в каком году провел свой эксперимент с миллер

Эксперимент Миллера — Юри

Эксперимент Миллера — Юри

в каком году провел свой эксперимент с миллер. 350px Miller Urey experiment en.svg. в каком году провел свой эксперимент с миллер фото. в каком году провел свой эксперимент с миллер-350px Miller Urey experiment en.svg. картинка в каком году провел свой эксперимент с миллер. картинка 350px Miller Urey experiment en.svg. Эксперимент Миллера — Юри — известный классический эксперимент, в котором симулировались гипотетические условия раннего периода развития Земли для проверки возможности химической эволюции. Фактически это был экспериментальный тест гипотезы, высказанной ранее Александром Опариным и Джоном Холдейном, о том, что условия, существовавшие на примитивной Земле, способствовали химическим реакциям, которые могли привести к синтезу органических молекул из неорганических. Был проведён в 1953 году Стэнли Миллером и Гарольдом Юри. Аппарат, спроектированный для проведения эксперимента, включал смесь газов, соответствующую тогдашним представлениям о составе атмосферы ранней Земли, и пропускавшиеся через неё электрические разряды.

в каком году провел свой эксперимент с миллер. magnify clip. в каком году провел свой эксперимент с миллер фото. в каком году провел свой эксперимент с миллер-magnify clip. картинка в каком году провел свой эксперимент с миллер. картинка magnify clip. Эксперимент Миллера — Юри — известный классический эксперимент, в котором симулировались гипотетические условия раннего периода развития Земли для проверки возможности химической эволюции. Фактически это был экспериментальный тест гипотезы, высказанной ранее Александром Опариным и Джоном Холдейном, о том, что условия, существовавшие на примитивной Земле, способствовали химическим реакциям, которые могли привести к синтезу органических молекул из неорганических. Был проведён в 1953 году Стэнли Миллером и Гарольдом Юри. Аппарат, спроектированный для проведения эксперимента, включал смесь газов, соответствующую тогдашним представлениям о составе атмосферы ранней Земли, и пропускавшиеся через неё электрические разряды.

Эксперимент Миллера — Юри — известный классический эксперимент, в котором симулировались гипотетические условия раннего периода развития Земли для проверки возможности химической эволюции. Фактически это был экспериментальный тест гипотезы, высказанной ранее Александром Опариным и Джоном Холдейном, о том, что условия, существовавшие на примитивной Земле, способствовали химическим реакциям, которые могли привести к синтезу органических молекул из неорганических. Был проведён в 1953 году Стэнли Миллером и Гарольдом Юри. Аппарат, спроектированный для проведения эксперимента, включал смесь газов, соответствующую тогдашним представлениям о составе атмосферы ранней Земли, и пропускавшиеся через неё электрические разряды.

Эксперимент Миллера — Юри считается одним из важнейших опытов в исследовании происхождения жизни на Земле. Первичный анализ показал наличие в конечной смеси 5 аминокислот. Однако, более точный повторный анализ, опубликованный в 2008 году, показал, что эксперимент привёл к образованию 22 аминокислот. [1]

Содержание

Описание эксперимента

Собранный аппарат представлял собой две колбы, соединённые стеклянными трубками в цикл. Заполнявший систему газ представлял собой смесь из метана (CH4), аммиака (NH3), водорода (H2) и монооксида углерода (CO). Одна колба была наполовину заполнена водой, которая при нагревании испарялась и водные пары попадали в верхнюю колбу, куда с помощью электродов подавались электрические разряды, имитирующие разряды молний на ранней Земле. По охлаждаемой трубке конденсировавшийся пар возвращался в нижнюю колбу, обеспечивая постоянную циркуляцию.

После одной недели непрерывного цикла Миллер и Юри обнаружили, что 10—15 % углерода перешло в органическую форму. Около 2 % углерода оказались в виде аминокислот, причём глицин оказался наиболее распространённой из них. Были также обнаружены сахара, липиды и предшественники нуклеиновых кислот. Эксперимент повторялся несколько раз в 1953—1954 годах. Миллер использовал два варианта аппарата, один из которых, т. н. «вулканический», имел определённое сужение в трубке, что приводило к ускоренному потоку водных паров через разрядную колбу, что, по его мнению, лучше имитировало вулканическую активность. Интересно, что повторный анализ проб Миллера, проведённый через 50 лет профессором и его бывшим сотрудником Джеффри Бейдом (англ. Jeffrey L. Bada ) с использованием современных методов исследования, обнаружил в пробах из «вулканического» аппарата 22 аминокислоты, то есть гораздо больше, чем считалось ранее.

Миллер и Юри основывались в своих экспериментах на представлениях 1950-х годов о возможном составе земной атмосферы. После их экспериментов многие исследователи проводили подобные опыты в различных модификациях. Было показано, что даже небольшие изменения условий процесса и состава газовой смеси (например, добавления азота или кислорода) могли привести к очень существенным изменениям как образующихся органических молекул, так и эффективности самого процесса их синтеза. В настоящее время вопрос о возможном составе первичной земной атмосферы остаётся открытым. Однако, считается, что высокая вулканическая активность того времени способствовала выбросу также таких компонентов как диоксид углерода (CO2), азот, сероводород (H2S), двуокись серы (SO2).

Критика выводов эксперимента

Выводы о возможности химической эволюции, сделанные на основании данного эксперимента, подвергаются критике. Основным аргументом критиков является отсутствие единой хиральности у синтезированных аминокислот. Действительно, полученные аминокислоты представляли собой практически равную смесь стереоизомеров, в то время как для аминокислот биологического происхождения, в том числе входящих в состав белков, весьма характерно преобладание одного из стереоизомеров. По этой причине дальнейший синтез сложных органических веществ, лежащих в основе жизни, непосредственно из полученной смеси затруднён. По мнению критиков, хотя синтез важнейших органических веществ был явно продемонстрирован, далекоидущий вывод о возможности химической эволюции, сделанный непосредственно из этого опыта, не вполне обоснован. [2]

Проблему хиральности пытаются решить иными способами, в частности, через теорию занесения органики метеоритами. [7]

Источник

Эксперимент Миллера—Юри

4,5 миллиарда лет назад, когда возникла Земля, она представляла собой раскаленный безжизненный шар. Сегодня же на ней в изобилии встречаются разные формы жизни. В связи с этим возникает вопрос: какие изменения происходили на нашей планете с момента ее образования и по сегодняшний день, и главное — как на безжизненной Земле возникли молекулы, образующие живые организмы? В 1953 году в Чикагском университете был поставлен эксперимент, сегодня ставший классическим. Он указал ученым путь к ответу на этот фундаментальный вопрос.

В 1953 году Гарольд Юри был уже Нобелевским лауреатом, а Стэнли Миллер — всего лишь его аспирантом. Идея эксперимента Миллера была простой: в полуподвальной лаборатории он воспроизвел атмосферу древнейшей Земли, какой она была по мнению ученых, и со стороны наблюдал за тем, что происходит. При поддержке Юри он собрал простой аппарат из стеклянной сферической колбы и трубок, в котором испарявшиеся вещества циркулировали по замкнутому контуру, охлаждались и вновь поступали в колбу. Миллер заполнил колбу газами, которые, по мнению Юри и русского биохимика Александра Опарина (1894–1980), присутствовали в атмосфере на заре формирования Земли, — водяным паром, водородом, метаном и аммиаком. Чтобы сымитировать солнечное тепло, Миллер нагревал колбу на бунзеновской горелке, а чтобы получить аналог вспышек молний — вставил в стеклянную трубку два электрода. По его замыслу, материал, испаряясь из колбы, должен был поступать в трубку и подвергаться воздействию электрического искрового разряда. После этого материал должен был охлаждаться и возвращаться в колбу, где весь цикл начинался вновь.

После двух недель работы системы жидкость в колбе стала приобретать темный красно-коричневый оттенок. Миллер провел анализ этой жидкости и обнаружил в ней аминокислоты — основные структурные единицы белков. Так у ученых появилась возможность изучать происхождение жизни с точки зрения основных химических процессов. Начиная с 1953 года с помощью усложненных вариантов эксперимента Миллера—Юри, как стали его с тех пор называть, были получены все виды биологических молекул — включая сложные белки, необходимые для клеточного метаболизма, и жировые молекулы, называемые липидами и образующие мембраны клетки. По-видимому, тот же результат мог бы быть получен и при использовании вместо электрических разрядов других источников энергии — например, тепла и ультрафиолетового излучения. Так что почти не остается сомнений в том, что все компоненты, необходимые для сборки клетки, могли быть получены в химических реакциях, происходивших на Земле в древнейшие времена.

Ценность эксперимента Миллера—Юри состоит в том, что он показал, что вспышки молний в атмосфере древней Земли за несколько сот миллионов лет могли вызвать образование органических молекул, попадавших вместе с дождем в «первичный бульон» (см. также Теория эволюции). Не установленные до сих пор химические реакции, происходящие в этом «бульоне», могли привести к образованию первых живых клеток. В последние годы возникают серьезные вопросы по поводу того, как развивались эти события, в частности подвергается сомнению присутствие аммиака в атмосфере древнейшей Земли. Кроме того, предложено несколько альтернативных сценариев, которые могли привести к образованию первой клетки, начиная от ферментативной активности биохимической молекулы РНК и кончая простыми химическими процессами в океанских глубинах. Некоторые ученые даже предполагают, что происхождение жизни имеет отношение к новой науке о сложных адаптивных системах и что не исключено, что жизнь — это неожиданное свойство материи, возникающие скачкообразно в определенный момент и отсутствующее у ее составных частей. В наши дни эта область знаний переживает период бурного развития, в ней появляются и проходят проверку различные гипотезы. Из этого водоворота гипотез должна появиться теория о том, как же возникли наши самые далекие предки.

в каком году провел свой эксперимент с миллер. miller stanley lloyd 160. в каком году провел свой эксперимент с миллер фото. в каком году провел свой эксперимент с миллер-miller stanley lloyd 160. картинка в каком году провел свой эксперимент с миллер. картинка miller stanley lloyd 160. Эксперимент Миллера — Юри — известный классический эксперимент, в котором симулировались гипотетические условия раннего периода развития Земли для проверки возможности химической эволюции. Фактически это был экспериментальный тест гипотезы, высказанной ранее Александром Опариным и Джоном Холдейном, о том, что условия, существовавшие на примитивной Земле, способствовали химическим реакциям, которые могли привести к синтезу органических молекул из неорганических. Был проведён в 1953 году Стэнли Миллером и Гарольдом Юри. Аппарат, спроектированный для проведения эксперимента, включал смесь газов, соответствующую тогдашним представлениям о составе атмосферы ранней Земли, и пропускавшиеся через неё электрические разряды.

Американский химик. Родился в Окленде, штат Калифорния, получил образование в Калифорнийском университете в Беркли и в Чикагском университете. Начиная с 1960 года профессиональная деятельность Миллера была в основном связана с Калифорнийским университетом в Сан-Диего, где он занимал должность профессора химии. За работу по проведению эксперимента Миллера—Юри был удостоен звания научного сотрудника в Калифорнийском технологическом институте.

в каком году провел свой эксперимент с миллер. urey harold clayton 160. в каком году провел свой эксперимент с миллер фото. в каком году провел свой эксперимент с миллер-urey harold clayton 160. картинка в каком году провел свой эксперимент с миллер. картинка urey harold clayton 160. Эксперимент Миллера — Юри — известный классический эксперимент, в котором симулировались гипотетические условия раннего периода развития Земли для проверки возможности химической эволюции. Фактически это был экспериментальный тест гипотезы, высказанной ранее Александром Опариным и Джоном Холдейном, о том, что условия, существовавшие на примитивной Земле, способствовали химическим реакциям, которые могли привести к синтезу органических молекул из неорганических. Был проведён в 1953 году Стэнли Миллером и Гарольдом Юри. Аппарат, спроектированный для проведения эксперимента, включал смесь газов, соответствующую тогдашним представлениям о составе атмосферы ранней Земли, и пропускавшиеся через неё электрические разряды.

Американский химик. Родился в Уолкертоне, штат Индиана, в семье священника. Изучал зоологию в университете штата Монтана и получил докторскую степень по химии в Калифорнийском университете в Беркли. Впервые применил физические методы в химии и в 1934 году был удостоен Нобелевской премии в области химии за открытие дейтерия — тяжелого изотопа водорода. Позднее его деятельность была связана в основном с изучением различий в скорости химических реакций при использовании разных изотопов.

Источник

Эксперимент Миллера и Юри, в чем он состоял, значение и выводы

Миллер и Юри эксперимент он заключается в получении органических молекул с использованием более простых неорганических молекул в качестве исходного материала при определенных условиях. Целью эксперимента было воссоздание исконных условий планеты Земля.

Целью этого отдыха было проверить возможное происхождение биомолекул. Действительно, моделирование позволило получить молекулы, такие как аминокислоты и нуклеиновые кислоты, необходимые для живых организмов..

в каком году провел свой эксперимент с миллер. experimento de miller y urey en qu consisti importancia y conclusiones. в каком году провел свой эксперимент с миллер фото. в каком году провел свой эксперимент с миллер-experimento de miller y urey en qu consisti importancia y conclusiones. картинка в каком году провел свой эксперимент с миллер. картинка experimento de miller y urey en qu consisti importancia y conclusiones. Эксперимент Миллера — Юри — известный классический эксперимент, в котором симулировались гипотетические условия раннего периода развития Земли для проверки возможности химической эволюции. Фактически это был экспериментальный тест гипотезы, высказанной ранее Александром Опариным и Джоном Холдейном, о том, что условия, существовавшие на примитивной Земле, способствовали химическим реакциям, которые могли привести к синтезу органических молекул из неорганических. Был проведён в 1953 году Стэнли Миллером и Гарольдом Юри. Аппарат, спроектированный для проведения эксперимента, включал смесь газов, соответствующую тогдашним представлениям о составе атмосферы ранней Земли, и пропускавшиеся через неё электрические разряды.

До Миллера и Юри: историческая перспектива

Объяснение происхождения жизни всегда было предметом споров и споров. Во времена Ренессанса считалось, что жизнь возникла внезапно и из ничего. Эта гипотеза известна как спонтанное поколение.

Впоследствии критическое мышление ученых начало прорастать, и гипотеза была отвергнута. Однако вопрос, поставленный в начале, оставался размытым.

В 1920-х годах ученые того времени использовали термин «первичный суп» для описания гипотетической океанической среды, в которой, вероятно, возникла жизнь..

Проблема заключалась в том, чтобы предложить логическое происхождение биомолекул, которые делают возможной жизнь (углеводы, белки, липиды и нуклеиновые кислоты) из неорганических молекул.

Уже в 50-х годах, до экспериментов Миллера и Юри, группе ученых удалось синтезировать муравьиную кислоту из углекислого газа. Это грозное открытие было опубликовано в престижном журнале наука.

Из чего он состоит??

К 1952 году Стэнли Миллер и Гарольд Юри разработали экспериментальный протокол для имитации примитивной среды в гениальной системе стеклянных трубок и электродов, созданных ими самими..

Система состояла из колбы с водой, аналогичной первобытному океану. С этой колбой был связан другой компонент с предполагаемой пребиотической средой.

Миллер и Юри использовали следующие пропорции, чтобы воссоздать его: 200 мм рт.ст. метана (СН4), 100 мм рт. Ст. Водорода (Н2), 200 мм рт.ст. аммиака (NH3) и 200 мл воды (ч2O).

Система также имела конденсатор, задачей которого было охлаждать газы, как обычно делал дождь. Кроме того, они объединили два электрода, способных генерировать высокое напряжение, с целью создания высокореактивных молекул, способствующих образованию сложных молекул..

Эти искры стремились симулировать возможные лучи и молнии пребиотической среды. Устройство заканчивалось U-образной частью, которая препятствовала распространению пара в противоположном направлении..

результаты

Первые дни смесь эксперимента была абсолютно чистой. В течение дня смесь начала приобретать красноватый цвет. В конце эксперимента эта жидкость приобрела интенсивный красный цвет, почти коричневый, и ее вязкость заметно возросла.

Эксперимент достиг своей основной цели, и сложные органические молекулы были получены из гипотетических компонентов первичной атмосферы (метан, аммиак, водород и водяной пар).

Исследователям удалось идентифицировать следы аминокислот, таких как глицин, аланин, аспарагиновая кислота и амино-н-масляная кислота, которые являются основными компонентами белков..

Успех этого эксперимента помог другим исследователям продолжить изучение происхождения органических молекул. Добавив модификации к протоколу Миллера и Юри, нам удалось воссоздать двадцать известных аминокислот.

Также было возможно генерировать нуклеотиды, которые являются основными строительными блоками генетического материала: ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота).

важность

Эксперимент экспериментально доказал появление органических молекул и предлагает довольно привлекательный сценарий для объяснения возможного происхождения жизни..

Однако возникает внутренняя дилемма, поскольку молекула ДНК необходима для синтеза белков и РНК. Напомним, что центральная догма биологии предполагает, что ДНК транскрибируется в РНК, и это транскрибируется в белки (исключения известны из этой предпосылки, такие как ретровирусы).

Итак, как эти биомолекулы образуются из их мономеров (аминокислот и нуклеотидов) без присутствия ДНК?

К счастью, обнаружение рибозимов позволило прояснить этот очевидный парадокс. Эти молекулы являются каталитической РНК. Это решает проблему, поскольку одна и та же молекула может катализировать и нести генетическую информацию. Вот почему существует гипотеза о примитивном мире РНК..

Эта же РНК может реплицировать себя и участвовать в образовании белков. ДНК может прийти во вторую очередь и быть выбрана в качестве молекулы наследования на РНК.

Это может произойти по нескольким причинам, главным образом потому, что ДНК менее реактивна и более стабильна, чем РНК..

выводы

Основной вывод этого экспериментального плана может быть обобщен следующим утверждением: сложные органические молекулы могут происходить из более простых неорганических молекул, если они подвергаются воздействию условий предполагаемой примитивной атмосферы, таких как высокое напряжение, ультрафиолетовое излучение и низкое содержание кислорода.

Кроме того, были найдены некоторые неорганические молекулы, которые являются идеальными кандидатами для образования определенных аминокислот и нуклеотидов..

Эксперимент позволяет нам наблюдать, как могло происходить создание блоков живых организмов, предполагая, что первобытная среда соответствовала описанным выводам..

Весьма вероятно, что в мире до появления жизни компоненты были более многочисленными и сложными, чем те, которые использовал Миллер..

Хотя кажется невероятным предложить происхождение жизни, основанное на таких простых молекулах, Миллер мог доказать это с помощью тонкого и изобретательного эксперимента..

Критики к эксперименту

Есть все еще дебаты и противоречия о результатах этого эксперимента и как возникли первые клетки.

В настоящее время считается, что компоненты, которые Миллер использовал для формирования примитивной атмосферы, не соответствуют ее реальности. Более современное видение дает вулканам важную роль и предполагает, что газы, которые эти структуры производят минералы.

Ключевой момент эксперимента Миллера также был поставлен под сомнение. Некоторые исследователи считают, что атмосфера мало повлияла на создание живых организмов..

Источник

Опыты Миллера по созданию жизни в пробирке были намного успешнее, чем полагал он сам

Происхождение жизни на Земле – одна из самых волнующих загадок современной науки. На вопрос, почему эта жизнь в конце концов зародилась, ответить, судя по всему, предстоит астрофизикам. Рассказать же о процессе природного синтеза первых простейших биогенных молекул способны химики.

Эксперимент по воссозданию земных условий, приведших к синтезу первых органических молекул, ставших в итоге кирпичиками мироздания, был поставлен Стэнли Миллером более полувека назад. О некоторых его результатах мы смогли узнать только сегодня.

Публикация в журнале Science описывает данные, ускользнувшие от ученых 50 с лишним лет назад.

Тогда нобелевский лауреат Гарольд Юри, получивший престижную премию за открытие тяжелой воды и увлекшийся впоследствии проблемами космохимии, вдохновил одного из своих подопечных, Стэнли Миллера, теорией доисторического абиотического супа, из которого под влиянием внешних факторов получились первые органические молекулы.

в каком году провел свой эксперимент с миллер. Miller. в каком году провел свой эксперимент с миллер фото. в каком году провел свой эксперимент с миллер-Miller. картинка в каком году провел свой эксперимент с миллер. картинка Miller. Эксперимент Миллера — Юри — известный классический эксперимент, в котором симулировались гипотетические условия раннего периода развития Земли для проверки возможности химической эволюции. Фактически это был экспериментальный тест гипотезы, высказанной ранее Александром Опариным и Джоном Холдейном, о том, что условия, существовавшие на примитивной Земле, способствовали химическим реакциям, которые могли привести к синтезу органических молекул из неорганических. Был проведён в 1953 году Стэнли Миллером и Гарольдом Юри. Аппарат, спроектированный для проведения эксперимента, включал смесь газов, соответствующую тогдашним представлениям о составе атмосферы ранней Земли, и пропускавшиеся через неё электрические разряды.

Согласно представлениям того времени, земная атмосфера была сильно отличной от нынешней. Она содержала много метана и аммиака, паров воды и была практически полностью лишена кислорода, что облегчало доступ ультрафиолетового излучения Солнца к поверхности планеты. Кроме того, тогда гораздо ярче проявляла себя вулканическая активность, и грозы, сопровождаемые сильнейшими электрическим разрядами, были нередки. Такие условия как нельзя лучше подходят для многих реакций органического синтеза, что и натолкнуло ученых на мысли о биогенном будущем подобных реакций.

Для того чтобы воссоздать подобные реакции в лаборатории в условиях, приближенных к тем, что царили на Земле миллиарды лет назад, Миллер, работавший тогда в Чикагском университете, разработал оригинальный химический прибор. Он состоит из большой реакционной колбы, содержащей пары метана, аммиака и водорода, в которую снизу нагнетается горячий водяной пар. Сверху же расположены вольфрамовые электроды, генерирующие искровой разряд. Моделируя таким образом условия грозы в окрестностях действующего прибрежного вулкана, Миллер надеялся получить в ходе синтеза биологические молекулы.

Ему это удалось. Опубликовав в мае 1953 года статью в журнале Science, Миллер в одночасье стал знаменит, а теория абиотического супа получила почти всеобщее признание.

После окончания синтеза Миллер сумел обнаружить в реакционной колбе пять аминокислот – основных строительных блоков всех белков: аспарагиновую кислоту, глицин, альфа-аминомасляную кислоту и два оптических изомера аланина.

Два года спустя Миллер повторил свои эксперименты в аппаратах с измененной конфигурацией. Один из них подразумевал использование струйного насоса с соплом, с силой вталкивающим насыщенный водяной пар в реакционную колбу. Таким образом Миллер надеялся сделать условия эксперимента максимально приближенными к условиям извержения подводного вулкана в грозу. Третий же аппарат вместо искрового разряда давал тлеющий. Ученый сумел показать наличие нескольких дополнительных аминокислот в смеси продуктов реакции, а также продемонстрировал наличие нескольких дополнительных карбоновых и гидроксикилот.

Однако в те годы Миллеру приходилось полагаться на очень примитивное по сегодняшним меркам аналитическое оборудование. Потому он с группой коллег повторил свои опыты в 1972 году с использованием оборудования существенно более совершенного. Правда, тогда Миллер провел синтез в приборе, разработанном еще для публикации в 1953 году, сочтя, что аппараты с соплом и тлеющим разрядом особой продуктивностью не отличаются.

в каком году провел свой эксперимент с миллер. APPARATUS. в каком году провел свой эксперимент с миллер фото. в каком году провел свой эксперимент с миллер-APPARATUS. картинка в каком году провел свой эксперимент с миллер. картинка APPARATUS. Эксперимент Миллера — Юри — известный классический эксперимент, в котором симулировались гипотетические условия раннего периода развития Земли для проверки возможности химической эволюции. Фактически это был экспериментальный тест гипотезы, высказанной ранее Александром Опариным и Джоном Холдейном, о том, что условия, существовавшие на примитивной Земле, способствовали химическим реакциям, которые могли привести к синтезу органических молекул из неорганических. Был проведён в 1953 году Стэнли Миллером и Гарольдом Юри. Аппарат, спроектированный для проведения эксперимента, включал смесь газов, соответствующую тогдашним представлениям о составе атмосферы ранней Земли, и пропускавшиеся через неё электрические разряды.

Стэнли Миллер умер 20 мая 2007 года. Разбирая его дневники и архивы, близкие и коллеги обнаружили записи, относящиеся к работам 50-х годов, а также несколько склянок с подписями.

Подписи указали на то, что содержимое склянок – не что иное, как продукты синтеза в аппаратах Миллера, сохраненные автором в неприкосновенном виде.

Ими заинтересовался Джеффри Бада, выпускник химической школы Миллера, ныне тоже уже старичок, работающий в Институте океанологии при Калифорнийском университете в Сан-Диего.

Согласно записям Миллера, никогда прежде не публиковавшимся, синтез в аппарате с соплом давал несколько больший выход продуктов. Именно эти образцы и заинтересовали Баду и его коллег, авторов свежей публикации, в распоряжении которых оказались самые совершенные инструментальные методы.

Оказалось, что смесь продуктов содержала вовсе не пять аминокислот, а двадцать две! Плюс пять молекул аминов, которые Миллер просто не мог идентифицировать полвека назад.

Изучив аналогичным методом остальные склянки, ученые убедились, что в результате этих экспериментов набор продуктов синтеза был менее разнообразен.

Впрочем, сегодня геохимики утверждают, что атмосфера Земли никогда не была такой, какой её считали 50 лет назад. Она была менее основной и менее восстановительной, потому на опыты Миллера нельзя полагаться как на эксперимент, доказывающий теорию абиотического супа. В то же самое время авторы публикации уверены, что если на всей Земле и не существовало подходящих условий, они, несомненно, должны были сопровождать хотя бы точечные извержения вулканов, продолжительность которых миллиарды лет назад позволяла приобщиться к делу синтеза первых органических молекул и грозам. Эти молекулы могли собираться в лагунах вулканических островов, где морской прилив и солнечный ультрафиолет довершали дело конденсации альдегидов, кетонов и других молекул в длинные полимерные цепочки.

Популярность теории древнего абиотического супа в связи с работами Миллера позволила ей попасть даже в школьный курс природоведения, однако современные свидетельства говорят в пользу того, что жизнь изначально зародилась все же не на поверхности планеты. Здешние переменчивые условия были слишком экстремальны даже для того, чтобы жизнь, вопреки всему зародившаяся в маленьких вулканических островах стабильности, распространилась, развилась в современные формы.

Подлинная стабильность в то время существовала только на дне океана, где в зонах срединных океанических хребтов тепло недр Земли неспешно питало базовые химические реакции.

Срединные океанические хребты были открыты практически одновременно с опытами Миллера, а детальное их исследование – это вообще достижения последних десяти-двадцати лет, сделавших доступными исследования морского дна с помощью глубоководных обитаемых аппаратов. Появись такие аппараты раньше лет на тридцать – и теория абиотического супа могла быть и вовсе не выдвинута.

Повторить опыты Миллера в условиях, больше напоминающих современные представления о далёком прошлом Земли, ещё предстоит. И не исключено, что кому-то из нынешних аспирантов химических факультетов суждено стать не менее знаменитым, чем Стэнли Миллеру.

Источник

Эксперимент Миллера

в каком году провел свой эксперимент с миллер. 350px Miller Urey experiment en.svg. в каком году провел свой эксперимент с миллер фото. в каком году провел свой эксперимент с миллер-350px Miller Urey experiment en.svg. картинка в каком году провел свой эксперимент с миллер. картинка 350px Miller Urey experiment en.svg. Эксперимент Миллера — Юри — известный классический эксперимент, в котором симулировались гипотетические условия раннего периода развития Земли для проверки возможности химической эволюции. Фактически это был экспериментальный тест гипотезы, высказанной ранее Александром Опариным и Джоном Холдейном, о том, что условия, существовавшие на примитивной Земле, способствовали химическим реакциям, которые могли привести к синтезу органических молекул из неорганических. Был проведён в 1953 году Стэнли Миллером и Гарольдом Юри. Аппарат, спроектированный для проведения эксперимента, включал смесь газов, соответствующую тогдашним представлениям о составе атмосферы ранней Земли, и пропускавшиеся через неё электрические разряды.

в каком году провел свой эксперимент с миллер. magnify clip. в каком году провел свой эксперимент с миллер фото. в каком году провел свой эксперимент с миллер-magnify clip. картинка в каком году провел свой эксперимент с миллер. картинка magnify clip. Эксперимент Миллера — Юри — известный классический эксперимент, в котором симулировались гипотетические условия раннего периода развития Земли для проверки возможности химической эволюции. Фактически это был экспериментальный тест гипотезы, высказанной ранее Александром Опариным и Джоном Холдейном, о том, что условия, существовавшие на примитивной Земле, способствовали химическим реакциям, которые могли привести к синтезу органических молекул из неорганических. Был проведён в 1953 году Стэнли Миллером и Гарольдом Юри. Аппарат, спроектированный для проведения эксперимента, включал смесь газов, соответствующую тогдашним представлениям о составе атмосферы ранней Земли, и пропускавшиеся через неё электрические разряды.

Эксперимент Миллера — Юри — известный классический эксперимент, в котором симулировались гипотетические условия раннего периода развития Земли для проверки возможности химической эволюции. Фактически это был экспериментальный тест гипотезы, высказанной ранее Александром Опариным и Джоном Холдейном, о том, что условия, существовавшие на примитивной Земле, способствовали химическим реакциям, которые могли привести к синтезу органических молекул из неорганических. [источник не указан 763 дня] Был проведён в 1953 году Стэнли Миллером и Гарольдом Юри. Аппарат, спроектированный для проведения эксперимента, включал смесь газов, соответствующую тогдашним представлениям о составе атмосферы ранней Земли, и пропускавшиеся через неё электрические разряды.

Эксперимент Миллера — Юри считается одним из важнейших опытов в исследовании происхождения жизни на Земле. Первичный анализ показал наличие в конечной смеси 5 аминокислот. Однако более точный повторный анализ, опубликованный в 2008 году, показал, что эксперимент привёл к образованию 22 аминокислот. [1]

Содержание

Описание эксперимента

Собранный аппарат представлял собой две колбы, соединённые стеклянными трубками в цикл. Заполнявший систему газ представлял собой смесь из метана (CH4), аммиака (NH3), водорода (H2) и монооксида углерода (CO). Одна колба была наполовину заполнена водой, которая при нагревании испарялась и водные пары попадали в верхнюю колбу, куда с помощью электродов подавались электрические разряды, имитирующие разряды молний на ранней Земле. По охлаждаемой трубке конденсировавшийся пар возвращался в нижнюю колбу, обеспечивая постоянную циркуляцию.

После одной недели непрерывного цикла Миллер и Юри обнаружили, что 10—15 % углерода перешло в органическую форму. Около 2 % углерода оказались в виде аминокислот, причём глицин оказался наиболее распространённой из них. Были также обнаружены сахара, липиды и предшественники нуклеиновых кислот. Эксперимент повторялся несколько раз в 1953—1954 годах. Миллер использовал два варианта аппарата, один из которых, т. н. «вулканический», имел определённое сужение в трубке, что приводило к ускоренному потоку водных паров через разрядную колбу, что, по его мнению, лучше имитировало вулканическую активность. Интересно, что повторный анализ проб Миллера, проведённый через 50 лет профессором и его бывшим сотрудником Джеффри Бейдом (англ. Jeffrey L. Bada ) с использованием современных методов исследования, обнаружил в пробах из «вулканического» аппарата 22 аминокислоты, то есть гораздо больше, чем считалось ранее.

Миллер и Юри основывались в своих экспериментах на представлениях 1950-х годов о возможном составе земной атмосферы. После их экспериментов многие исследователи проводили подобные опыты в различных модификациях. Было показано, что даже небольшие изменения условий процесса и состава газовой смеси (например, добавления азота или кислорода) могли привести к очень существенным изменениям как образующихся органических молекул, так и эффективности самого процесса их синтеза. В настоящее время вопрос о возможном составе первичной земной атмосферы остаётся открытым. Однако, считается, что высокая вулканическая активность того времени способствовала выбросу также таких компонентов как диоксид углерода (CO2), азот, сероводород (H2S), двуокись серы (SO2).

Критика выводов эксперимента

Выводы о возможности химической эволюции, сделанные на основании данного эксперимента, подвергаются критике.

Как становится понятным, одним из основных аргументов критиков является отсутствие единой хиральности у синтезированных аминокислот. Действительно, полученные аминокислоты представляли собой практически равную смесь стереоизомеров, в то время как для аминокислот биологического происхождения, в том числе входящих в состав белков, весьма характерно преобладание одного из стереоизомеров. По этой причине дальнейший синтез сложных органических веществ, лежащих в основе жизни, непосредственно из полученной смеси затруднён. По мнению критиков, хотя синтез важнейших органических веществ был явно продемонстрирован, далекоидущий вывод о возможности химической эволюции, сделанный непосредственно из этого опыта, не вполне обоснован. [источник не указан 431 день]

Проблему хиральности пытаются решить иными способами, в частности, через теорию занесения органики метеоритами. [6]

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *