в каком виде растения могут поглощать азот

Сельское хозяйство | UniversityAgro.ru

Агрономия, земледелие, сельское хозяйство

Home » Агрохимия » Азот в жизни растений

Популярные статьи

Приложения для Android

Азот в жизни растений

Азот — химический элемент, инертный газ без цвета и запаха, открыт французским химиком Лавуазье во второй половине XVIII в., является основным компонентом атмосферного воздуха (78,08%). Название означает «нежизненный», так как не поддерживающий горение и дыхание. Однако, дальнейшие исследования показали огромную роль азота в жизни растений и всего органического мира.

Азот входит в состав:

Азотное питание растений

Все ферменты — белковые вещества, поэтому при недостаточном снабжении растений азотом синтех ферментов замедляется, что приводит к нарушениям в процессах биосинтеза, обмена веществ, в итоге, к снижению урожая.

Регулирование азотного питания растений, можно влиять на урожайность сельскохозяйственных культур с учетом других факторов жизни. Максимальный урожай достигается при достаточном обеспечении растений всеми условиями их роста. Академик Д.Н. Прянишников писал, что вся история земледелия в Западной Европе говорит о том, что главным условием, определяющим среднюю высоту урожаев в разные эпохи, была степень обеспеченности сельскохозяйственных растений азотом.

Оптимальное азотное питание способствует синтезу белковых веществ, растения образуют мощные стебли и листья с интенсивной зеленой окраской. Мощный ассимиляционный аппарат позволяет накапливать большее количество продуктов фотосинтеза, повышая урожайность и, как правило, его качество.

Одностороннее избыточное питание азотом, особенно во второй половине вегетационного периода, приводит к задержке созревания растений; образуется большая вегетативная масса, урожай репродуктивных органов но не успевает сформироваться.

Недостаток азота приводит к сильному замедлению роста растений. Прежде всего сказывается на развитии вегетативной массы: листья становятся мелкими, светло-зелеными, раньше желтеют, стебли тонкие, слабо ветвятся. Снижается формирование репродуктивных органов, урожай резко снижается. Азотное голодание у злаковых культур приводит к ослаблению кущения, уменьшается количество зерен в колосе, снижается белковость зерна.

Содержание азота в растениях

По химическому составу, на долю азота в растениях приходится 0,5-5,0% воздушно-сухой массы, основное количество приходится на семенах. Содержание белка четко коррелирует с количеством азота в растениях. В вегетативных органах содержание азота ниже: в соломе бобовых 1,0-1,4%, в соломе злаковых 0,45-0,65%. Еще меньше азота накапливается в корне-, клубнеплодах и овощных культурах: картофель (клубни) 0,32%, сахарная свекла (корни) 0,24%, капуста 0,33% сырого вещества.

Содержание азота в растениях зависит от возраста, почвенно-климатических условий, питательного режима, в частности обеспеченности питательными элементами.

Таблица. Содержание белка и азота в семенах различных культур, % 1

КультураБелокАзот
Соя295,8
Горох204,5
Пшеница142,5
Рис71,2

Содержание азота в молодых вегетативных органах выше. По мере старения азотистые вещества мигрируют в появляющиеся листья и побеги.

Таблица. Содержание азота в вегетативной массе зерновых культур по фазам развития, % на воздушно-сухое вещество 2

КультураФаза развития
кущениетрубкованиеколошениецветение
Озимая пшеница5,0-5,43,0-4,52,1-2,52,0-2,4
Яровая пшеница4,5-5,53,0-4,42,5-3,01,8-2,5
Овес5,5-5,92,9-3,92,21,3-1,7

Поступление и трансформация азота в белковые вещества

Темпы накопления органических веществ растениями опережают поступление азота и других питательных веществ. Происходит «ростовое разбавление» содержания питательных элементов. При созревании отмечается выраженное передвижение азота в репродуктивные органы, где они накапливаются в виде запасных белков.

В основном азот поступает в растения в нитратной и аммонийно форме, но также способны усваивать некоторые растворимые органические соединения, например, мочевину, аминокислоты, аспарагин.

Из поступающих из почвы в растения соединений азота только аммиак непосредственно используется для синтеза аминокислот. Нитраты и нитриты включаются в синтез аминокислот только после восстановления в тканях растений.

Редукция нитратов до аммиака начинается уже в корнях с помощью флавиновых металлоферментов:

в каком виде растения могут поглощать азот. 1 prevrashenie azota. в каком виде растения могут поглощать азот фото. в каком виде растения могут поглощать азот-1 prevrashenie azota. картинка в каком виде растения могут поглощать азот. картинка 1 prevrashenie azota. Агрономия, земледелие, сельское хозяйство

При избытке, часть нитратов поступает в неизменном видо в листья, где восстанавливается по той же схеме.

Образование аминокислот (аминирование) происходит в результате взаимодействия аммиака с кетокислотами: пировиноградной, щавелевоуксусной, кетоглутаровой и др., образующиеся в процессе окисления углеводов. Аминирование регулируется ферментами. Так, при взаимодействии пировиноградной кислоты с аммиаком образуется аланин:

в каком виде растения могут поглощать азот. 1 obrazovanie alanina. в каком виде растения могут поглощать азот фото. в каком виде растения могут поглощать азот-1 obrazovanie alanina. картинка в каком виде растения могут поглощать азот. картинка 1 obrazovanie alanina. Агрономия, земледелие, сельское хозяйство

Аналогично взаимодействие аммиака с щавелевоуксусной кислотой приводит к образованию аспарагиновой кислоты (СООН-СН2-СНNН2-СООН), с кетоглутаровой кислотой — глутаминовая кислота (СООН-СН2-СН2-СНNН2-СООН).

В аминокислоты азот входит в виде аминогруппы (—NH2). Процессы образования аминокислот происходит в корнях и в надземной части растений.

Опыты с использованием меченых атомов показывают, что уже через несколько минут после подкормки растений аммиачными удобрениями, в тканях могут обнаруживаться аминокислоты, синтезированные из внесенного в подкормку аммиака. При этом первой образующеся аминокислотой является аланин, затем аспарагиновая и глутаминовая кислоты.

Нитратный азот может накапливаться в растениях в больших количествах, без причинения им вреда. Аммиак в свободном виде в тканях содержится в незначительных количествах. Его накопление, особенно при недостатке углеводов, приводит к аммиачному отравлению растений.

Однако растения имеют способность связывать избыток свободного аммиака: его часть вступает во взаимодействие с синтезированными аспарагиновой и глутаминовой аминокислотами, образуя соответствующие амиды — аспарагин и глутамин:

в каком виде растения могут поглощать азот. 3 obrazovanie asparagina. в каком виде растения могут поглощать азот фото. в каком виде растения могут поглощать азот-3 obrazovanie asparagina. картинка в каком виде растения могут поглощать азот. картинка 3 obrazovanie asparagina. Агрономия, земледелие, сельское хозяйство

в каком виде растения могут поглощать азот. 4 obrazovanie glutamina. в каком виде растения могут поглощать азот фото. в каком виде растения могут поглощать азот-4 obrazovanie glutamina. картинка в каком виде растения могут поглощать азот. картинка 4 obrazovanie glutamina. Агрономия, земледелие, сельское хозяйство

Образование аспарагина и глутамина позволяет растениям защитить себя от аммиачного отравления и создать резерв аммиака, кроме того, амиды участвуют в синтезе белков.

В 1937 г. биохимиками А.Е. Браунштейном и М.Г. Крицманом была открыта реакция переаминирования, заключающаяся в переносе аминогруппы с аминокислоты на кетокислоту с образованием других амино- и кетокислот. Реакция катализируется ферментами трансаминазами или аминоферазами.

Так, присоединение к пировиноградной кислоте аминной группы от глутаминовой кислоты, приводит к образованию аланина и кетоглутаровой кислоты:

в каком виде растения могут поглощать азот. 5 obrazovanie alanina. в каком виде растения могут поглощать азот фото. в каком виде растения могут поглощать азот-5 obrazovanie alanina. картинка в каком виде растения могут поглощать азот. картинка 5 obrazovanie alanina. Агрономия, земледелие, сельское хозяйство

Благодаря переаминированию синтезируется значительное число аминокислот. В растениях наиболее легко переаминируются глутаминовая и аспарагиновая кислоты.

Аминокислоты являются составными частями полипептидов и белков. В построении белковых молекул участвуют 20 аминокислот, аспарагин и глутамин в различных соотношениях и пространственной ориентации, что обуславливает огромное разнообразие белков. В настоящее время известно более 90 аминокислот, около 70 из них присутствуют в растениях в свободном виде и не входят в состав белков.

Растения синтезируют аминокислоты, которые не могут образовываться в организме человека и высших животных, но являются незаменимыми для их жизни. К ним относятся: лизин, гистидин, фенилаланин, триптофан, валин, лейцин, изолейцин, треонин и метионин.

На долю небелкового органического азота в растениях приходится 20-26% от общего количества. В неблагоприятных условиях, например, при дефиците калия или недостаточном освещении, количество небелковых азотистых соединений возрастает.

В тканях растений белки находятся в динамичном равновесии с небелковыми азотистыми соединениями. Одновременно с синтезом белков и аминокислот протекает процесс их распада: отщепление аминогруппы от аминокислоты с образованием кетокислот и аммиака. Этот процес называется дезаминированием. Высвобождающаяся кетокислота используется растениями для синтеза углеводов, жиров и иных веществ; аммиак повторно вступает в реакцию аминирования других кетокислот, образуя новые аминокислоты, при его избытке — аспарагин и глутамин.

Таким образом, весь цикл превращений азотистых соединений в растениях начинается (аминирование) и заканчивается (дезаминирование) аммиаком.

«Аммиак есть альфа и омега в обмене азотистых веществ у растений».

За все время вегетации растения синтезируется большое количество белковых соединений, причем в разные периоды роста обмен азотистых веществ происходит по-разному.

При прорастании семян, клубней, луковиц наблюдается распад запасных белков. Продукты распада расходуются на синтез аминокислот, амидов и белков в тканях проростков до выхода их на поверхность почвы. В Затем, по мере формирования корневой системы и листового аппарата, синтез белков протекает за счет минерального азота, поглощаемого из почвы.

В молодых растениях преобладает синтез белков. В процессе старения растений начинает преобладать распад белков. Продукты распада из стареющих органов мигрируют в молодые, интенсивно растущие органы, где используются для синтеза новых белков в точках роста. По мере созревания растений и формирования репродуктивных органов, белковых веществ распадаются в вегетативных частей, продукты распада перемещаются в репродуктивные органы, где используются для образования запасных белков. К этому моменту поступление азота в растения из почвы существенно замедляется или полностью прекращается.

Особенности аммонийного и нитратного питания растений

В конце XIX в. в агрономической науке ведущую роль занимала теория нитратного питания растений, роль аммиака как источника минерального питания отрицалась.

Причинами этому послужили:

Однако в конце века П.С. Коссович в опытах со стерильными культурами показал, что растения могут также усваивать аммиачный азот без окисления в нитратную форму. К такому же выводы пришел и французский исследователь Мазе в 1900 г. После этого были изучены условия и особенности питания аммонийными и нитратными формами азота. Фундаментальные исследования по этому вопросу провел Д.Н. Прянишников. Он показал, что эффективность использования различных форм азота зависит от реакция среды: в нейтральной реакции лучше поглощается аммонийный азот, при кислой — нитратный.

В начальные фазы роста существенное значение имеют биологические особенности. При прорастании семян с небольшим запасом углеводов, например, у сахарной свеклы, а, следовательно, органических кетокислот, избыточное поступление аммония в растения оказывает негативное действие. Аммонийный азот не успевает использоваться для синтеза аминокислот, накапливается в тканях растения и вызывает их отравление. В данном случае используют нитратные формы азотных удобрений, так как они также накапливаться в тканях растений, но не причиняют вреда. Семена и посевной материал с большим запасом углеводов, например, картофель, используют аммонийный азот для синтеза аминокислот без ограничений. Поэтому для таких культур аммонийная и нитратная формы в начальные стадии роста равноценны.

На поглощение нитратного и аммонийного азота влияет обеспеченность другими элементами питания. Повышенное содержание в почве калия, кальция и магния способствует поглощению аммония. При нитратном питании значение имеет обеспеченность растений фосфором и молибденом. Дефицит молибдена приводит к задержке восстановления нитратов до аммиака и способствует накоплению нитратов в тканях растений.

Учитывая, что аммонийная форма азота при поступлении в растения может сразу использоваться для синтеза аминокислот, тогда как нитратная только после восстановления до аммиака, аммоний более энергетически экономной формой.

Источник

Формы,усвоение и влияние азота на растения

в каком виде растения могут поглощать азот. foto 01. в каком виде растения могут поглощать азот фото. в каком виде растения могут поглощать азот-foto 01. картинка в каком виде растения могут поглощать азот. картинка foto 01. Агрономия, земледелие, сельское хозяйство

Азот — один из важнейших элементов развития растения. В природе существует несколько форм азота. Азот также составляет 78% от содержания атмосферы и 3% человеческого тела.

Комплекс NPK является основным «поставщиком» любого растения. Это часть белков, хлорофилла, гормонов, витаминов и т. д.

Краткая история элемента

Породы, которые составляют Землю, имеют очень малое содержание азота. Что-то в минимальных количествах по сравнению с другими типами выделения азота высвобождается в почву, когда происходит выветривание этих пород.

Тем не менее, действительно интересна фиксация атмосферного азота (о 78% которого мы говорили). Когда мы говорим о фиксации, то мы имеем в виду обеспечение сельскохозяйственных культур усвояемым азотом.

Этот переход атмосферного азота в почву может быть осуществлен двумя способами. С одной стороны, это будет биотический «путь», где активность микроорганизмов (как животных, так и растений) имеет крайне важное значение для утилизации этого усвояемого элемента.

Существует также еще один путь, абиотический, где фиксация происходит с помощью дождя, снега и т. д., в общем, атмосферных явлений.

Если бы вам пришлось выбирать способ фиксации, какой бы вы выбрали? Несомненно, тот, который предполагает большую работу, проводимую микроорганизмами, т. е. биотический путь.

Однако, на нашей земле нет оптимальных условий для развития микроорганизмов.

По крайней мере, они не такие, чтобы эти «жуки» могли создавать азот в количествах, достаточных для нормального развития сельскохозяйственных культур.

в каком виде растения могут поглощать азот. foto 1 4. в каком виде растения могут поглощать азот фото. в каком виде растения могут поглощать азот-foto 1 4. картинка в каком виде растения могут поглощать азот. картинка foto 1 4. Агрономия, земледелие, сельское хозяйство

ФУНКЦИИ АЗОТА В РАСТЕНИЯХ

С «общей» точки зрения можно сказать, что смысл азота в растениях заключается в создании растительной массы.

Однако, это утверждение не содержит ничего конкретного, поэтому давайте добавим еще несколько вещей. Таким образом, мы увидим истинную важность этого элемента в растениях.

Самая важная роль азота в культурах — быть частью растительных белков (то, что мы говорили о создании массы).

Однако, мы не можем забыть о его роли в качестве запаса либо в семенах (его способность поддерживать семена «живыми», не будучи посаженными, или энергия, которую нужно преобразовать в растение после их посева), либо в других репродуктивных органах.

Что, если мы посмотрим на функциональную точку зрения?

Он участвует во всех этих ферментативных процессах:

А также стимулирует образование ауксинов, образует лигнин, участвует в производстве хлорофилла и т. д.

СКОЛЬКО ВИДОВ АЗОТА СУЩЕСТВУЕТ?

Фиксация азота в почве не происходит в органической форме, которая не усваивается любым растением. До этого он должен пройти еще один «процесс деградации», потому что он должен перейти от органического к минеральному.

Когда вы услышите слово «минерализация» в будущем, вы узнаете, что это значит.

Что касается этих минеральных форм, нам представлены две, которые вы, несомненно, знаете:

Аммонийная форма, со временем и под действием климата и микроорганизмов переходит в нитратную форму, легко поглощаемую растениями. Однако, все это несколько сложнее, минерализация органического азота проходит через несколько этапов, но мы можем обобщить, что аммонийный N переходит в нитратный N.

Здесь необходимы микроорганизмы и качество почвы, поскольку без них было бы невозможно перейти от NH4+ к NO3-. Ничего не остается, как заботиться о своих почвенных микроорганизмах.

Мочевина представляет собой химическую форму диамида угольной кислоты. Предположим, что это соединение находится в процессе нитрификации сверху. Мочевина разлагается на аммоний, который, в свою очередь, переходит в нитрат.

КАК РАСТЕНИЕ ПОГЛОЩАЕТ АЗОТ?

Как упоминалось ранее, растения поглощают нитратный азот. Следовательно, многие фермеры используют в качестве основного удобрения аммиачный азот или мочевину, поскольку они, как ожидается, останутся в почве как можно дольше.

Еще одна вещь, о которой мы еще не говорили, заключается в том, что это соединение может поглощаться растением как на корневом уровне (обычно корнями), так и листвой (при непосредственном применении).

Тем не менее, для азота является обычной практикой внесение в почву как в аммиачной (NH4+), так и в нитратной (NO3-) форме.

Корни растений поглощают азот из почвы в виде нитрата (NO3-) или аммония (NH4+). В большинстве почв действие нитрифицирующих бактерий приводит к тому, что культуры поглощают в основном N-NO3-. В других особых ситуациях в почве, таких как анаэробные условия, растения могут поглощать относительно больше NH4+, чем NO3-. Точно так же это может произойти сразу же после применения аммонийных удобрений или на ранних стадиях роста, когда температура по-прежнему низкая для быстрой нитрификации. В некоторых случаях они также поглощают N в виде мочевины.

в каком виде растения могут поглощать азот. foto 2 3. в каком виде растения могут поглощать азот фото. в каком виде растения могут поглощать азот-foto 2 3. картинка в каком виде растения могут поглощать азот. картинка foto 2 3. Агрономия, земледелие, сельское хозяйство

Предпочтение растением NH4+ или NO3-, когда обе формы присутствуют, в основном, зависит от вида культуры. Зерновые культуры поглощают любую форму N, в то время как пасленовые, например, томаты отдают предпочтение более высокому соотношению NO3-/NH4+. Рис является типичным примером адаптации к NH4+. Другими видами, адаптированными к питанию с NH4+, являются те, которые выращиваются на кислых почвах тропических и субтропических регионов, где процесс нитрификации ограничен.

Есть исследования, которые показывают, что некоторые культуры лучше растут, если дается смесь NH 4+ и NO3-. В частности, было обнаружено, что некоторые растения могут не только показывать более высокий уровень урожайности, но и более высокие уровни белка.

Поглощение и усвоение NO3-

NO3- всасывается активно, т.е. с затратой энергии. Специальные ферменты катализируют прохождение ионов NO3- через клеточные мембраны, особенно на уровне корневых волосков. Как уже указывалось, NO3- поглощаются в меньшей степени при низких температурах. На поглощение также влияет молибден, так как на поверхности корневых клеток образуется молибдропротеин для переноса NO3-.

Когда NO3- проник, растение может отложить его про запас как таковой корневыми тканями, или восстановить и синтезировать в аминокислотах, или отложить в ксилеме, чтобы транспортировать в стебли.

Усвоение NO3- осуществляется через ряд этапов. Во-первых, NO3- восстанавливается до NO2- посредством ферментативного действия и в присутствии фотосинтетов. Затем NO2- восстанавливается до NH3, под действием нитритредуктазы. Полученный NH3 быстро включается в глутаминовую кислоту под действием глутаминсинтетазы и глутаматсинтазы, расположенных как внутри так снаружи клеток.

Поглощение и усвоение NH4+

Поглощение NH4+ достигается посредством активного и пассивного процесса. Эксперименты, в которых были использованы метаболические ингибиторы, показали, что при ингибировании высвобождение дыхательной энергии при поглощении NH4+ уменьшается вдвое, но не полностью ингибируется, как в случае поглощения NO3-. Поглощение NH4+ увеличивается при значениях рН, близких к 8. Его поглощение приводит к увеличению поглощения неорганических анионов (H2PO4-, SO42- и Cl-), а рН ризосферы может уменьшаться из-за высвобождения H+ с помощью корня для поддержания электрической нейтральности.

Несмотря на то, что NH4+ может пассивно поглощаться, его скорость поглощения в большей степени зависит от скорости подачи энергии, чем скорость поглощения NO3. Это связано с тем, что после поглощения NH4+ должен быть немедленно включен в углеродные скелеты. Если для этого процесса отсутствуют углеводы, NH4+ может накапливаться до токсичных уровней в корне. Это приводит к остановке роста и уменьшению поглощения K+ с симптомами дефицита этого питательного элемента у растения.

После поглощения NH4+ не нужно восстанавливать, поэтому по сравнению с NO3- растение экономит энергию. Однако, в некоторых ситуациях эти энергетические затраты могут быть незначительными. Когда NO3 восстанавливается в листе, энергия, используемая для процесса восстановления, поступает непосредственно из солнечной энергии и не включает использование углеводов в качестве источника энергии. Только когда NO3- восстанавливается в корне, энергия, используемая растением для этого процесса, исходит из катаболизма углеводов.

АТМОСФЕРНЫЙ АЗОТ

Существуют растения, способные захватывать азот из атмосферы, восстанавливая его и превращая в аминокислоты и белки, которые будут служить пищей.

в каком виде растения могут поглощать азот. foto 3 2. в каком виде растения могут поглощать азот фото. в каком виде растения могут поглощать азот-foto 3 2. картинка в каком виде растения могут поглощать азот. картинка foto 3 2. Агрономия, земледелие, сельское хозяйство

Согласно Бермудесу де Кастро, атмосферный азот фиксируют следующие культуры:

КАК ДИАГНОСТИРОВАТЬ НЕДОСТАТОК АЗОТА?

Недостаток азота, к счастью, довольно легко обнаружить. Поскольку этот элемент оказывает влияние на хлорофилл, его недостаток вызывает ингибирование производства зеленого пигмента.

Следовательно, мы можем наблюдать листья с полным хлорозом.

Поскольку азот тесно связан с ростом, если растению не хватает этого элемента, мы увидим чахлые растения, которые в конечном итоге, одревеснеют в ближайшее время.

в каком виде растения могут поглощать азот. foto 4 1. в каком виде растения могут поглощать азот фото. в каком виде растения могут поглощать азот-foto 4 1. картинка в каком виде растения могут поглощать азот. картинка foto 4 1. Агрономия, земледелие, сельское хозяйство

В целом, чтобы правильно поставить диагноз, необходимо иметь в виду, что первые симптомы (хлороз и отсутствие роста) появляются на старых листьях.

Это связано с тем, что азот является очень подвижным элементом в растении, поэтому он легко перемещается в самые активные точки с функциональной точки зрения.

И ИЗБЫТОК?

Избыток азота в растениях может приводить к преувеличенному росту, более мощному развитию побегов и ветвей (большее клеточное размножение), более нежным растениям (менее лигнифицированным), задержкам появления древесных частей, задержке зрелости, и т. д.

Поэтому, если в растении есть «более мягкие» части, оно будет более восприимчивым к вредителям и болезням, уменьшится урожайность, будет производить меньше семян (зерновые) или плодов (овощи), будет более чувствительно к недостатку влаги и т. д.

Инга Костенко, Mivena Украина

Анна Устименко, Клуб Sirius Agro Plant

Источник

Правильное управление азотом — залог богатых урожаев!

в каком виде растения могут поглощать азот. article79151. в каком виде растения могут поглощать азот фото. в каком виде растения могут поглощать азот-article79151. картинка в каком виде растения могут поглощать азот. картинка article79151. Агрономия, земледелие, сельское хозяйство

Азот является одним из важнейших необходимых питательных веществ для растений и требуется им сравнительно в больших количествах. Успешное управление азотом может оптимизировать урожайность сельскохозяйственных культур, повысить рентабельность и минимизировать потери азота. Однако, управление азотом является довольно сложным процессом

Дефицит азота может привести к слабому росту, хлоротичным листьям и значительному снижению урожайности.

Избыток азота может привести к плохому развитию корневой системы, ослабленному иммунитету (растение становится восприимчивым к болезням) и низкому качеству урожая.

Источники азота и их доступные формы

«Поведение» азота является сложным и определяется рядом физических, химических и биологических процессов, которые происходят под влиянием различных факторов окружающей В природе азот присутствует, в основном, в воздухе и почве.

Атмосферный азот. Атмосферный азот является важным источником, но,увы, он недоступен для большинства растений. Только бобовые растения могут использовать атмосферный азот посредством биологических процессов при помощи бактерий. Небольшое количество атмосферного азота осаждается в почве дождем.

Когда и как растения могут поглощать азот

Растения могут поглощать азот только в неорганических формах, NO3 (нитраты) и NH4 (аммоний). Только около 2-3% азота, содержащегося в органическом веществе, превращается в азот, доступный для растений, в процессе, называемом «минерализация».

в каком виде растения могут поглощать азот. upravlenie azotnymi udobrenijami 1. в каком виде растения могут поглощать азот фото. в каком виде растения могут поглощать азот-upravlenie azotnymi udobrenijami 1. картинка в каком виде растения могут поглощать азот. картинка upravlenie azotnymi udobrenijami 1. Агрономия, земледелие, сельское хозяйство

В этом процессе задействованы бактерии, преобразующие органический азот в минеральный, который доступен растениям. На процесс минерализации влияют факторы окружающей среды, такие как температура, влажность, аэрация и рН почвы.

Например, избыток влаги замедляет минерализацию и ограничивает доступность азота. Минерализация оптимальна при температуре 30 º C и при нейтральном или слабокислотном pH.

Потери азота

Азот может быть теряться из почвы несколькими способами:

в каком виде растения могут поглощать азот. upravlenie azotnymi udobrenijami 2. в каком виде растения могут поглощать азот фото. в каком виде растения могут поглощать азот-upravlenie azotnymi udobrenijami 2. картинка в каком виде растения могут поглощать азот. картинка upravlenie azotnymi udobrenijami 2. Агрономия, земледелие, сельское хозяйство

Управление азотом

Успешное управление азотом способно оптимизировать урожайность сельскохозяйственных культур, повысить рентабельность и минимизировать потери азота в окружающую среду.

Применение азота слишком рано приводит к риску его потери путем выщелачивания. Применять азотные удобрения надо до дождей и таким образом, чтобы самая высокая доза азотного удобрения вносилась до стадии максимального поглощения азота культурой.

Тем не менее, существует также риск внесения азота «слишком поздно», если климатические или логистические условия не позволяют применять его в запланированное время.

Определение дозы внесения азота

Азот представляет собой очень мобильное и постоянно изменяющееся между различными формами вещество, подвижное в почве. Поэтому анализ азота в почве дает результат, который действителен только во время измерения и может привести к ошибочным рекомендациям по применению азота.

Принятый подход в отношении азота заключается в принятии решений и рекомендаций, основанных на ожидаемых урожаях и потребностях того или иного урожая в азоте. Рекомендуя азотные удобрения, важно также рассматривать «азотные кредиты» для органического вещества в почве и остатки предыдущих культур.
В настоящее время разрабатываются и оцениваются новые методологии и подходы к внесению азота. (Источник: www.smart-fertilizer.com).

Внесение азота путем жидкой листовой подкормки

Одним из примеров внесения азота с минимальным риском служит современный способ жидкой листовой подкормки растений.

в каком виде растения могут поглощать азот. upravlenie azotnymi udobrenijami 3. в каком виде растения могут поглощать азот фото. в каком виде растения могут поглощать азот-upravlenie azotnymi udobrenijami 3. картинка в каком виде растения могут поглощать азот. картинка upravlenie azotnymi udobrenijami 3. Агрономия, земледелие, сельское хозяйство

Благодаря точно рассчитанным, индивидуальным дозам для каждой культуры, растениевод не ошибется в необходимом количестве, а листовая подкормка (в отличие от внесения в почву) максимально быстро поступает непосредственно растению, не рискуя быть вымытой в нижние слои почвы.

Не удивительно, что такая методика быстро набирает популярность. В качестве примера можно привести универсальное жидкое комплексное минеральное удобрение для внекорневых (листовых) подкормок Фолирус Старт.

Фолирус Старт содержит полный набор микроэлементов в жидкой хелатной форме, а также тот самый жизненно важный для растений азот. Удобрение особенно хорошо себя зарекомендовало на плодовых и ягодных культурах. Вот что значит своевременная и точная подкормка азотом!

Результаты испытания ВНИИА:

Вы можете приобрести жидкое листовое удобрение Фолирус Старт от компании «Листерра» прямо сейчас в нашем интернет-магазине. Обеспечьте ваши растения азотом и они отблагодарят прекрасным урожаем!

Если ваши культуры нуждаются в большем внесении азота — берите Фолирус Актив и Фолирус Форте — содержание азота 27 %!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *