в каком году изобрели энергосберегающую лампочку
Энергосберегающая лампа
Энергосберегающая лампа
В наше время, когда цены на электроэнергию становятся все выше, любой человек, а тем более руководители предприятий начинают задумываться, как снизить расходы. И одним из решений этой проблемы является установка энергосберегающих лампочек вместо стандартных «лампочек Ильича».
В этой статье мы рассмотрим следующие вопросы:
История создания.
Чтобы у вас создалась общая картина, приведем краткую историю создания энергосберегающей лампы.
Конструкция и принцип работы.
В энергосберегающей лампочке нет ничего сложного. Она состоит из цоколя, электронного балласта и колбы. Цоколь по своей конструкции такой же, как и у обычной лампочки накаливания. Колба внутри покрыта люминофором и заполнена инертным газом, а также парами ртути. Внутри колбы установлены вольфрамовые электроды. Чтобы лампа заработала — требуется электронный балласт. С помощью встроенного инвертора, пускатель-балласт преобразует ток из сети в высокочастотный ток (50 кГц) который и вызывает разряд на электродах. После этого ток проникает через смесь паров ртути и инертного газа, заставляя быстрые электроны сталкиваться с медленными атомами ртути, и, в конечном итоге, лампа загорается. Но, 98% всего излучения — ультрафиолет, который абсолютно невидим для человека, и только благодаря люминофору, излучение преобразуется в видимый свет.
Преимущества и недостатки.
Преимущества энергосберегающей лампы перед обычной лампой накаливания:
Недостатки энергосберегающей лампы перед обычной лампой накаливания:
Экономия в цифрах.
Приведем небольшой расчет по экономии электроэнергии.
Возьмем две лампочки:
1. Лампа накаливания Philips, 100 Вт. Срок службы 1000 часов. Цена 27 рублей.
2. Энергосберегающая лампа «СТАРТ», 20 Вт. Срок службы 12000 часов. Цена 158 рублей.
Срок службы составляет 12000 часов. Цена 158 рублей. Средняя цена на электроэнергию 2,6 руб./кВт*ч. В итоге, за срок, эквивалентный работе одной энергосберегающей лампы, 12 ламп накаливания нам обойдутся в 324 рубля. За все время на электроэнергию мы потратим 3120 рублей. В сумме выходит 3444 рублей.
На энергосберегающую лампу мы потратим 158 рублей. За все время на электроэнергию мы потратим 624 рубля. В сумме выходит 782 рубля.
В заключении хочу отметить, что на российском рынке представлено большое количество производителей энергосберегающих лампочек таких как, немецкие «Wolta» и «Osram», американская «General Electric»; нидерландская «Philips», польская «Ikea», датская «Comtech», российские — «Ecola», «Космос»; китайские — «Camelion», «Navigator. Так что выбор, экономить или не экономить остается только за вами.
Кто изобрел первую электрическую лампочку: история, которая изменила мир
О проблеме искусственного освещения люди задумывались с начала времен. Свет подсознательно ассоциируется с безопасностью, спокойствием и комфортом. Неудивительно, что человечество достигло такого прогресса в создании осветительных приборов. С чего все начиналось, когда были созданы первые электрические лампочки – читайте в статье.
Какими светильники были до появления электричества?
Основным источником света до открытия электричества служил огонь. У первобытного человека это был костер, который сочетал в себе несколько бытовых функций. Переносной светильник – следующий этап развития освещения. В таком качестве использовали факелы и лампады, применяя как горючий материал растительные и животные жиры, смолу, ветки смолистых деревьев. Как стационарный источник света использовались лучины – тонкие и длинные кусочки сухого дерева, которые горели на подставке.
Чтобы сделать освещение более равномерным и замедлить процесс горения, был изобретен фитиль – специальная нить из растительных волокон, которая помещалась в чашу с горючим веществом.
Важно знать! Лампады или так называемые масляные лампы были изобретены еще в античной Греции за несколько тысячелетий до нашей эры.
До появления первой лампочки в мире широко использовали свечи: они стали практичным аналогом лампад, поскольку были более экономны и менее пожароопасны. Поначалу для них использовали густой животный жир, после заменили его пчелиным воском.
К концу XVIII века благодаря достижениям химии получило распространение газовое освещение. В качестве ресурса использовались горючие газы, помещенные в специальные стеклянные емкости для безопасности.
В конце XIX века широкое распространение получили керосиновые лампы – устройства из стекла и горелки, наполненные горючим. Их до сих пор иногда используют из практических или эстетических соображений.
История создания лампочки
Изобретение электричества позволило ученым шагнуть далеко вперед в разработке осветительных приборов. Кто создал лампу – вопрос с неоднозначным ответом. Первым этапом стала идея использовать естественный свет, который сопровождает дуговой разряд между двумя проводниками, расположенными на небольшом расстоянии. Данное явление активно исследовали русский ученый В. Петров и английский физик Г. Дэвид. Они работали с металлическими и угольными проводниками. Основным недостатком была недолговечность устройства: время работы ограничивалось пятью минутами. Стержни, которые служили проводниками, очень быстро выгорали, их было необходимо менять. Именно поэтому хоть изобретение и появилось в начале 18-го века, оно было не очень практичным.
Как выглядела первая лампочка в мире?
В начале XIX века над проблемой электрического освещения работали многие, активно проводились исследования по световому эффекту от накаливания разных материалов. Ученым приходилось искать проводники, способные давать достаточно света, при этом не перегреваясь, не плавясь и не загораясь. Необходимо было определить удачное сочетание между нитью накала и средой, которая ее окружает. Чтобы оградить нити от воздействия кислорода, начали использовать колбу.
Экспериментами в этой сфере активно занимались английский ученый Х. Дэви и бельгийский исследователь Б. Жобар.
Важно знать! В 1840 году астроном Ж. Деларю придумал изготавливать нить накала в форме спирали.
В 1854 году Г. Гебель создал прототип современного устройства и фактически изобрел лампу накаливания. В качестве нити в ней использовался обугленный бамбук, а чтобы предупредить горение, из колбы был удален кислород.
Альтернативный вариант предложил Д. Свон из Англии: в его осветительном устройстве в качестве элемента накаливания использовалась углеродная бумага.
Александр Лодыгин или кто все-таки изобрел лампу накаливания
Рассматривая вопрос, кто изобрел электрическую лампочку, нельзя не упомянуть русского ученого Александра Лодыгина. В 1874 году он получил право на изготовление лампочки с угольными электродами. Именно он предложил использовать в качестве спирали вольфрам и молибден. Эти металлы хорошо противостояли температурному воздействию, что существенно увеличивало срок эксплуатации прибора.
Кроме этого, изобретатель лампы предложил удалять воздух из колбы, чтобы замедлить процесс окисления спирали. Подобные осветительные элементы получили широкое распространение и активно использовались для освещения зданий и улиц в России. Первые лампочки, продаваемые в Америке, были изготовлены по патенту Лодыгина.
Создание лампочки Эдисоном
Параллельно во второй половине XIX века исследовательской работой занимался Томас Эдисон. Американский ученый активно тестировал проводники из разных материалов, пытаясь найти наиболее долговечный и экономный.
По одной из версий, к концу семидесятых годов к Эдисону попал экземпляр лампочки Лодыгина. Изучая ее устройство, он смог сделать настоящий прорыв и стать изобретателем лампочки в том виде, в котором мы привыкли ее видеть сегодня. Результатом его работы стал прибор, который смог светить без перерыва почти 40 часов.
Также Эдисон изобрел поворотный выключатель и смог значительно усовершенствовать изобретение Лодыгина. Среди корректировок, которые он внес, были следующие:
откачал большее количество воздуха из колбы;
сконструировал винтовой цоколь;
реализовал механизм предохранителя.
Оптимизация устройства позволила снизить его себестоимость и запустить массовое производство. Благодаря своим работам к 1880 году Эдисон смог предложить миру лампы с эксплуатационным ресурсом до 1200 часов.
Рассматривая вопрос, кто создал лампы накаливания, нельзя ответить однозначно. Над проблемой трудились исследователи многих стран на протяжении целого столетия. Очевидно, что наиболее значимые открытия совершили российские, английские и американские ученые.
Если вам понравилась статья, вы можете купить разнообразные электрические лампочки для себя в нашем интернет-магазине Свет Депо.
Энергосберегающие лампы — подробная информация
В этой статье: история создания компактной люминесцентной лампы; ее устройство и принцип работы; спектр энергосберегающей лампы зависит от состава люминофора; плюсы и минусы энергосберегающих люминесцентных ламп; как выбрать энергосберегающую лампу.
Запрет на продажу и производство в России привычных нам ламп накаливания породил ряд устойчивых слухов вокруг энергосберегающих ламп. Для рядового потребителя, какими мы с вами и являемся, главной задачей осветительных приборов было и остается само качество освещения. И, разумеется, не хочется нести лишние расходы на приобретение этих «новомодных» ламп, ведь стоят они гораздо дороже «лампочек Ильича». Рассмотрим характеристики энергосберегающих ламп в этой статье.
История создания
Официально первая люминесцентная или, как ее еще называют, флуоресцентная лампа была создана в начале прошлого века инженером-изобретателем из США Питером Купером Хьюиттом, получившим на нее патент 17 сентября 1901 года. Хотя некоторые исследователи оспаривают его первенство в изобретении, называя «отцом» люминесцентной лампы малоизвестного немецкого физика Мартина Аронса, экспериментировавшего с ртутными лампами в конце XIX века.
Изобретенная и запатентованная Хьюиттом люминесцентная лампа содержала ртуть, пары которой нагревались проведенным через нее электротоком. Лампа Хьюитта была шарообразной формы и слегка изогнута, она давала больше света, чем лампы Лодыгина-Эдисона, но свет этот был голубовато-зеленым, неприятным для глаза. По этой причине первые ртутные лампы использовали только фотографы и они не получили широкого распространения.
Питер Купер Хьюитт. 1861-1921
Люминесцентная лампа в ее практически современном виде была создана группой немецких изобретателей во главе с Эдмундом Гермером, запатентовавшими свое изобретение 10 декабря 1926 года. Именно Гермеру пришла идея нанести флуоресцирующее покрытие на стеклянную поверхность лампы изнутри, которое преобразовывало ультрафиолетовое свечение ртутной лампы в белый свет, не режущий глаз. Альберт Халл, инженер компании «General Electric», разработал люминесцентную лампу с аналогичным покрытием к началу 1927 года, но компания была вынуждена приобрести патент Эдмунда Гермера, как оформившего его раньше.
С момента приобретения патента Гермера инженеры «General Electric» активно принялись за совершенствование люминесцентных ламп, стараясь довести их до серийного производства. Для сокращения размеров колбы были созданы лампы круглой и U-образной формы, продемонстрированные на стенде «GE» на всемирной нью-йоркской выставке 1939 года, лампы с компактной спиралевидной колбой разработаны инженером «General Electric» Эдвардом Хаммером в 1976 году. Впрочем, спиралевидные люминесцентные лампы в 80-х так и не были запущены в производство, поскольку руководители компании сочли расходы на строительство новых заводов чрезмерными. В 1995-м медлительностью «General Electric» воспользовались китайские производители, наладив выпуск энергосберегающих ламп со спиралевидными колбами.
Эдвард Хаммер со своим изобретением — лампой с компактной спиралевидной колбой
Ввинчивающаяся лампа с магнитным балластом (SL) была создана компанией «Philips» в 1980 году — она стала первой люминесцентной лампой такого рода, способной конкурировать с лампами накаливания. Энергосберегающую лампу с электронным балластом (CFL) в 1985 году впервые продемонстрировал немецкий концерн «Osram».
Как устроена и работает энергосберегающая лампа
Изогнутая колба люминесцентной лампы покрыта слоями люминофора, наполнена инертным газом и, в небольшом количестве, парами ртути — их ионизация и вызывает свечение лампы при подключении питания. Содержание ртути в люминесцентных лампах составляет от 1-го до 70 мг. Внутри колбы расположены вольфрамовые электроды, покрытые смесью окислов бария, кальция, цинка и стронция. Люминофор, нанесенный на внутреннюю поверхность стеклянной колбы в компактных люминесцентных лампах, содержит щелочноземельные металлы, и поэтому на 40% дороже люминофоров, применяемых в продолговатых люминесцентных лампах для потолочных светильников. Щелочноземельные металлы в составе люминофора компактных ламп обеспечивают работу при высокой интенсивности облучения, благодаря им стало возможным уменьшение диаметра ламповой колбы. Причудливо изогнутая форма колбы в люминесцентных лампах позволяет уменьшить ее длину за счет разделения на несколько коротких, сообщающихся друг с другом секций.
Сами по себе лампы, покрытые люминофором и содержащие пары ртути, при подключении питания работать не будут — требуется пускатель-балласт, встроенный в лампу между цоколем и колбой. Потребляя высокочастотный ток порядка 50 кГц, электронный балласт (CFL) устраняет эффект мерцания энергосберегающих ламп, одновременно повышая выработку света. Высокочастотный ток электронный балласт повышает для себя сам — содержит в своей схеме инвертор. Также в задачи балласта входят подогрев электродов и поддержание мощности люминесцентной лампы на номинальном уровне, вне зависимости от перепадов напряжения в сети. От того, насколько качественно выполнен электронный балласт, зависит срок службы энергосберегающей лампы.
Как работает люминесцентная лампа? Подача питания вызывает разряд между электродами, ток проходит через смесь инертного газа и паров ртути, быстрые электроны наталкиваются на медлительные атомы ртути — лампа зажигается. Однако 98% светового излучения, производимого энергосберегающей лампой — ультрафиолет, невидимый для человеческого зрения. А видимый свет, идущий от нее, обеспечивают слои люминофора, светящиеся под воздействием ультрафиолетового облучения. Цветность освещения, вырабатываемого люминесцентными лампами, зависит от химического состава люминофора, нанесенного на стеклянную колбу с внутренней стороны.
Зависимость видимого спектра люминесцентной лампы от люминофора
Свет, генерируемый дешевыми энергосберегающими лампами, чаще всего неприятен для зрения — в его спектре преобладают синий и желтый цвета, в результате цвет предметов в освещаемом помещении неестественен. Причины кроятся в типе люминофора, содержащем недорогой галофосфат кальция. Такие лампы, обладая высокой светоотдачей, предназначены для освещения нежилых помещений (складов и т.п.) — внешне вырабатывают белый свет, но его отражение от предметов выявляет неполный спектр (отсутствие красного и зеленого цветов).
Энергосберегающие лампы для домашнего освещения имеют более высокую цену, т.к. люминофор в них создает 3-5 цветных полос (к примеру красную, зеленую и голубую) из видимого для человеческого глаза спектра и имитирует эффект естественного света, но уменьшает при этом светоотдачу.
Характеристики энергосберегающей лампы
Сразу стоит оговориться, что приведенные ниже положительные характеристики зависят от производителя данной лампы — его желание сэкономить на сырье и комплектующих серьезно снижает качество и срок работы люминесцентных ламп.
Плюсы энергосберегающих ламп:
Минусы энергосберегающих ламп:
Как выбрать энергосберегающую лампу
Прежде всего, убедитесь в целостности предлагаемой продавцом лампы, надежном соединении колбы с цоколем — непрочным соединением обычно грешат лампы небольших китайских производителей, собираемые вручную.
Мощность новой лампы определяется по мощности ранее используемых в данном помещении ламп накаливания с уменьшением в 4-5 раз. Т.е. если использовались «лампы Ильича» в 100 Вт — понадобится люминесцентная лампа в 20-25 Вт (лучше брать с небольшим запасом мощности).
Интенсивность освещения данной лампы определяется в температуре по шкале Кельвина, указанной на ее упаковке: от 2 700 до 4 000 оК — теплый свет (аналог света от ламп накаливания), такие лампы подходят для освещения спальни и кухни; от 4 000 до 5 000 оК — теплый белый свет, подходит для гостиных и залов; от 6 000 до 6 500 оК — холодный белый свет, применяется для помещений кабинетов и в офисах. Лампы последнего типа для освещения домов приобретать не стоит — свет слишком насыщен, трудно переносится.
Размер лампы. Цоколь люминесцентных ламп, как отмечалось выше, имеет большую длину, чем цоколь ламп накаливания — для домашнего освещения оптимальным будет цоколь стандарта E27 (длина — 105 мм, диаметр — 60 мм), размеры которого схожи с патронами под «лампы Ильича».
Гарантийный и эксплуатационный срок службы. Они указывается производителями на упаковке: оптимальный эксплуатационный срок в диапазоне 6 000-12 000 часов; гарантийный — от года и выше. Учтите, что далеко не для всех марок люминесцентных ламп заявленные сроки будут действительными — китайские производители могут указать высокие сроки, но фактически лампы выйдут из строя гораздо раньше.
Производители и марки. На российском рынке представлены энергосберегающие лампы европейских марок — немецких «Osram» и «Wolta», нидерландской «Philips», датской «Comtech», польской «Ikea», американской «General Electric»; российских — «Ecola», «Космос», «Аладин», «Лисма», «Uniel»; китайских — «Camelion», «Navigator» и др. Разумеется, продукция крупнейших европейских производителей отличается высоким качеством и эксплуатационными характеристиками, но стоит отметить, что компактные люминесцентные лампы отечественного производства также имеют неплохое качество при меньшей стоимости.
В заключении
Как видно из этой статьи, люминесцентные лампы действительно экономят электроэнергию и исправно служат при условии, если соблюдаются требования к их эксплуатации. Высокая стоимость и некоторое содержание паров ртути, конечно, остаются проблемой для потребителей, но производители пытаются решить их — к примеру, в современных моделях энергосберегающих ламп ртуть связана амальгамой кальция и не испарится, как утверждают производители, при повреждении лампы.
Другим способом сэкономить электроэнергию и гарантированно исключить проникновение паров ртути в жилые помещения будет использование светодиодных ламп, но эта тема для отдельной статьи.
Двое суток без сна, или Как появилась лампа накаливания
«Презентация» лампы накаливания Эдисона состоялась в канун 1880 года. Три тысячи человек, пришедших в этот вечер в Менло-Парк, были потрясены увиденным: на натянутом между деревьями проводе светились ярким светом сотни лампочек.
Великий самоучка
Усовершенствование электрической лампочки стало одним из самых ярких научных достижений в жизни Эдисона, но далеко не единственным. За свою жизнь он успел запатентовать более тысячи изобретений.
Эдисона называют великим «самоучкой» Америки. В это трудно поверить, но он не проучился в начальной школе и года. Преподаватели считали его пустоголовым мечтателем и не хотели видеть на своих уроках. Образованием Томаса занималась его мать – бывшая учительница.
Свои первые самостоятельные опыты по химии он начал ставить в 10-летнем возрасте в подвале родительского дома. Когда же юному химику понадобилось более сложное оборудование, он отправился на заработки. 12-летний Томас продавал конфеты и газеты в поездах, а в перерывах работал в импровизированной лаборатории, находящейся в багажном вагоне.
Заработанные на продаже газет средства он потратил на ручной печатный станок, на котором напечатал первый выпуск собственной газеты «Уикли Джеральд». Издание рассказывало о событиях в стране, о жизни железной дороги, а также о ценах в ближайших торговых точках. Довольно скоро Эдисон довел тираж газеты до 400 экземпляров и заработал первый капитал для своих научных опытов, пишет 3dnews.ru.
Модернизатор
Без модернизаций Эдисона созданный Александром Бэллом телефонный аппарат было бы нелегко эксплуатировать. То же – и с электрической лампой накаливания: Эдисон всего лишь усовершенствовал то, к чему до него пришли его предшественники.
Впервые мир услышал о лампе накаливания, благодаря англичанину Де Ла Рю. Он задолго до Эдисона поместил платиновую проволочку в стеклянный сосуд и пропустил по ней ток. Затем были усовершенствованные версии лампы – от бельгийского ученого Жобара (Baptiste-Ambroise-Marcellin Jobard), немецкого Генриха Гебеля (Heinrich Gobel), английского Джозефа Вильсона Свана (Joseph Wilson Swan) и русского Александра Лодыгина.
Российский отставной офицер Лодыгин построил лампу накаливания с тонким стержнем из ретортного угля, а Эдисон домыслил изобретение, поместив в лампочку не угольный стерженек, а волосок из обугленного бамбукового волокна.
Работая над новой лампой накаливания, ученый проявлял чудеса выносливости. Так, проверяя характеристики угольной цепи лампы, он провёл в лаборатории около 45 часов без сна и отдыха. А чтобы найти нужный материал для нити накаливания, ему пришлось перепробовать 6 тысяч экземпляров разного рода растений, пока Эдисон не остановился на японском бамбуке, пишет peoples.ru.
В результате своей работы он добился значительно лучшего удаления воздуха из лампы, благодаря чему накаленная нить светилась, не перегорая, в течение многих недель. Он также соединил воедино лампу накаливания, электрогенератор, розетку и вилку.
Довольно скоро лампы Томаса Эдисона появились по всему миру. Одновременно в прошлое ушли те времена, когда люди спали по 10 часов в сутки.
Новый век – новый свет
На протяжении почти всего XX века у ламп Эдисона не было достойного конкурента. Прорыв в бытовом освещении был сделан только в 1976 году, когда изобретатель Эд Хаммер представил компании General Electric принципиально новую лампу, получившую впоследствии название энергосберегающая, пишет treehugger.com.
Такие лампы требуют непременной утилизации и стоят несколько дороже, чем обычные лампы накаливания. Однако по подсчетам специалистов, все затраты окупаются, поскольку энергосберегающие ламы позволяют снижать энергопотребление до 80% без потери привычного уровня освещенности помещения.
Площадь поверхности энергосберегающей (люминесцентной) лампы намного больше площади поверхности нити накаливания, а значит, свет в комнате будет распределяться равномернее, что позволит снизить утомляемость глаз.
Как выбирать экономичные лампы?
Во многих странах Европы дни ламп накаливания уже сочтены. Европейцы полностью откажутся от них в 2012 году.
В России соответствующий запрет может быть наложен с 2014 года. Ожидается, что прибыль от перехода на энергосберегающие лампы только на жилом секторе составит порядка 10 миллиардов киловатт-часов, что равноценно мощности средней атомной электростанции.
Согласно результатам опроса, уже сегодня более половины россиян (57%) использует у себя дома энергосберегающие лампы. Однако у многих до сих пор возникает множество вопросов при покупке этих источников света.
Выбирая энергосберегающую лампу, стоит учитывать четыре фактора: размер, мощность, цоколь лампы и цвет света.
Размер и форма
Энергосберегающие лампы, как правило, больше по размеру, чем обычные лампочки накаливания. Поэтому, некоторые из них могу не поместиться в светильник.
Люминесцентные лампы бывают двух видов: в форме буквы U и в виде спирали. Между собой они отличаются только ценой, поскольку спиралеобразные более дорогие в производстве, а значит, и в магазинах.
Мощность энергосберегающих ламп колеблется от 3 до 85 Вт. Выбирать подходящую лампу следует, поделив мощность обычной лампы накаливания на пять, поскольку световая отдача люминесцентной лампы в пять раз выше лампы накаливания.
Отправляясь за люминесцентной лампой, необходимо заранее узнать тип цоколя светильника. Потолочные люстры, как правило, имеют цоколь E 27, а небольшие светильники и торшеры – E 14. Тип цоколя указан на упаковке.
Энергосберегающие лампы имеют разные цветовые температуры. Она маркируется на упаковке. 2700 К – это мягкий белый свет, 4200 К – дневной свет, 6400 К – холодный белый свет. Чем ниже этот показатель, тем ближе свет к красному, а, значит, к теплому; чем выше, тем он ближе к синему – холодному.
Стоит отметить, что экономия на энергосберегающих лампах напрямую зависит от того, правильно ли они используются. Дело в том, что пусковые устройства не переносят частого включения-выключения. Если в течение суток процесс «включение-выключение-включение» происходит более пяти раз, то срок службы энергосберегающих ламп падает.