процессы жизнедеятельности клетки.

Хромосомы (от греч. «хрома» — цвет, «сома» — тело) — очень важные структуры ядра клетки. Играют главную роль в процессе клеточного деления, обеспечивая передачу наследственной информации от одного поколения к другому. Они представляют собой тонкие нити ДНК, связанные с белками. Нити называются хроматидами, состоящими из ДНК, основных белков (гистонов) и кислых белков.

В неделящейся клетке хромосомы заполняют весь объем ядра и не видны под микроскопом. Перед началом деления происходит спирализация ДНК и каждая хромосома становится различимой под микроскопом. Во время спирализации хромосомы сокращаются в десятки тысяч раз. В таком состоянии хромосомы выглядят как две лежащие рядом одинаковые нити (хроматиды), соединенные общим участком — центромерой.

Для каждого организма характерно постоянное количество и структура хромосом. В соматических клетках хромосомы всегда парные, то есть в ядре есть две одинаковые хромосомы, составляющие одну пару. Такие хромосомы называют гомологичными, а парные наборы хромосом в соматических клетках называют диплоидными.

Так, диплоидный набор хромосом у человека состоит из 46 хромосом, образуя 23 пары. Каждая пара состоит из двух одинаковых (гомологичных) хромосом.

Особенности строения хромосом позволяют выделить их 7 групп, которые обозначаются латинскими буквами А, В, С, D, Е, F, G. Все пары хромосом имеют порядковые номера.

У мужчин и женщин есть 22 пары одинаковых хромосом. Их называют аутосомы. Мужчина и женщина отличаются одной парой хромосом, которые называют половыми. Они обозначаются буквами — большая X (группа С) и маленькая Y (группа С,). В женском организме 22 пары аутосом и одна пара (XX) половых хромосом. У мужчин — 22 пары аутосом н одна пара (XY) половых хромосом.

В отличие от соматических клеток, половые клетки содержат половинный набор хромосом, то есть содержат по одной хромосоме каждой пары! Такой набор называют гаплоидным. Гаплоидный набор хромосом возникает в процессе созревания клеток.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *