в каком квадрате находится особый объект то есть не такой как остальные
Логический квадрат. Отношения между простыми сравнимыми суждениями изображаются схематически с помощью логического квадрата
Отношения между простыми сравнимыми суждениями изображаются схематически с помощью логического квадрата, который был разработан еще средневековыми логиками.
Вершины квадрата обозначают четыре вида простых суждений, а его стороны и диагонали – отношения между ними. Так, суждения вида А и вида I, а также суждения вида Е и вида О находятся в отношении подчинения. Суждения вида А и вида Е находятся в отношении противоположности, а суждения вида I и вида О – частичного совпадения. Суждения вида А и вида О, а также суждения вида Е и вида I находятся в отношении противоречия. Неудивительно, что логический квадрат не изображает отношение равнозначности, потому что в этом отношении находятся одинаковые по виду суждения, т.е. равнозначность – это отношение между суждениями А и А, I и I, Е и Е, О и О. Для того, чтобы установить отношение между двумя суждениями, достаточно определить, к какому виду относится каждое из них. Например, надо выяснить, в каком отношении находятся суждения: Все люди изучали логику и Некоторые люди не изучали логику. Видя, что первое суждение является общеутвердительным (А), а второе частноотрицательным (О), мы без труда устанавливаем отношение между ними с помощью логического квадрата – противоречие. Также суждения: Все люди ·изучали логику (А) и Некоторые люди изучали логику (I) находятся в отношении подчинения, а суждения: Все люди изучали логику (А) и Все люди не изучали логику (Е) находятся в отношении противоположности.
(контрарность)
Как уже говорилось, важным свойством суждений (в отличие от понятий является то, что они могут быть истинными или ложными. Что касается сравнимых суждении, то значения истинности каждого из них определенным образом связаны с значениями истинности остальных.
Все случаи отношений между значениями истинности простых сравнимых суждений таковы:
1. Если суждение вида А является истинным, то суждение вида I также является истинным, а суждения вида Е и О являются ложными.
2. Если суждение вида А является ложным, то суждение вида I является неопределенным по истинности (т.е. может быть как истинным, так и ложным, в зависимости от того, о чем будет идти в нем речь), суждение вида Е является также неопределенным по истинности, а суждение вида О является истинным. (Далее будем применять сокращения, например, вместо выражения «суждение вида А» будем говорить «А», а вместо «является истинным» ‑ просто «истинно»).
3. Если Е истинно, то А ложно, I ложно, О истинно.
4. Если Е ложно, то А неопределенно по истинности, I истинно, О неопределенно по истинности.
5. Если I истинно, то А неопределенно по истинности, Е ложно, О неопределенно по истинности.
6. Если I ложно, то А ложно, Е истинно, О истинно.
7. Если О истинно, то А ложно, Е неопределенно по истинности, I неопределенно по истинности.
8. Если О ложно, то А истинно, Е ложно, I истинно.
Используя рассмотренные правила, можно делать выводы об истинности простых сравнимых суждений с помощью логического квадрата (или, как часто говорят в логике, ‑ по логическому квадрату).
Логический квадрат
Отношения между простыми сравнимыми суждениями изображаются схематически с помощью логического квадрата, который был разработан еще средневековыми логиками.
Как видим, вершины квадрата обозначают четыре вида простых суждений, а его стороны и диагонали – отношения между ними. Так суждения вида А и вида I, а также суждения вида Е и вида О находятся в отношении подчинения. Суждения вида А и вида Е находятся в отношении противоположности, а суждения вида I и вида О – частичного совпадения. Суждения вида А и вида О, а также суждения вида Е и вида I находятся в отношении противоречия.
Неудивительно, что логический квадрат не изображает отношение равнозначности, потому что в этом отношении находятся одинаковые по виду суждения, т.е. равнозначность – это отношение между суждениями А и А, I и I, Е и Е, О и О. Чтобы установить отношение между двумя суждениями, достаточно определить, к какому виду относится каждое из них. Например, надо выяснить, в каком отношении находятся суждения: Все люди изучали логику и
Некоторые люди не изучали логику. Видя, что первое суждение является общеутвердительным (А), а второе частноотрицательным (О), мы без труда устанавливаем отношение между ними с помощью логического квадрата – противоречие. Также суждения: Все люди изучали логику (А) и Некоторые люди изучали логику (I) находятся в отношении подчинения, а суждения: Все люди изучали логику (А) и Все люди не изучали логику (Е) находятся в отношении противоположности.
Как уже говорилось, важным свойством суждений, в отличие от понятий, является то, что они могут быть истинными или ложными. Что касается сравнимых суждений, о которых идет речь в данном параграфе, то истинностные значения каждого из них определенным образом связаны с истинностными значениями остальных. Так если суждение вида А является истинным или ложным, то три других (I, Е, О) сравнимых с ним суждения (т. е. имеющих сходные с ним субъекты и предикаты) в зависимости от этого (т. е. от истинности или ложности суждения вида А) тоже являются истинными или ложными. Например, если суждение вида А: Все тигры – это хищники яляется истинным, то суждение вида I: Некоторые тигры – это хищники также является истинным (если все тигры – хищники, то и часть из них, т. е. некоторые тигры – это тоже хищники), суждение вида Е: Все тигры – это не хищники является лож-ным, и суждение вида О: Некоторые тигры – это не хищники также является ложным.
Таким образом, в данном случае из истинности суждения вида А вытекает истинность суждения вида I и ложность суждений вида Е и вида О (разумеется, речь идет о сравнимых суждениях, т. е. имеющих одинаковые субъекты и предикаты).
Далее представлены все случаи отношений между истинностными значениями простых сравнимых суждений.
Используя рассмотренные правила, можно делать выводы об истинности простых сравнимых суждений с помощью логического квадрата (или, как часто говорят в логике, – по логическому квадрату). Выше был приведен пример таких выводов на основе суждения вида А: Все тигры являются хищниками, где из его истинности вытекали определенные истинностные значения других суждений – I, Е, О. Рассмотрим еще один при- мер.
Возьмем суждение вида Е: Все треугольники не являются квадратами и сделаем из его истинности выводы об истинностных значениях суждений А, I, О. Когда данное суждение вида Е истинно (см. правила выше), то суждение вида А: Все треугольники являются квадратами ложно, суждение вида I: Некоторые треугольники являются квадратами также лож- но, а суждение вида О: Некоторые треугольники не являются квадратами истинно (если все треугольники не являются квадратами, то и часть треугольников, т. е. некоторые треугольники также не являются ими).
Логический квадрат в логике
Ежедневно каждый человек выполняет действия, направленные на решение логических задач. В простом понимании логика выражается в способностях мыслить и рассуждать последовательно, чтобы не противоречить самому себе. И такой навык необходим не только при проведении бизнес-переговоров с деловыми партнерами, а и для совершения покупки на рынке или в магазине.
Многие люди, логические навыки которых далеки от совершенства, часто совершают логические ошибки, не замечая этого. Большинство склонно к тому, что умение мыслить правильно основывается на жизненном опыте и здравом смысле, а не на базовом знании основ логики и ее приемов.
Конечно, для выполнения простых действий, доведенных до автоматизма, или простых умозаключений хватит и здравого смысла, но чтобы понять или объяснить что-то по-настоящему сложное и важное, одного здравого смысла мало. К тому же он нередко становится причиной неправильных высказываний.
Простые умозаключения в логике
Базой взаимоотношений суждений является общность их содержания. Данная схожесть проявляется в таких логических параметрах:
Поэтому логические взаимоотношения возникают не между всеми высказываниями, а исключительно между теми из них, смысл которых совпадает.
Сравнимыми называются такие простые высказывания, которые содержат одинаковую или смежную терминологию, но различные по качественным или количественным показателям.
Если в двух простых суждениях абсолютно разные субъекты и предикаты, их считают несравнимыми.
Группы простых высказываний
Все простые сравнимые умозаключения можно условно распределить на две подгруппы:
Выделяют три формы совместимости суждений.
Суждения, мысль в которых одинаковая, но преподнесена в разных формах.
«Малыш толкнул стол и разлил молоко»
«Молоко было разлито из-за того, что малыш толкнул стол»
Их характерной особенностью является одновременная истинность при невозможности одновременной ложности.
«Некоторые люди любят гулять»
«Некоторые люди не любят гулять»
Предложения с одним общим предикатом, а субъекты высказываний, выраженные в используемых понятиях, пребывают в логическом подчинении.
«Ни одна просьба ребенка не должна быть невыполненной»
«Некоторые просьбы детей не должны быть невыполненными» (Подчиняющее суждение – первое, а второе выступает в роли подчиненного)
Логический квадрат: история создания
В двадцатом веке В.Ф. Асмус в своей книге «Логика» охарактеризовал понятие «логический квадрат». Суждения и отношения между ними хорошо укладываются в графическую схему квадрата. С его помощью, по мнению ученого, просто и доступно рассмотреть и понять все виды отношений противоположения и подчинения между суждениями.
Г.И. Челпанов определяет метод логического квадрата как схему, наглядно обрисовывающую все возможные виды взаимоотношений между простейшими умозаключениями.
Таким образом, можно дать определение логическому квадрату в логике, как силлогистической диаграмме, которая является мнемонической основой фиксации отношений между категоричными рассуждениями.
Использование логического квадрата для установки отношений между простыми рассуждениями
Выделяют такие виды взаимоотношений для категоричных умозаключений:
Кратко охарактеризовать различные отношения можно в форме таблицы.
Логический квадрат: примеры видов отношений
Между высказываниями, отличающимися и по качественному, и по количественному признаку.
Между А (общим утвердительным высказыванием) и О (частным отрицательным)
Между І (частным утвердительным) и Е (общим отрицательным)
Между суждениями с одинаковым количеством, но разным качеством
Между А (общим утвердительным) и Е (общим отрицательным)
Между разными по качеству частными умозаключениями
Между І (частным утвердительным) и О (частным отрицательным)
В таком отношении состоят высказывания с одним качественным показателем, но разные по количеству, в котором общее становится подчиняющим, а частное подчиненным
Между А (общим утвердительным) и І (частным утвердительным)
Между Е (общим отрицательным) и О (частным отрицательным)
Определить наглядно и запомнить, какие именно отношения по логическому квадрату возможны, поможет его описание. Итак, углы квадрата соотносят с видами умозаключений, а его диагонали и стороны определяют их взаимоотношения.
Истинные зависимости заключений.
Отношения контрадикторности
Остановимся на самом главном вопросе – установлении истинной зависимости умозаключения по логическому квадрату.
Наиболее четко разграниченное и легко определяемое отношение между высказываниями – это отношение противоречия. Оба таких заключения не могут быть правдивыми или ложными одновременно. Правдивость одного исключает правдивость другого. Такие отношения подпадают под действие закона логики про исключение третьего:
Если умозаключение А, являющееся общим утвердительным, правдиво, то противоречащее ему частное отрицательное высказывание О обязательно неправдиво. То же правило проецируется и для отношений между общим отрицательным рассуждением Е и частным утвердительным І.
Отношения контрарности
Если внимательно рассмотреть логический квадрат, виды отношений между высказываниями в нем не всегда однозначны. Примером такой неопределенности служит отношение противоположности. То есть если взять за основу, что общее утвердительное высказывание А истинно, то противоположное ему общее отрицательное Е будет неправдивым. То же правило работает и наоборот.
Но если исходить из того, что исходное суждение А ложно, то умозаключение Е, противоположное ему, может быть как ложным, так и истинным. Все будет зависеть от формального содержания этих высказываний. Исходя из индивидуальной ситуации, можно составить мнение каким по значению – ложным или истинным – будет суждение, противопоставляющееся первому.
Противные умозаключения одновременно правдивыми не бывают, но оба из них могут быть неправдивыми»
Отношения субконтрарности
Отношения частичного совпадения обратно по истинным значениям отношениям противности.
Отношения подпротивоположности не бывают неправдивыми одновременно, хотя бы одно из высказываний обязательно истинно, а бывает и так, что истинны оба.
То есть если взять за первое частное утвердительное высказывание І и предположить, что оно ложно, то в соответствии с логическим квадратом частично совпадающее с ним частное отрицательное высказывание О в обязательном порядке будет правдивым.
Отношения подчинения
Характерной особенностью этих отношений является то, что истинность подчиненного высказывания зависит от истинности подчиняющего. Ложность общих умозаключений никак не соотносится с правдивостью частных, они могут быть как ложными, так и правдивыми в зависимости от ситуации.
Подводя итог, можно сказать, что знание отношений высказываний по логическому квадрату не только позволяет определить их правдивость или неправдивость, но и прийти к правильным выводам во время своих рассуждений или дискуссии с другими людьми.
Логический квадрат (отношения между суждениями)
Сравнимые (идентичные по материалу) суждения имеют одинаковые субъекты и предикаты, но могут отличаться кванторами и связками. Например, суждения Все школьники изучают математику, Некоторые школьники не изучают математику являются сравнимыми, так как у них совпадают субъекты и предикаты, а кванторы и связки различаются.
Несравнимые суждения имеют разные субъекты и предикаты. Например, суждения: Все школьники изучают математику, Некоторые спортсмены – это олимпийские чемпионы являются несравнимыми, так как субъекты и предикаты у них не совпадают.
Сравнимые суждения бывают, как и понятия, совместимыми и несовместимыми и могут находиться в различных отношениях между собой.
Совместимыми называются суждения, которые могут быть одновременно истинными. Например, суждения Некоторые люди – это спортсмены, Некоторые люди – это не спортсмены являются одновременно истинными и представляют собой совместимые суждения.
Несовместимыми называются суждения, которые не могут быть одновременно истинными: истинность одного из них обязательно означает ложность другого. Например, суждения Все школьники изучают математику, Некоторые школьники не изучают математику не могут быть одновременно истинными и являются несовместимыми (истинность первого суждения с неизбежностью приводит к ложности второго).
Совместимые суждения могут находиться в отношениях равнозначности, подчинения или частичного совпадения.
Равнозначность – это отношение между двумя суждениями, у которых и субъекты, и предикаты, и связки, и кванторы совпадают. Например, суждения Москва является древним городом, Столица России является древним городом находятся в отношении равнозначности.
Подчинение – это отношение между двумя суждениями, у которых предикаты и связки совпадают, а субъекты находятся в отношении вида и рода. Например, суждения Все растения являются живыми организмами, Все цветы (некоторые растения ) являются живыми организмами находятся в отношении подчинения.
Несовместимые суждения могут находиться в отношениях противоположности или противоречия.
Противоположность – это отношение между двумя суждениями, у которых субъекты и предикаты совпадают, а связки различаются. Например, суждения Все люди являются правдивыми и Все люди не являются правдивыми находятся в отношении противоположности. В этом отношении могут быть только общие суждения – общеутвердительные (Д) и общеотрицательные (Е ).
Важным признаком противоположных суждений является то, что они не могут быть одновременно истинными, но могут быть одновременно ложными. Вернемся к приведенным выше суждениям и убедимся в этом: неправда, что все люди являются правдивыми, но также неправда, что все люди не являются правдивыми. Противоположные суждения могут быть одновременно ложными, потому что между ними, обозначающими какие-то крайние варианты, всегда есть третий, средний, промежуточный вариант.
Если этот средний вариант будет истинным, то два крайних окажутся ложными. Между противоположными (крайними) суждениями Все люди являются правдивыми и Все люди не являются правдивыми есть третий, средний вариант Некоторые люди являются правдивыми, а некоторые не являются таковыми, который, будучи истинным суждением, обусловливает одновременную ложность двух крайних противоположных суждений.
Противоречие – это отношение между двумя суждениями, у которых предикаты совпадают, связки различны, а субъекты отличаются своими объемами, т. е. находятся в отношении подчинения (вида и рода). Например, суждения Все люди являются правдивыми и Некоторые люди не являются правдивыми находятся в отношении противоречия.
Важным признаком противоречащих суждений, в отличие от противоположных, является то, что между ними не может быть третьего, среднего, промежуточного варианта. В силу этого два противоречащих суждения не могут быть одновременно истинными и не могут быть одновременно ложными: истинность одного из них обязательно означает ложность другого, и наоборот, ложность одного обусловливает истинность другого. К противоположным и противоречащим суждениям мы еще вернемся, когда речь пойдет о логических законах противоречия и исключенного третьего.
Рассмотренные отношения между простыми сравнимыми суждениями изображаются схематически с помощью логического квадрата (рис. 32), который был разработан еще средневековыми логиками.
Вершины квадрата обозначают четыре вида простых суждений, а его стороны и диагонали – отношения между ними. Так, суждения вида А и вида I, а также суждения вида Е и вида О находятся в отношении подчинения. Суждения вида А и вида Е находятся в отношении противоположности, а суждения вида I и вида О – частичного совпадения. Суждения вида А и вида О, а также суждения вида Е и вида I находятся в отношении противоречия.
Неудивительно, что логический квадрат не изображает отношение равнозначности, потому что в этом отношении находятся одинаковые по виду суждения, т. е. равнозначность – это отношение между суждениями А и А, I и I, Е и Е, О и О.
Чтобы установить отношение между двумя суждениями, достаточно определить, к какому виду относится каждое из них. Например, надо выяснить, в каком отношении находятся суждения Все люди изучали логику и Некоторые люди не изучали логику. Видя, что первое суждение является общеутвердительным (А ), а второе частноотрицательным (О ), мы без труда устанавливаем отношение между ними с помощью логического квадрата – это противоречие.
Суждения Все люди изучали логику (А ) и Некоторые люди изучали логику (I ) находятся в отношении подчинения, а суждения Все люди изучали логику (А ) и Все люди не изучали логику (Е ) находятся в отношении противоположности.
Как уже говорилось, важным свойством суждений (в отличие от понятий) является то, что они могут быть истинными или ложными. Что касается сравнимых суждений, то истинностные значения каждого из них определенным образом связаны с истинностными значениями остальных. Так, если суждение вида А является истинным или ложным, то три других (I, Е, О ), сравнимых с ним суждения (имеющих сходные с ним субъекты и предикаты), в зависимости от этого (от истинности или ложности суждения вида А ) тоже являются истинными или ложными.
Например, если суждение вида А: Все тигры – это хищники – истинно, то суждение вида I. Некоторые тигры – это хищники – также истинно (если все тигры – хищники, то и часть из них, т. е. некоторые тигры, – это тоже хищники); суждение вида Е Все тигры – это не хищники – ложно, и суждение вида О: Некоторые тигры – это не хищники – также является ложным. Таким образом, в данном случае из истинности суждения вида А вытекает истинность суждения вида I и ложность суждений вида Е и вида О (разумеется, речь идет о сравнимых суждениях, т. е. имеющих одинаковые субъекты и предикаты).
Логические отношения между суждениями (логический квадрат)
Основу отношений между суждениями составляет их сходство по смыслу и логическим значениям (истинности и ложности). В силу этого отношения устанавливаются не между любыми, а лишь между сравнимыми, т.е. имеющими общий смысл, суждениями.
Несравнимыми среди простых являются суждения, имеющие:
Таковы, например, два суждения:
«Среди космонавтов есть летчики »; «Среди космонавтов есть женщины ».
Сравнимыми являются суждения с одинаковыми субъектами и предикатами и различающиеся связкой или квантором (суждения одинаковой материи):
Среди сравнимых различают совместимые и несовместимые суждения.
Отношения между простыми суждениями обычно рассматриваются с помощью мнемонической схемы, называемой логическим квадратом.
Логический квадрат
Вершины логического квадрата символизируют простые категорические суждения — А, Е, I, О; стороны и диагонали — отношения между суждениями:
Отношение совместимости
Виды совместимости:
Эквивалентные суждения имеют одинаковые логические характеристики:
С помощью логического квадрата отношения между простыми эквивалентными суждениями не иллюстрируются.
Различия между высказываниями, содержащими простые эквивалентные суждения, проявляются главным образом словесно.
Например, различными словами могут быть выражены кванторы: «некоторые», «иногда», «как правило» и т.п.; использованы синонимы для выражения субъекта или предиката; суждения могут быть сформулированы на различных национальных языках: «Это стол», «It is a table».
Эту особенность эквивалентных суждений надо учитывать при анализе правовых контекстов, при переводах с одного языка на другой, при сравнении словесно различных утверждений в процессе дискуссии.
Частичная совместимость характерна для суждений I и О, которые могут быть одновременно истинными, но не могут быть одновременно ложными.
При ложности одного из них другое будет истинным. Например, при ложности суждения «Некоторые злаки ядовиты» будет истинным суждение «Некоторые злаки не являются ядовитыми».
В то же время при истинности одного из частных суждений другое может быть как истинным, так и ложным.
Подчинение имеет место между суждениями А и I, E и О. Для них характерны следующие две зависимости:
Например, при истинности общего суждения «Всякое правоотношение регулируется нормами права» истинным будет и частное — «Некоторые правоотношения регулируются нормами права».
При истинности суждения «Ни один кооператив не относится к государственным организациям» будет истинным и суждение «Некоторые кооперативы не относятся к государственным организациям».
Например, если неверно утверждение, что «Некоторые хищения совершаются по неосторожности», то тем более будет неверным утверждение «Всякое хищение совершается по неосторожности».
При подчинении остаются неопределенными следующие зависимости:
Отношение несовместимости
Несовместимыми являются суждения
которые одновременно не могут быть истинными.
Виды несовместимости:
Противоположными (контрарными) являются суждения А и Е, которые одновременно
Истинность одного из противоположных суждений определяет ложность другого. Например, истинность суждения «Все офицеры — военнослужащие» определяет ложность суждения «Ни один офицер не является военнослужащим».
При ложности же одного из противоположных суждений другое остается неопределенным — оно может быть как истинным, так и ложным. Так, например, при ложности суждения «Все птицы улетают зимой в теплые края» ему противоположное «Ни одна птица не улетает зимой в теплые края» тоже оказывается ложным. В другом случае при ложности суждения «Ни один судья не является юристом» ему противоположное «Все судьи — юристы» будет истинным.
Для противоречия характерна строгая, или альтернативная несовместимость:
Отношения между такими суждениями регулируются законом исключенного третьего.
Например, если признается истинным суждение «Все принципиальные люди признают свои ошибки», то ложным будет ему альтернативное: «Некоторые принципиальные люди не признают своих ошибок».
Следует отметить, что несовместимые единичные суждения могут находиться лишь в отношении противоречия и не могут находиться в отношении противоположности, ибо каждому отдельному предмету может быть либо присущ, либо не присущ определенный признак.
Например, суждения «Суд вынес обвинительный приговор по делу Л.» и «Суд не вынес обвинительного приговора по делу Л.» находятся в отношении противоречия: если первое суждение истинно, то признается ложность второго, и наоборот.