в каком году перельман доказал гипотезу пуанкаре
Теорема Пуанкаре простыми словами (6 фото)
Доказательство этой гипотезы российским математиком Григорием Перельманом привело к некоторым очень интересным выводам с точки зрения нашего понимания мира.
Жюль Анри Пуанкаре (1854-1912) возглавлял Парижскую академию наук и был избран в научные академии 30 стран мира. Он имел масштаб Леонардо: его интересы охватывали физику, механику, астрономию, философию. Математики же всего мира до сих пор говорят, что только два человека в истории по-настоящему знали эту науку: немец Давид Гилберт (1862-1943) и Пуанкаре.
В 1904 году учёный опубликовал работу, содержавшую среди прочего предположение, получившее название теорема Пуанкаре. Поиск доказательства истинности этого утверждения занял около века.
Основатель топологии
Математический гений Пуанкаре впечатляет количеством разделов науки, где им были разработаны теоретические основы различных процессов и явлений. Во времена, когда ученые совершали прорывы в новые миры космоса и в глубины атома, было не обойтись без единой основы общей теории мироздания. Такой базой стали ранее неизвестные отрасли математики.
Пуанкаре искал новый взгляд на небесную механику, он создал качественную теорию дифференциальных уравнений, теорию автоморфных функций. Исследования ученого стали основой специальной теории относительности Эйнштейна. Теорема Пуанкаре о возвращении говорила среди прочего о том, что понять свойства глобальных объектов или явлений можно исследуя составляющие их частицы и элементы. Это дало мощный толчок научным поискам в физике, химии, астрономии и т.д.
Развитием неэвклидовой геометрии стало возникновение топологии – отрасли математики, которую называли геометрией размещения. Она изучает пространственные взаимоотношения точек, линий, плоскостей, тел и т.д. без учета их метрических свойств. Теорема Пуанкаре, ставшая символом самых трудноразрешимых задач в науке, возникла именно в недрах топологии.
Одна из семи задач тысячелетия
• Равенство классов P и NP (о соответствии алгоритмов решения задачи и методов проверки их правильности).
• Гипотеза Ходжа (о связи объектов и их подобия, составленного для их изучения из «кирпичиков» с определенными свойствами).
• Гипотеза Пуанкаре (всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере).
• Гипотеза Римана (о закономерности размещения простых чисел).
• Теория Янга — Миллса (уравнения из области элементарных частиц, описывающие различные виды взаимодействий).
• Существование и гладкость решений уравнений Навье — Стокса (описывают турбулентность течений воздуха и жидкостей).
• Гипотеза Бёрча — Свиннертон-Дайера (об уравнениях, описывающих эллиптические кривые).
Каждая эта проблема имела очень долгую историю, поиски их решения приводили к возникновению целых новых научных направлений, но единственно правильные ответы на поставленные вопросы не находились. Понимающие люди говорили, что деньги фонда Клэя в безопасности, но так было лишь до 2002 года – появился тот, кто доказал теорему Пуанкаре. Правда, деньги он не взял.
Классическая формулировка
Гипотеза, для которой найдено подтверждение, становится теоремой, имеющей корректное доказательство. Именно это произошло с высказанным Пуанкаре предположением о свойствах трехмерных сфер. В более общем виде этот постулат говорил о гомеоморфности всякого многообразия размерности n и сферы размерности n как необходимом условии их гомотопической эквивалентности. Знаменитая теперь теорема Пуанкаре относится к варианту, когда n=3. Именно в трехмерном пространстве математиков ждали затруднения, для других случаев доказательства были найдены быстрее.
Чтобы хоть немного постичь смысл теоремы Пуанкаре, не обойтись без знакомства с основными понятиями топологии.
Гомеоморфизм
Топология, говоря о гомеоморфизме, определяет его как взаимно-однозначное соответствие между точками одной и другой фигуры, в некотором смысле неотличимость. Неподготовленному сложно даётся теорема Пуанкаре. Для чайников можно привести самый популярный пример гомеоморфных фигур – шар и куб, также гомеоморфны бублик и кружка, но не кружка и куб. Фигуры гомеоморфны, если одну фигуру можно получить произвольной деформацией из другой, причем это преобразование ограничено некоторыми свойствами поверхности фигуры: её нельзя рвать, прокалывать, разрезать.
Если куб раздуть, он легко может стать шаром, если шар примять встречными движениями, можно получить кубик. Наличие дырки у бублика и дырки, образованной ручкой у кружки, делает их гомеоморфными, та же дырка делает невозможным превращение кружки в шар или куб.
Связность
Дырка – важное понятие, определяющее свойства объекта, но категория совершенно не математическая. Было введено понятие связности. Его содержат многие топологические постулаты, в том числе и теорема Пуанкаре. Простыми словами можно говорить так: если поверхность шара обернуть петлей из резиновой ленты, она, сжимаясь, соскользнёт. Этого не произойдет, если имеется отверстие, как у тора-бублика, сквозь которое можно продеть эту ленту. Таким образом определяется главный признак сходства или отличия объектов.
Многообразие
Самая адекватная аналогия этих категорий – поверхность земли. Изображение её поверхности представляет собой карты отдельных её районов, собранные в атлас. На глобусе эти изображения обретают форму шара, который относительно пространства Вселенной превращается в точку.
Трехмерная сфера
Математики приводят ещё и такое описание трехмерной сферы: допустим, что к нашему привычному пространству, считаемому неограниченным и определяемому тремя координатами (X, Y, Z), добавлена точка (на бесконечности) таким образом, что в неё всегда можно попасть, двигаясь в любом направлении по прямой линии, т.е. любая прямая в этом пространстве становится окружностью. Говорят, что есть люди, которые могут это вообразить и спокойно ориентироваться в таком мире.
Для них обычное дело – трехмерный тор. Такой объект можно получить путем дважды повторенного совмещения в одну точку двух, расположенных на противоположных (например, правой и левой, верхней и нижней) гранях куба. Чтобы попытаться представить трехмерный тор с привычных нам позиций, следует провести абсолютно нереальный эксперимент: необходимо выбрать направления, взаимно перпендикулярные, – вверх, влево и вперед – и начать двигаться в любом из них по прямой. Через какое-то (конечное) время с противоположного направления мы вернемся в исходную точку.
Такое геометрическое тело имеет принципиальное значение, если хотеть понять, что такое теорема Пуанкаре. Доказательство Перельмана сводится к обоснованию существования в трехмерном пространстве лишь одного односвязного компактного многообразия – 3-сферы, другие, как 3-тор, неодносвязные.
Долгий путь к истине
Прошло более полувека, прежде чем появилось решение теоремы Пуанкаре для больших чем 3 размерностей. Стивен Смэйл (род. 1930), Джон Роберт Стэллингс (1935-2008), Эрик Кристофер Зиман (род. 1925) нашли решение для n, равного 5, 6 и равного или больше 7. Только в 1982 году Майкл Фридман (род. 1951) был удостоен высшей математической награды – Филдсовской премии – за доказательство теоремы Пуанкаре для более сложного случая: когда n=4.
Обыкновенный гений
Многие специалисты, особенно российские, отмечают что Григорий Яковлевич был подготовлен к невиданному взлету высоким классом ленинградской школы геометров, какую он прошел на мехмате Ленинградского госуниверситета и в аспирантуре при Математическом институте им. В.А. Стеклова. Став кандидатом наук, он стал работать в нем.
Трудное время 90-х заставило молодого ученого уехать на работу в США. Те, кто знал его тогда, отмечали его аскетизм в быту, увлечённость работой, прекрасную подготовку и высокую эрудицию, которые и стали залогом того, что Перельман доказал теорему Пуанкаре. Вплотную он занялся этой проблемой после возвращения в Санкт-Петербург в 1996 году, но начал думать над ней еще в США.
Верное направление
Григорий Яковлевич отмечает, что его всегда увлекали сложные проблемы, такие как теорема Пуанкаре. Доказательство Перельман стал искать в направлении, вынесенном из беседы с профессором Колумбийского университета Ричардом Гамильтоном (род. 1943). Во время пребывания в США он специально ездил из другого города на лекции этого неординарного ученого. Перельман отмечает прекрасное доброжелательное отношение профессора к молодому математику из России. В их разговоре Гамильтон упомянул о потоках Риччи – системе дифференциальных уравнений – как способе решения теорем геометризации.
Впоследствии Перельман пытался связаться с Гамильтоном и обсудить ход работы над задачей, но не получил ответа. Долгое время после возвращения на родину Григорий Яковлевич провел наедине с труднейшей задачей, которой была теорема Пуанкаре. Доказательство Перельмана – итог огромных усилий и самоотречения.
Гамильтон пришел в тупик, когда увидел, что при преобразованиях кривых под действием потоков Риччи образуются сингулярные (обращающиеся в бесконечность) зоны, которые не предусматривала теорема Пуанкаре. Простыми словами, Перельману удалось нейтрализовать образование таких зон, и многообразие благополучно превратилось в сферу.
Потоки Риччи
Односвязное 3-мерное многообразие наделяется геометрией, вводятся метрические элементы с расстоянием и углами. Легче понять это на одномерных многообразиях. Гладкая замкнутая кривая на эвклидовой плоскости наделяется в каждой точке касательным вектором единичной длины. При обходе кривой вектор поворачивается с определенной угловой скоростью, которая определяет кривизну. Где линия изогнута сильнее, кривизна больше. Кривизна положительна, если вектор скорости повернут в сторону внутренней части плоскости, которую делит наша линия, и отрицательна, если повернут вовне. В местах перегиба кривизна равна 0.
Нет пророка…
Он взошел на свой Эверест, каким признается математиками теорема Пуанкаре. Доказательство Перельман выложил в Интернет в виде трех небольших статей. Они немедленно вызвали ажиотаж, хотя русский математик не пошел положенной дорогой – публикация в специализированном журнале в сопровождении профессиональных рецензий. Григорий Яковлевич в течение месяца разъяснял в университетах США суть своего открытия, но число до конца понявших ход его мысли увеличивалось очень медленно.
Лишь через четыре года появилось заключение самых больших авторитетов: доказательства русского математика корректны, первая из проблем тысячелетия решена.
Эпоха соцсетей
Ему пришлось пережить ажиотаж и хамство в соцсетях, молчание тех, кого он уважал, и крики других, учивших его жизни. Энергичные китайцы сначала оценили его вклад в решение проблемы в 25 %, себе и другим насчитав 80! Потом вроде бы пришло мировое признание, но выдержать такое дано не каждому.
Сказка о математике Григории Перельмане, который решил одну из семи задач тысячелетия
Журнальный вариант одной из глав новой книги Ник. Горькавого «Неоткрытые миры» (СПб.: «Астрель», 2018).
Григорий Яковлевич Перельман. 1993 год. Фото: George M. Bergman / Wikimedia Commons / PD
Математики — люди особенные. Они так глубоко погружаются в абстрактные миры, что, «возвращаясь на Землю», часто не могут приспособиться к реальной жизни и удивляют окружающих непривычными взглядами и поступками. У нас речь пойдёт о едва ли не самом талантливом и неординарном из них — Григории Перельмане.
В 1982 году шестнадцатилетний подросток Гриша Перельман, только что получивший золотую медаль на Международной математической олимпиаде в Будапеште, поступил в Ленинградский университет. Он заметно отличался от других студентов. Его научный руководитель профессор Юрий Дмитриевич Бураго рассказывал: «Существует масса одарённых студентов, которые говорят раньше, чем думают. Гриша был не таким. Он всегда очень тщательно и глубоко обдумывал, что намеревался сказать. Он не был очень быстрым в решениях. Скорость решения не значит ничего, математика не построена на скорости. Математика зависит от глубины».
После окончания университета Григорий Перельман стал сотрудником Математического института имени Стеклова, опубликовал ряд интересных статей по трёхмерным поверхностям в евклидовых пространствах. Мировое математическое сообщество оценило его достижения по заслугам. В 1992 году Перельмана пригласили на работу в Нью-Йоркский университет.
Григорий попал в один из мировых центров математической мысли. Каждую неделю он ездил на семинар в Принстон, где однажды прослушал лекцию выдающегося математика, профессора Колумбийского университета Ричарда Гамильтона. После лекции Перельман подошёл к профессору и задал несколько вопросов. Позже Перельман вспоминал об этой встрече: «Мне было очень важно расспросить его кое о чём. Он улыбался и был очень со мной терпелив. Он даже рассказал мне пару вещей, которые были им опубликованы только несколько лет спустя. Он, не задумываясь, делился со мной. Мне очень понравились его открытость и щедрость. Могу сказать, что в этом Гамильтон был не похож на большинство других математиков».
Ричард Гамильтон. 1982 год. Фото: George M. Bergman / Wikimedia Commons / PD
Перельман провёл в США несколько лет. Он ходил по Нью-Йорку в одном и том же вельветовом пиджаке, питался в основном хлебом, сыром и молоком и непрерывно работал. Его стали приглашать в самые престижные университеты Америки. Молодой человек выбрал Гарвард и тут столкнулся с тем, что ему категорически не понравилось. Комитет по приёму на работу потребовал от соискателя автобиографию и рекомендательные письма от других учёных. Реакция Перельмана была жёсткой: «Если они знают мои работы, то им не нужна моя биография. Если им нужна моя биография, то они не знают моих работ». Он отказался от всех предложений и летом 1995 года вернулся в Россию, где продолжил работу над идеями, которые развивал Гамильтон. В 1996 году Перельману присудили премию Европейского математического общества для молодых математиков, но он, не любивший никакой шумихи, отказался её принять.
Когда Григорий добился определённых успехов в своих исследованиях, он написал письмо Гамильтону, надеясь на совместную работу. Однако тот не ответил, и Перельману пришлось действовать дальше в одиночку. Но впереди его ждала мировая слава.
В 2000 году Математический институт Клэя * опубликовал «список проблем тысячелетия», в который вошли семь классических задач математики, решения которых не могут найти уже очень много лет, и пообещал премию миллион долларов за доказательство любой из них. Менее чем через два года, 11 ноября 2002-го, Григорий Перельман опубликовал на научном сайте в интернете статью, в которой на 39 страницах подвёл итог своих многолетних усилий по доказательству одной задачи из списка. Американские математики, которые знали Перельмана лично, немедленно принялись обсуждать статью, в которой доказывалась знаменитая гипотеза Пуанкаре. Учёного пригласили в несколько университетов США прочитать курс лекций, посвящённый его доказательству, и в апреле 2003 года он полетел в Америку. Там Григорий провёл несколько семинаров, на которых показывал, как ему удалось превратить гипотезу Пуанкаре в теорему. Математическое сообщество признало лекции Перельмана исключительно важным событием и предприняло значительные усилия по проверке предложенного доказательства.
Подробности для любознательных
Задача Пуанкаре
Жюль Анри Пуанкаре (1854–1912) — выдающийся французский математик, механик, физик, астроном и философ, глава Парижской академии наук и член ещё более 30 академий наук мира. Сформулированная Пуанкаре в 1904 году задача относится к области топологии.
Жюль Анри Пуанкаре. 1887 год. Фото: Eugene Pirou / Wikimedia Commons / PD
Для топологии основное свойство пространства — его непрерывность. Любые пространственные формы, которые можно получить одну из другой с помощью растяжения и искривления, без разрезов и склеек, в топологии считаются одинаковыми (в качестве наглядного примера часто демонстрируют превращение чашки в бублик). Гипотеза Пуанкаре утверждает, что в четырёхмерном пространстве все трёхмерные поверхности, относящиеся к компактным многообразиям, с точки зрения топологии эквивалентны сфере.
Доказательство гипотезы Григорием Перельманом позволило разработать новый методологический подход к решению топологических задач, имеющий огромное значение для дальнейшего развития математики.
Парадоксально, но Перельман не получал грантов для доказательства гипотезы Пуанкаре, а другим учёным, проверяющим его правильность, гранты на сумму миллион долларов были выделены. Проверка была крайне важна, ведь над доказательством этой задачи трудилось немало математиков, а если она действительно решена, то они оставались не у дел.
Математическое сообщество проверяло доказательство Перельмана несколько лет и к 2006 году пришло к выводу, что оно правильное. Юрий Бураго тогда писал: «Доказательство закрывает целую отрасль математики. После него многим учёным придётся переключиться на исследования в других областях».
Математика всегда считалась наукой максимально строгой и точной, где нет места эмоциям и интригам. Но даже здесь есть борьба за приоритет. Вокруг доказательства российского математика закипели страсти. Двое молодых математиков, выходцев из Китая, изучив работу Перельмана, опубликовали гораздо более объёмную и подробную — более трёхсот страниц — статью с доказательством гипотезы Пуанкаре. В ней они утверждали, что работа Перельмана содержит много пробелов, которые им удалось восполнить. Согласно правилам математического сообщества, приоритет в доказательстве теоремы принадлежит тем исследователям, которые сумели представить его в наиболее полном виде. По мнению многих специалистов, доказательство Перельмана было полным, хотя и кратко изложенным. Более подробные выкладки не вносили в него ничего нового.
Когда журналисты спросили Перельмана, что он думает о позиции китайских математиков, Григорий ответил: «Я не могу сказать, что я возмущён, остальные поступают ещё хуже. Разумеется, существует масса более или менее честных математиков. Но практически все они — конформисты. Сами они честны, но они терпят тех, кто таковыми не являются». Затем он с горечью отметил: «Чужаками считаются не те, кто нарушает этические стандарты в науке. Люди, подобные мне, — вот кто оказывается в изоляции».
Эластичную петлю, растянутую на двумерной сфере, можно теоретически стянуть в точку. Любая двумерная поверхность без края, на которой можно сделать то же самое, с точки зрения топологии эквивалентна двумерной сфере. То есть поверхность дыни эквивалентна поверхности арбуза, а вот поверхность бублика не эквивалентна поверхности яблока. Гипотеза Пуанкаре заключалась в том, что аналогичное утверждение справедливо для трёхмерной сферы. Именно это и доказал Григорий Перельман. Рисунок: Salix alba / Wikimedia Commons / CC BY 2.5
В 2010 году Институт Клэя присудил Перельману обещанную премию в миллион долларов за доказательство гипотезы Пуанкаре, которую ему собирались вручить на математической конференции в Париже. Перельман отказался от миллиона долларов и в Париж не поехал.
Как объяснил он сам, ему не нравится этическая атмосфера в математическом сообществе. Кроме того, вклад Ричарда Гамильтона он считал ничуть не меньшим. Лауреат многих математических премий, советский, американский и французский математик М. Л. Громов поддержал Перельмана: «Для великих дел необходим незамутнённый разум. Ты должен думать только о математике. Всё остальное — людская слабость. Принять награду означает проявить слабость».
Отказ от миллиона долларов сделал Перельмана ещё более знаменитым. Многие просили его получить премию и отдать им. Григорий не отвечал на подобные просьбы.
До сих пор доказательство гипотезы Пуанкаре остаётся единственной решённой задачей из списка тысячелетия. Перельман стал математиком номер один в мире, хотя и отказался от контактов с коллегами. Жизнь показала, что выдающихся результатов в науке часто добивались одиночки, которые не входили в структуру современной науки. Таким был Эйнштейн. Работая клерком в патентном бюро, он создал теорию относительности, разработал теорию фотоэффекта и принцип работы лазеров. Таким стал Перельман, который пренебрёг правилами поведения в научном сообществе и достиг при этом максимальной эффективности своей работы, доказав гипотезу Пуанкаре.
Григорий Яковлевич Перельман (род. 1966) — выдающийся математик, доказавший гипотезу Пуанкаре — одну из семи «проблем тысячелетия». Отказался от Филдсовской премии, членства в Академии наук России и других наград. В его честь назван астероид 50033 — Перельман.
Ричард Гамильтон (род. 1943) — американский математик, профессор Колумбийского университета. Впервые ввёл в рассмотрение «потоки Риччи», которые стали основой для доказательства гипотезы Пуанкаре.
* Математический институт Клэя (Кембридж, США) основан в 1998 году бизнесменом Лэндоном Клэйем и математиком Артуром Джеффи для увеличения и распространения математических знаний.
** Премия Филдса за выдающиеся достижения в области математики присуждается с 1936 года.
Миллион долларов за дырку от бублика Российский математик решил проблему Пуанкаре, но премию получать не спешит
Ученые считают, что 38-летний российский математик Григорий Перельман предложил верное решение проблемы Пуанкаре. Об этом на научном фестивале в Эксетере (Великобритания) заявил профессор математики Стэнфордского университета Кит Девлин.
Ученые всего мира узнали о достижениях Перельмана из двух препринтов (статей, предваряющих полноценную научную публикацию), размещенных автором в ноябре 2002-го и марте 2003 года на сайте архива предварительных работ Лос-Аламосской научной лаборатории.
Согласно правилам, принятым Научным консультативным советом института Клэя, новая гипотеза должна быть опубликована в специализированном журнале, имеющем «международную репутацию». Кроме того, по правилам Института, решение о выплате приза принимает, в конечном счёте, «математическое сообщество»: доказательство не должно быть опровергнуто в течение двух лет после публикации. Проверкой каждого доказательства занимаются математики в разных странах мира.
Проблема Пуанкаре
Родился 13 июня 1966 года в Ленинграде, в семье служащих. Окончил знаменитую среднюю школу № 239 с углубленным изучением математики. В 1982 году в составе команды советских школьников участвовал в Международной математической олимпиаде, проходившей в Будапеште. Был без экзаменов зачислен на матмех Ленинградского государственного университета. Побеждал на факультетских, городских и всесоюзных студенческих математических олимпиадах. Получал Ленинскую стипендию. Окончив университет, Перельман поступил в аспирантуру при Санкт-Петербургском отделении Математического института им.В.А.Стеклова. Кандидат физико-математических наук. Работает в лаборатории математической физики.
Проблема Пуанкаре утверждает то же самое для трехмерных многообразий (для двухмерных многообразий, таких как сфера, это положение было доказано еще в XIX веке). Как заметил французский математик, одно из важнейших свойств двухмерной сферы состоит в том, что любая замкнутая петля (например, лассо), лежащая на ней, может быть стянута в одну точку, не покидая при этом поверхности. Для тора это справедливо не всегда: петля, проходящая через его отверстие, стянется в точку либо при разломе тора, либо при разрыве самой петли. В 1904 году Пуанкаре высказал предположение, что если петля может стягиваться в точку на замкнутой трехмерной поверхности, то такая поверхность гомеоморфна трехмерной сфере. Доказательство этой гипотезы оказалось чрезвычайно сложной задачей.
Задача, подобная проблеме Пуанкаре, для размерностей 5 и выше была решена в 1960 году Стивеном Смэйлом (Stephen Smale), Джоном Стэллингсом (John Stallings) и Эндрю Уоллесом (Andrew Wallace). Подходы, использованные этими учеными, оказались, однако, неприменимы к четырехмерным многообразиям. Для них проблема Пуанкаре была доказана лишь в 1981 году Майклом Фридманом (Michael Freedman). Трехмерный же случай оказался самым сложным; его решение и предлагает Григорий Перельман.
Необходимо отметить, что у Перельмана есть соперник. В апреле 2002 года профессор математики британского университета Саутгемптон Мартин Данвуди предложил свой метод решения проблемы Пуанкаре и теперь ожидает вердикт от института Клэя.
Специалисты считают, что решение проблемы Пуанкаре позволит сделать серьезный шаг в математическом описании физических процессов в сложных трехмерных объектах и даст новый импульс развитию компьютерной топологии. Метод, который предлагает Григорий Перельман, приведет к открытию нового направления в геометрии и топологии. Петербургский математик вполне может претендовать на премию Филдса (аналог Нобелевской премии, которую по математике не присуждают).
Между тем, некоторые находят поведение Григория Перельмана странным. Вот что пишет британская газета «Гардиан»: «Скорее всего, подход Перельмана к разгадке проблемы Пуанкаре верный. Но не все так просто. Перельман не предоставляет доказательств того, что работа издана в качестве полноценной научной публикации (препринты таковой не считаются). А это необходимо, если человек хочет получить награду от института Клэя. Кроме того, он вообще не проявляет интереса к деньгам».
Список тысячелетия
ЖЮЛЬ АНРИ ПУАНКАРЕ. Фото с сайта www.ibmh.msk.su
1. Проблема Кука (сформулирована в 1971 году)
Допустим, что вы, находясь в большой компании, хотите убедиться, что там же находится ваш знакомый. Если вам скажут, что он сидит в углу, то достаточно будет доли секунды, чтобы, бросив взгляд, убедиться в истинности информации. В отсутствие этой информации вы будете вынуждены обойти всю комнату, рассматривая гостей. Это говорит о том, что решение какой-либо задачи часто занимает больше времени, чем проверка правильности решения.
ДЭВИД ГИЛБЕРТ. Фото с сайта www.krugosvet.ru
Стивен Кук сформулировал проблему: может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от алгоритма проверки. Эта проблема также является одной из нерешенных задач из области логики и информатики. Ее решение могло бы революционным образом изменить основы криптографии, используемой при передаче и хранении данных.
2. Гипотеза Римана (сформулирована в 1859 году)
Некоторые целые числа не могут быть выражены как произведение двух меньших целых чисел, например 2, 3, 5, 7 и так далее. Такие числа называются простыми и играют важную роль в чистой математике и ее приложениях. Распределение простых чисел среди ряда всех натуральных чисел не подчиняется никакой закономерности. Однако немецкий математик Риман высказал предположение, касающееся свойств последовательности простых чисел. Если гипотеза Римана будет доказана, то это приведет к революционному изменению наших знаний в области шифрования и к невиданному прорыву в области безопасности Интернета.
3. Гипотеза Берча и Свиннертон-Дайера (сформулирована в 1960 году)
4. Гипотеза Ходжа (сформулирована в 1941 году)
В ХХ веке математики открыли мощный метод исследования формы сложных объектов. Основная идея заключается в том, чтобы использовать вместо самого объекта простые «кирпичики», которые склеиваются между собой и образуют его подобие. Гипотеза Ходжа связана с некоторыми предположениями относительно свойств таких «кирпичиков» и объектов.
ПРОФЕССОР МАРТИН ДАНВУДИ, ТАКЖЕ ПРЕДЛОЖИВШИЙ РЕШЕНИЕ ПРОБЛЕМЫ ПУАНКАРЕ. Фото с сайта www.maths.soton.ac.uk |
6. Проблема Пуанкаре (сформулирована в 1904 году)