в каком году было открыто явление радиоактивности
Кто открыл явление радиоактивности?
Считается, что это Анри Беккерель, потомственный профессор, лауреат Нобелевской премии по физике 1903 года за «открытие спонтанной радиоактивности».
В одной из оригинальных работ К.Э. Циолковского автор, считавший себя знатоком истории радиоактивности и атомных проектов, прочитал «примерно 32 года тому назад (Беккерелем и много раньше Ниепсом) открыты были радиоактивные явления». Моя гордыня была в очередной раз посрамлена оригинальным источником. Имя А.Ниепса (Ньепс – Abel Niepce de Saint Victor (1805-1870 гг.)) в истории радиоактивности не встречалось. 40 минут работы в Интернете открыли удивительные факты. Оказывается во Франции XIX века существовал целый клан Ньепсов – изобретателей в области фотографии.
Абель Ньепс экспериментировал с нитратом урана с 1857 по 1861 г. и обнаружил явление засветки фотопластин после контакта с солями урана. Он пришел к выводу, что «явление есть некоторый вид лучей, невидимых для наших глаз». Но открытие было преждевременным. Никто не объяснил это явление.
Эдмонд Беккерель (1820-1891), отец Анри, который работал в Музее Естествознания с А. Ньепсом, также обсуждал это открытие и дал свое собственное неправильное объяснение. В то время наблюдения А. Ньепса были отклонены и, казалось, забыты. Легко вообразить, что происходило в уме Анри Беккереля, в 1895 году, через три года после того, как он занял место своего отца в Музее Естествознания, когда он читал статью В. Рентгена об открытии X-лучей. А. Беккерель знал от отца и из публикаций 1857-61 гг. во французском академическом журнале «Comptes rendus de l’Acad;mie des sciences» об опытах А. Ньепса. Далее он повторил опыты А. Ньепса, представив это случайностью. Надо отметить, что А. Беккерель нехорошо выглядит в конце этой драмы. Вскоре после того, как он объявил о «невидимой радиации, испускаемой солями урана» в Академии в 1896, несколько уважаемых ученых указали, что, то же самое открытие с тем же самым минералом и фактически тем же самым методом было сделано сорока годами ранее, и результаты изданы в том же самом журнале.
Надо сказать, что ссылка на предшественника не повредила бы А. Беккерелю, ибо к моменту присуждения Нобелевской премии А. Ньепс умер (по статусу Нобелевская премия посмертно не присуждается). Итак, восстанавливая справедливость, хотя бы в этой заметке, следует считать Абеля Ньепса (Ниепс – Abel Niepce de Saint Victor (1805-1870)) первооткрывателем явления радиоактивности в 1857-61 гг. Во времена К.Э. Циолковского эта история была хорошо известна. К сожалению, подобными фактами полна история науки. Вспомним хотя бы коллизию с открытием комбинационного рассеяния света (эффект Рамана) Г.С. Ландсбергом, Л.И. Мандельштамом и, одновременно, Ч. В. Раманом.
Противоположный пример добросовестного этичного уважения к научным предшественникам продемонстрировал Альфред Уоллес, написав статью о естественном отборе во время завершения работы Чарльза Дарвина над своим трудом «Происхождение видов путем естественного отбора, или сохранение благоприятных рас в борьбе за жизнь». Свою работу он опубликовал после выхода книги Ч. Дарвина и даже ввел термин «дарвинизм».
Как наивное человечество познакомилось с радиацией
Есть открытия, которые изменили мир, но оказались очень вредны для человека — например, радиация. Рассказываем, как ученые исследовали это явление, когда еще ничего о нем не знали.
Опытным путем: из 8 тонн руды 0,1 грамма радия
В этот день 125 лет назад, 2 марта 1896 года, в Парижской академии наук впервые прозвучал доклад «О невидимой радиации, производимой фосфоресцирующими телами». Докладчиком и первооткрывателем был французский физик Анри Беккерель. Будущей исследовательнице радиоактивности Марии Кюри на тот момент было 28 лет. Ей и всему человечеству еще только предстояло узнать, как радиация влияет на живые организмы.
125 лет назад Анри Беккерель находился под впечатлением недавнего открытия Рентгена и ставил опыты с солями урана, чтобы выяснить, не сопровождается ли люминесценция рентгеновскими лучами. Одно из соединений солей урана, которое красочно фосфоресцировало зелено-желтым светом, ученый подставил под солнечный свет, затем завернул в темную бумагу и положил в шкаф на фотопластинку, также обернутую бумагой. После проявления на пластинке появилось изображение куска соли. Но Беккерель знал, что люминесцентное излучение не проходит через черную бумагу. Так что же это за спецэффект? Нечто новое, а именно — «невидимая радиация». Ученый поспешил поделиться своим открытием со знакомыми — парой супругов-физиков Кюри.
Мария Склодовская-Кюри — уроженка Российской империи, выпускница Сорбонны, жена французского физика Пьера Кюри — как раз искала тему для диссертации. Знакомство с Беккерелем и его работой оказалось для нее судьбоносным: с 1898 года Мария и Пьер начали свои опыты с радиацией. Так как университет отказался предоставить им лабораторию, исследованиями они занимались в старом сарае при Школе промышленной физики и химии в Париже.
«Я могу сказать без преувеличения, что этот период был для меня и моего мужа героической эпохой в нашей совместной жизни, — вспоминала Мария Кюри. — Нередко я готовила какую-нибудь пищу тут же, чтобы не прерывать ход особо важной операции».
Четыре года Кюри настойчиво пытались выяснить, только ли уран обладает свойствами радиоактивности или есть еще какие-то неизвестные вещества. Им не помешало даже рождение дочери в сентябре 1897 года: они поручили ее заботам дедушки и продолжали трудиться в сарае, перебирая разнообразные материалы и тестируя их на радиоактивность. В одном из опытов Кюри выявили некое загадочное вещество, которое имело в 400 раз более сильную радиоактивность, чем чистый уран. В 1898 году они открыли и назвали два радиоактивных элемента: полоний и радий.
Это звучит просто, но попробуйте представить. Концентрация радия в урановой смоляной руде — в 4000 раз ниже концентрации полония. Чтобы выделить 0,1 грамма хлорида радия в 1902 году, супругам пришлось переработать 8 тонн (!) настурана с металлургической фабрики Йоахимсталя, которые к их сараю доставили бесплатно при содействии правительства Австро-Венгрии и Венской академии наук. Хрупкая женщина Мария Кюри вручную перетаскивала руду в гигантские котлы и нагревала порциями по 20 кг.
«Иногда весь день я перемешивала кипящую массу железным шкворнем длиной почти в мой рост. Вечером я валилась от усталости. Но как раз в этом дрянном сарае прошли лучшие и счастливейшие годы нашей жизни, всецело посвященные работе», — вспоминала Мария Кюри. На фото ниже — семейство Кюри образца 1902 года.
Крыша сарая протекала, зимой помещение не отапливалось, но результат того стоил. Мария Кюри вошла в историю науки как первая женщина, получившая Нобелевскую премию, и единственная из женщин, получившая ее дважды: в 1903 году по физике и в 1911-м по химии.
Нобелевский комитет изначально хотел наградить лишь Пьера Кюри с Анри Беккерелем, но разгневанный муж-ученый указал на эту несправедливость: «Мне бы хотелось, чтобы мои труды в области исследования радиоактивных тел рассматривали вместе с деятельностью госпожи Кюри. Действительно, именно ее работа определила открытие новых веществ, и ее вклад в это открытие огромен (также она определила атомную массу радия)». Мария Кюри получила не только мировую славу и премию, но и,наконец-то собственную лабораторию, а заодно и ванную в квартиру. В 1903 году она защитила диссертацию по теме «Исследование радиоактивных веществ». Сегодня ее многолетнюю научную работу специалисты называют растянутым во времени самоубийством.
Радиация, испытанная на себе
Тревожные звоночки об опасности радиации поступали, но игнорировались супругами Кюри. Так, в апреле 1902 года Анри Беккерель выпросил у супругов вещество для лекции (хлорид бария BaCl2) и положил герметично закрытую стеклянную трубочку в карман жилетки. Так он проходил шесть часов, а через десять дней после конференции в месте, где была пробирка, у него появилось красное пятно. Когда оно превратилось в язву, ученый поделился этим «случайным» открытием с Кюри со словами: «Я очень люблю радий, но я на него в обиде». Язву лечили как обычный ожог, и она хоть и прошла, но оставила рубец на теле. Так человек, открывший радиацию, стал и первым пострадавшим от ее действия. Случай подробно описан в биографической книге об Анри Беккереле.
Пьер Кюри повторил опыт на себе: он нарочно носил пробирку с радием и вскоре обнаружил ожог. На ужине в честь защиты диссертации супруги он демонстрировал гостям колбу со светящейся солью радия и признавался, что она висит в их спальне вместо ночника. Кюри нравился необычный эффект: если 10 минут подержать колбу в руке, получается легкий ожог. О том, что радий может быть опасен, ученые еще долго не догадывались. В те времена среди химиков было принято пробовать новые вещества на вкус, и Мария Кюри беззаботно работала с убийственными материалами даже во время беременности: ее второй ребенок родился раньше срока и вскоре умер (третья дочь прожила 102 года и была личным библиографом матери). Пьер Кюри успел понять опасность радиации в опыте на мышах, прежде чем погиб под колесами конного экипажа в 1906 году.
В начале XX века не было ни защитной одежды, ни специальных приборов для регистрации излучения. Но медицина уже тогда стала искать применение открытию радия. В России начало радиотерапии положила лично Мария Кюри. В 1903 году она познакомилась с Владимиром Зыковым, заместителем директора первой в Европе раковой лечебницы — будущего Московского НИИ онкологии им. Герцена. Кюри передала Зыкову несколько миллиграммов радия, и именно с них началась российская лучевая терапия, которая по большому счету с тех пор не изменилась (об этом рассказывается в фильме канала «Доктор» «Мари Кюри: сгоревшая заживо»). Во Франции этот метод назывался кюритерапией: облучением радия стали лечить волчанку, стригущий лишай и рак. Кюри как единица измерения радиоактивности была введена в употребление в 1910 году на Международном конгрессе по радиологии и электричеству в Брюсселе.
Первые успехи в лечении опухолей посредством радиации породили всеобщий ажиотаж: публика увидела в радии источник вечной жизни. Радий стали рекламировать как панацею от всех болезней. Выпускались пищевые продукты, косметика и даже часы с радием. В 1924 году на фабрике в Нью-Джерси (США) по производству светящихся часов началась вспышка лучевой болезни среди работниц, которые наносили краску с радием на циферблат и облизывали кисточки для точного мазка. У девушек выпали зубы, челюсти превратились в труху, десять работниц умерли, остальным после суда назначили пенсию по инвалидности.
Сама Мария Склодовская-Кюри умерла от радиационной апластической анемии в 1934 году в возрасте 66 лет, не дожив всего год до того, как ее старшая дочь с зятем получили Нобелевскую премию по химии «за выполненный синтез новых радиоактивных элементов». Похоронили Марию Кюри с особыми предосторожностями. Деревянный гроб поместили в свинцовый и затем во второй деревянный. Когда в 1995 году ее саркофаг переносили в парижский Пантеон, то обнаружили колоссальное излучение, которое было в 30 раз выше, чем фоновое значение.
Прошло более 100 лет, а вещи Марии Кюри все еще опасно радиоактивны. Ее книги, дневники, письма с конца 1960-х годов хранятся в свинцовых коробках в Национальной библиотеке Парижа. К записям нельзя прикасаться без защитного снаряжения еще 1500 лет (период полураспада радия-226 — около 1600 лет). На одном из листков сохранился радиоактивный отпечаток пальца Пьера Кюри.
В чем заключается явление радиоактивности и кто его открыл
Радиоактивность — что это за явление
Радиоактивность — это явление, при котором ядра одного химического элемента самопроизвольно превращаются в ядра другого элемента или изотопы того же элемента. Процесс сопровождается испусканием частиц и электромагнитного излучения. При этом происходит изменение состава ядра атома: его заряда и массового числа.
Понятие «радиоактивность» было введено Марией Склодовской-Кюри. Оно тождественно понятию радиоактивный распад.
В определении присутствует термин изотоп. Прежде чем рассмотреть его, вспомним определение нуклида.
Нуклид — это отдельный вид атома химического элемента с определенными значениями массового и протонного чисел.
Для обозначения определенного нуклида используют запись вида
где X — символ химического элемента, A — массовое (нуклонное) число, Z — зарядовое (протонное) число.
Количество нейтронов в ядре N = A − Z
Изотоп — это разновидность атома определенного элемента с таким же атомным номером, но другим массовым числом.
Это значит, что в изотопах одинаковое число протонов, но разное число нейтронов.
Всего известно более двух тысяч радиоактивных изотопов. Для сравнения, стабильных открыто около 280.
Ученые разделяют нуклиды на стабильные и нестабильные. Нестабильные, также известные как радионуклиды, со временем распадаются. Стабильные же способны существовать в неизменном виде неопределенно долгий промежуток времени.
Суть явления радиоактивности заключается в том, что при распаде ядра нестабильного атома из него с большой скоростью вылетает целое число частиц с высокой энергией. Вещества, которые содержат радиоактивные ядра, называют радиоактивными.
Радиация (радиоактивное излучение) — это поток частиц высокой энергии, вылетающих из нестабильного ядра.
В современной химии выделяют естественную и искусственную радиоактивность.
Естественная радиоактивность — это явление самопроизвольного распада атомных ядер в природе.
Примером естественной радиоактивности служит солнечная радиация. В ядре солнца постоянно происходят термоядерные реакции, в ходе которых водород превращается в гелий.
Искусственная радиоактивность — это явление самопроизвольного распада атомных ядер, полученных искусственным путем через соответствующие ядерные реакции.
Техногенная радиоактивность применяется людьми. Например, на атомных электростанциях электрическую энергию получают за счет искусственно созданных ядерных реакций.
В результате экспериментов было установлено, что в периодической системе Менделеева радиоактивны все элементы, начиная с висмута. Их порядковый номер больше 82.
Единицы измерения
В химии существует несколько единиц измерения радиоактивности:
В Международной системе единиц ( С И ) единицей измерения активности радионуклида является беккерель. На русском языке он обозначается как Бк, в международном формате — Bq.
Эту единицу назвали в честь Антуана Беккереля, одного из первооткрывателей радиоактивности. Один Беккерель равен одному распаду в секунду.
В Международной СИ секунде в минус первой степени равен не только беккерель, но и герц. Важно не путать их: беккерель используют для измерения случайных процессов распада, а герц — для периодических процессов. Их природа различна.
Один Беккерель — это маленькая единица измерения, так что на практике принято использовать кратные единицы.
Внесистемная, но широко распространенная единица — кюри. Ее используют для измерения активности радионуклидов. На русском обозначается как Ки, в международных исследованиях — Ci. Названа она в честь Пьера Кюри и Марии Склодовской-Кюри.
Точно установлена связь между значениями Ки и Бк:
Перевести значения из Бк в Ки сложнее, т.к. соотношение приблизительно:
Еще одна единица измерения, которой в современности пользуются редко — резерфорд. Его обозначают как Рд или Rd в русском и международном стандартах соответственно. Единица тоже названа в честь ученого — Эрнеста Резерфорда, также изучавшего природу радиоактивности.
Один резерфорд равен 10^6 распадам в 1 секунду. Точно равенство:
1 Р д = 1 ⋅ 10 6 Б к = 1 М Б к
Дозиметрия — это определение дозы радиоактивного излучения, поглощаемого объектом.
В дозиметрии используют свои единицы облучения:
Поглощенную дозу в Международной СИ измеряют в единицах грэй (Гр). Один грэй равен энергии излучения в 1 Дж, поглощенной 1 кг вещества.
Эквивалентную дозу, т.е. произведение поглощенной дозы на коэффициент качества излучения, в Си измеряют в зивертах. Один зиверт эквивалентен излучению, создающему такой же биологический эффект, как и поглощенная доза в 1 Гр гамма-излучения или рентгеновского излучения.
Внесистемная единица измерения эквивалентной дозы — бэр. Бэр расшифровывается как «биологический эквивалент рентгена».
За один бэр принято считать такое количество энергии излучения, поглощенного 1 кг вещества, при котором биологическое воздействие соответствует поглощенной дозе в 1 рад гамма-излучения или рентгеновского излучения. То есть:
Для измерения воздействия радиации используют также понятие мощность дозы. Это доза, полученная объектом за выбранную единицу времени.
Кто открыл, как это произошло
Предпосылкой открытия радиоактивности послужило открытие Вильгельма Конрада Рентгена. В конце XIX века ученый обнаружил новый вид лучей, который назвал X-лучами. В России они более известны как «рентгеновские лучи».
Лучи Рентгена представляют собой электромагнитное излучение длиной волн от
Хотя рентгеновское излучение менее вредно, чем радиоактивное, оно все равно является ионизирующим и в больших объемах способно навредить живым организмам.
Вскоре после Рентгена новый вид лучей открыл французский физик Антуан Анри Беккерель. В 1896 году Беккерель посетил заседание Академии наук, на котором узнал о предполагаемой связи рентгеновского излучения и флуоресценции. Чтобы проверить эту гипотезу, Беккерель провел эксперимент с фотопластинкой и солями урана. Он обнаружил, что лучи проходят через препятствия, оставляя изображение на фотопластинке.
Сперва Беккерель предположил, что открыл новый, более простой способ делать рентгеновские снимки. Но после многочисленных экспериментов он не мог дать объяснения, откуда уран получает свою энергию. К тому же, вопреки его данным, уран фосфоресцировал даже без солнечного света, что никак не согласовывалось с его гипотезой.
Так Беккерель понял, что открыл новый вид лучей. Но из-за неспособности разрешить найденное противоречие ученый временно отказался от изучения, как известно теперь, радиоактивности.
В 1898 году Мария и Пьер Кюри обнаружили, что новые лучи свойственны не только урану, но и торию. Позднее пара ученых открыла радиоактивность полония и радия. От названия последнего и было дано название явлению — радиоактивность.
К тому же, Беккерель и Кюри совместно обнаружили биологическое действие радиоактивности. На одной из лекций Беккерель держал в пробирке в жилетном кармане радиоактивное вещество. На следующий день на теле под карманом он обнаружил покраснение в форме пробирки. Пьер Кюри после этого 10 часов носил на себе пробирку с радием, и спустя несколько дней у него тоже появилось покраснение. Это покраснение впоследствии перешло в тяжелую язву, с которой Пьер боролся еще два месяца.
Пагубное влияние радиоактивных веществ не остановило ученых. В 1934 году Мария Склодовская-Кюри умерла от осложнений, вызванных долгой работой с радием.
В дальнейшем значительную роль в исследовании радиоактивности сыграл Эрнест Резерфорд. Ученый установил природу радиоактивных превращений и излучения, обнаружил сложный состав излучения.
Разновидности излучения, свойства и характеристики
Ученые выделили 3 вида излучения:
На основе излучения выделяют 3 основных типа радиоактивного распада:
Известны также распады с испусканием протонов (одного или двух), нейтрона и кластерная радиоактивность.
Процесс радиоактивного распада может быть продолжительным. Если дочернее ядро, полученное в результат радиоактивного распада, также является радиоактивным, то со временем и оно распадается. Так продолжается, пока не образуется стабильное нерадиоактивное ядро.
При этом некоторые изотопы могут одновременно испытывать более одного вида распада.
Альфа-распад
Альфа-распад — вид самопроизвольного распада атомного ядра на дочернее ядро, при котором происходит испускание альфа-частицы — ядра атома атома гелия. При этом массовое число дочернего ядра меньше на 4, а атомный номер — на 2.
Альфа-распад, т.е. поток положительно заряженных частиц, характерен для изотопов всех тяжелых элементов, начиная с висмута.
Альфа-частицы покидают ядро со скоростью от 9400 до 23700 км/с. При этом в воздухе при нормальных условиях альфа-излучение способно преодолеть лишь расстояние от 2,5 до 7,5 см.
Эффективно задержать радиоактивное излучение альфа-частиц можно несколькими десятками микрометров плотного вещества. К примеру, листом бумаги или даже ороговевшим слоем кожи — человеческим эпидермисом. Это делает его относительно безопасным для человека.
Однако если источник альфа-излучения все же попадет в организм (например, в виде пыли), это может привести к серьезным последствиям. Альфа-частицы наносят примерно в 20 раз больше повреждений, чем бета- и гамма-частицы той же энергии.
Правило смещения Содди, также закон радиоактивных смещений — это правило, описывающее превращение элементов в процессе радиоактивного распада.
Пример
Как уже было описано ранее, процесс радиоактивного распада продолжается до тех пор, пока не образуется стабильное ядро. Рассмотрим такую цепочку на основе альфа-распада урана-238:
Бета-распад
Бета-распад — вид самопроизвольного распада атомного ядра на дочернее ядро, при котором происходит испускание потока электронов и антинейтрино. Массовое число при этом остается тем же, поскольку число нуклонов в ядре остается неизменным.
Бета-излучение как отрицательное излучение малой массы обладает большей проникающей способностью, нежели альфа-частицы. Задержать его можно алюминиевой фольгой.
Среди всех видов радиоактивного распада бета-распад является наиболее распространенным. Он особенно характерен для искусственных радионуклидов.
Выделяют несколько подвидов бета-распада:
Бета-минус распад представляет собой испускание из ядра электрона, образовавшегося в результате самопроизвольного превращения одного из нейтронов в протон и электрон. Такой электрон называют бета-минус частицей.
Рассмотрим бета-минус распад трития в гелий-3:
Бета-плюс распад, или позитронный распад сопровождается испусканием из ядра позитрона (античастицы электрона), образовавшегося в результате самопроизвольного превращения одного из протонов в нейтрон и позитрон. Получившуюся частицу называют бета-плюс частицей.
Рассмотрим бета-плюс распад углерода:
C 6 11 → B 5 11 + e + + ν e
Позитронный распад всегда сопровождается электронным захватом. Ядро захватывает электрон из атомной оболочки и испускает нейтрино. Заряд ядра также уменьшается на единицу.
Правило смещения Содди для электронного захвата:
Рассмотрим электронный захват на примере захвата бериллия в литий:
Гамма-распад
Гамма-распад чаще называют изомерным переходом. Такое название обосновано существованием изомерных состояний ядер. Большинство ядер способны существовать в возбужденном состоянии очень малое количество времени — менее наносекунды. Некоторые ядра способны существовать дольше — микросекунды, сутки или даже года. Такие долгоживущие состояния и называют изомерными.
При гамма-распаде изомерные состояния ядер переходят в основное состояние с излучением одного или нескольких гамма-квантов.
Гамма-излучение обладает намного большей проникающей способностью, чем альфа- и бета-излучение. Оно не имеет электрического заряда, обладает огромной энергией и может быть остановлено только толстым слоем железобетона, стали, свинца или другого серьезного препятствия.
Период полураспада, модели атомов и ядра, кратко
Рассмотрим общепринятую модель строения атома. В центре находится заряженное ядро, внутри которого — нейтральные нейтроны и положительно заряженные протоны. Почти вся масса атома приходится на тяжелое ядро. Вокруг положительно заряженного ядра движутся легкие отрицательно заряженные электроны. В невозбужденном состоянии и вне реакции количество протонов и электронов, как правило, равно, так что атом электронейтрален.
Наглядная схема представлена ниже.
Одной из главных характеристик радиоактивных атомов является его время жизни. Число ежесекундно происходящих распадов пропорционально количеству имеющихся атомов.
На основе периода полураспада некоторых радиоизотопов основан исторический метод радиоизотопного датирования. Для определения возраста некоторых объектов определяют, какая доля радиоактивного изотопа в составе успела распасться. Используют:
Любой радиоактивный распад происходит по закону радиоактивного распада. Математически данный закон выражается в следующем виде:
где N — число нераспавшихся атомов в любой момент времени, N_0 — число радиоактивных атомов в начальный момент времени, T — период полураспада, t — период времени.