в каком году была построена первая аэс в россии ответ
Пуск первой в мире атомной электростанции
ВЕЛИКИЙ ПЕРЕВОРОТ В ЖИЗНИ ЧЕЛОВЕЧЕСТВА
7 июня 1954 г. в поселке Обнинское Калужской области в Физико-энергетическом институте имени А.И. Лейпунского (Лаборатория «В») был осуществлен пуск первой в мире атомной электростанции, оснащенной одним уран-графитовым канальным реактором с водяным теплоносителем АМ-1 («атом мирный») мощностью 5 МВт. С этой даты начался отсчет истории атомной энергетики.
В мае 1954 г. был запущен реактор, а в июне того же года Обнинская атомная электростанция дала первый промышленный ток, открыв дорогу использованию атомной энергии в мирных целях. Обнинская АЭС успешно проработала почти 48 лет. 29 апреля 2002 г. в 11 ч. 31 мин. по московскому времени был навсегда заглушен реактор первой в мире атомной электростанции в Обнинске. Как сообщила пресс-служба Министерства Российской Федерации по атомной энергии, станция была остановлена исключительно по экономическим соображениям, поскольку «поддержание ее в безопасном состоянии с каждым годом становилось все дороже». Помимо выработки энергии, реактор Обнинской атомной электростанции также служил базой для экспериментальных исследований и для выработки изотопов для нужд медицины.
Опыт эксплуатации первой, по сути экспериментальной, атомной станции полностью подтвердил инженерно-технические решения, предложенные специалистами атомной отрасли, что позволило приступить к реализации широкомасштабной программы по строительству новых атомных электростанций в Советском Союзе. Обнинская АЭС еще во времена строительства и пуска превратилась в замечательную школу подготовки строительных и монтажных кадров, научных работников и эксплуатационного персонала. Эту свою роль АЭС выполняла многие десятилетия во время промышленной эксплуатации и многочисленных экспериментальных работ на ней. Обнинскую школу прошли такие известные в атомной энергетике специалисты как: Г. Шашарин, А. Григорьянц, Ю. Евдокимов, М. Колмановский, Б. Семенов, В. Коночкин, П. Палибин, А. Красин и многие другие.
В 1953 году на одном из совещаний министр Минсредмаша СССР В. А. Малышев поставил перед Курчатовым, Александровым и другими учеными вопрос о разработке атомного реактора для мощного ледокола, в котором нуждалась страна, чтобы существенно продлить навигацию в наших северных морях, а потом сделать ее круглогодичной. Крайнему Северу уделялось тогда особое внимание как важнейшему хозяйственному и стратегическому региону. Прошло 6 лет, и первый в мире атомный ледокол «Ленин» вышел в свое первое плавание. Этот ледокол прослужил 30 лет в тяжелых условиях Арктики. Одновременно с ледоколом строилась атомная подводная лодка (АПЛ). Правительственное решение о ее строительстве было подписано в 1952 году, а в августе 1957 года лодку спустили на воду. Эта первая советская АПЛ получила название «Ленинский комсомол». Она совершила подледный поход к Северному полюсу и благополучно вернулась на базу.
«Энергетика мира вступила в новую эпоху. Это случилось 27 июня 1954 г. Человечество еще далеко не осознало важности этой новой эпохи».
Академик А.П. Александров
«В Советском Союзе усилиями ученых и инженеров успешно завершены работы по проектированию и строительству первой промышленной электростанции на атомной энергии полезной мощностью 5000 киловатт. 27 июня атомная станция была пущена в эксплуатацию и дала электрический ток для промышленности и сельского хозяйства прилежащих районов.
Лондон, 1 июля (ТАСС). Сообщение о пуске в СССР первой промышленной электростанции на атомной энергии широко отмечается английской печатью, Московский корреспондент «Дейли уоркер» пишет, что это историческое событие «имеет неизмеримо большее значение, чем сброс первой атомной бомбы на Хиросиму.
Париж, 1 июля (ТАСС). Лондонский корреспондент агентства Франс Пресс передает, что сообщение о пуске в СССР первой в мире промышленной электростанции, работающей на атомной энергии, встречено в лондонских кругах специалистов-атомников с большим интересом. Англия, продолжает корреспондент, строит атомную электростанцию в Колдерхолле. Полагают, что она сможет вступить в строй не ранее чем через 2,5 года.
Ядерное наследие первенца атомной энергетики СССР
В 1954 году в СССР, в Обнинске, построили и запустили Первую в мире атомную станцию. Ее реактор АМ (Атом мирный) был небольшой мощности, вся станция выдавала всего 5 МВт электроэнергии, но ее запуск положил начало освоению мирной атомной энергии. Через 4 года, в 1958 г., был введён в эксплуатацию первый энергоблок Сибирской атомной электростанции мощностью 100 МВт, на Сибирском химическом комбинате. Однако, эта станция была двойного назначения. Ее реактор ЭИ-2 стали использовать для производства электроэнергии и тепла, но основной его задачей было производство оружейного плутония. Первой же гражданской атомной станцией большой мощности стала Белоярская АЭС. Сейчас ее первые реакторы уже остановлены. Эта статья как раз об их истории, о сложностях обращения с накопленным отработанным ядерным топливом и путях решения связанных с ним проблем.
Белоярская АЭС. На переднем плане первая очередь станции с реакторами АМБ. Источник.
Реакторы АМБ
О строительстве и устройстве Белоярской АЭС в 1960-е можно посмотреть вот этот документальный ролик — Белоярская АЭС им. И. В Курчатова, 1965
Во-многом, работа этих реакторов носила исследовательский характер, полученные данные по ее работе послужили основой для создания в десятки раз более мощных реакторов РБМК, составивших основу советской атомной энергетики 1970-х-1980-х годов.
На реакторах АМБ впервые в промышленном масштабе апробировалась схема ядерного перегрева пара в целях повышения коэффициента полезного действия (достигнуто значение в 37 %). Однако эксплуатация энергоблоков АМБ сопровождалась и значительным количеством отклонений и нарушений в работе. Бывали и аварии.
Так, 25 мая 1976 года на втором блоке при выходе на мощность, после срабатывания аварийной защиты, произошло повреждение нескольких десятков тепловыделяющих сборок (ТВС). Эта авария относилась к наиболее тяжелым по последствиям и восстановительные работы продолжались около 9 месяцев.
Белоярская АЭС и сегодня остается особенной, новаторской и экспериментальной — на ней эксплуатируются новые для отрасли решения. Сейчас тут работают единственные в мире промышленные энергоблоки с реакторами на быстрых нейтронах БН-600 и БН-800.
Самый мощный из действующих в мире промышленных реакторов на быстрых нейтронах — БН-800. Фото автора.
Первая очередь АЭС с блоками АМБ находится в режиме длительной консервации. Энергоблоки окончательно остановлены уже более 30 лет, но, по международным нормам не могут выводиться из эксплуатации пока на них осталось отработавшее топливо. Оставшееся ОЯТ из них выгрузили в бассейны выдержки, технологические отверстия в самих реакторах закрыты с использованием особой смолы-консерванта.
Блочный щит управления реактора АМБ-200. Пульт до сих пор частично используется для управления подачей тепла со станции в город Заречный и обеспечение собственных нужд БАЭС. Фото автора.
Для полного вывода из эксплуатации этих блоков необходимо в первую очередь решить вопрос с отработанным ядерным топливом (ОЯТ), которого накопилось чуть менее 300 тонн, и большая часть которого находится на станции в неудовлетворительном состоянии.
Накопленное ОЯТ реакторов АМБ относится к так называемому ядерному наследию СССР, для решения проблем которого в последние годы предпринимаются немалые усилия.
Особенности топлива АМБ
Одна из главных проблем, связанным с тем, почему переработка или безопасное хранение ОЯТ АМБ не было организовано ранее – это большое разнообразие видов этого топлива и его нестандартные габариты. За почти 38 реакторо-лет эксплуатации АМБ было испытано более 40 типов тепловыделяющих сборок (ТВС) для испарительных и пароперегревательных каналов реакторов.
Сборки с топливом имеют нестандартные размеры — 14 м в длину, что на 4 м больше, чем у ТВС самого крупного отечественного реактора РБМК. При этом топливо размещалось лишь в центральных 6 метрах, соответствовавших высоте активной зоны, а 4 метровые концевики были заполнены пирографитом. Само гранулированное топливо было тоже нетиповым — оно находилось в наполнительном материале (медь, магний или кальций), масса которого доходила до 16%. Урановое топливо с обогащением от 2 до 20% по U-235 по составу делилось на несколько групп – оксидное (близкое к современному диоксиду урана), металлический сплав с добавлением 3-9% магния, карбидное (UC).
За период эксплуатации из реакторов было извлечено 7196 топливных каналов (около 285 т ОЯТ), из которых 2227 (около 95 т ОЯТ) были отправлены на завод РТ-1 на ПО «Маяк», г. Озерск, а остальные до 2016 года оставались в приреакторных хранилищах на Белоярской АЭС. В 1970-х и 1980-х гг. исследовалась возможность переработки топлива на ПО «Маяк». Была показана принципиальная возможность организации начальных стадий процесса. Но основные проблемы были связаны с разделкой сборок и их подготовкой к растворению. До практической переработки ОЯТ дело так и не дошло, так что проблема обращения с топливом АМБ ждала своего отложенного решения.
Хранилось ОЯТ АМБ на Белоярской АЭС в двух бассейнах выдержки в 17- и 35-местных чехлах (кассетах) и в одноместных пеналах. 35-местные чехлы были изготовлены из нержавеющей стали, 17-местные — из углеродистой стали, и перед установкой в бассейн изнутри и снаружи покрывались суриком. Изначально планировалось кратковременное хранение чехлов в двух бассейнах выдержки, а затем их отправка на радиохимическую переработку на ПО «Маяк». Но в связи с распадом СССР процесс затянулся на два десятилетия.
Уже в начале 2000-х гг. наибольшую проблему представляло топливо в 17-местных кассетах. Большинство этих кассет к тому времени находилось в бассейнах выдержки более 20 лет, что превышает их расчетный 15-летний срок эксплуатации. Поэтому предполагалось, что все они потеряли свою герметичность и заполнены водой бассейнов выдержки. При этом в них были загружены облученные ТВС более ранних и несовершенных конструкций со значительно большим выгоранием, а также практически все поврежденное топливо. Всего в кассетах содержится порядка 20% поврежденных при эксплуатации ТВС. Вероятное состояние продуктов коррозии топлива – это смесь в виде пульпы из продуктов коррозии компонентов топливной композиции с фрагментами графитовых втулок. Значительное количество топлива имело магниевую матрицу, которая при повреждении герметичности оболочки твэла подвержена коррозии в воде. Топливо также может оказаться на дне бассейна.
На заводе РТ-1 ПО «Маяк» находится на хранении 131 кассета К-17 (около 95 тонн ОЯТ), которые поставлялись туда в течение 10 лет, начиная с 1972 г. Кассеты размещены в глубоководной части бассейна выдержки. Кассеты из коррозионной стали в количестве 103 шт. и 28 кассет из черной конструкционной стали хранятся в подвешенном состоянии на консолях бассейна. Для исключения коррозии они помещены в нержавеющие пеналы. Применяемый способ обеспечивает безопасное хранение ОЯТ и предотвращает загрязнение вод бассейна продуктами деления ОТВС, но не дает гарантии, что в будущем не возникнут проблемы, которые приведут в дальнейшем к разрушению топлива в кассетах, а также к необходимости отказа от хранения кассет в подвешенном состоянии.
Выбор вариантов обращения с топливом
С учетом сложности ситуации с топливом АМБ, рассматривались самые разные варианты обращения с ним: отправка на временное хранение с последующим решением вопроса о переработке; отправка на длительное хранение с последующим захоронением; разделка и помещение в пеналы на самой АЭС, а затем отправка на переработку в ПО «Маяк»; доставка ОТВС на ПО «Маяк», разделка и переработка.
Однако, из-за большого количества аварийного топлива, его продолжающейся деградации и из-за дороговизны строительства современного хранилища для такого количества нестандартного топлива, было решено переработать ОЯТ АМБ на ПО «Маяк». Для этого нужно было провести ряд неотложных мероприятий по устранению угроз безопасному хранению ОЯТ на Белоярской АЭС (например, с 2001 года была организована система очистки воды бассейна выдержки), и в то же время подготовить решение двух задач – транспортировки топлива и его дальнейшей переработке на заводе РТ-1.
Для безопасного вывоза топлива с БАЭС на ФГУП ПО «Маяк» требовалась разработка специального транспортно-упаковочного комплекта (ТУК) для длинномерных ТВС длиной около 14 м и специального вагона-контейнера, провести обоснование безопасности транспортирования и хранения поврежденного топлива, а также отработки обращения с длинномерными ТВС.
В итоге РФЯЦ-ВНИИТФ совместно с ОАО «Уралхиммаш» к 2006 году разработали и запатентовали два варианта транспортно-упаковочного контейнера ТУК-84 для загрузки 17- и 35-местных кассет с ОЯТ АМБ. Контейнер ТУК-84 имеет длину более 15 метров, диаметр до 1,4 м. Кассеты с топливом загружаются в металлический герметичный пенал, а он уже размещается в прочном контейнере толщиной более 20 см. ТУК снабжен системами контроля температуры и давления внутри пенала с топливом.
Один из вариантов конструкции для транспортирования 35-местных кассет с ТВС. Масса контейнера 86600 кг, пенала 3820 кг и 35-местной кассеты 9650 кг.
Корпус ТУК-84 изготавливают по особой рулонной технике «витого сосуда», когда стальные полосы толщиной 5 мм и шириной 1,4 м навиваются и свариваются в цилиндр переменной толщины. Подобная технология применяется в создании сосудов высокого давления в химической промышленности. В сочетании с переменным сечением она позволяет создать особо прочный корпус с минимальной массой. В итоге ТУК для перевозки длинномерного топлива АМБ имеет массу менее 90 тонн, что позволяет транспортировать его по железной дороге на специальных вагонах без ограничений.
Механические испытания ТУК-84 на падение с высоты.
К 2014 году на ОАО «Уралхиммаш» в Екатеринбурге было изготовлено 6 унифицированных ТУК-84, позволяющих транспортировать всю номенклатуру хранящихся на БАЭС чехлов с топливом АМБ. ТУК был испытан на все виды аварийного воздействия, в том числе на падение с высоты 9 м на плоскость и с 1 м на штырь.
Контейнеры приспособлены для транспортировки как автомобилем, так и железнодорожным вагоном. В 2008 году шесть вагон-контейнеров для перевозки ТУКов были произведены на вагоностроительном заводе в г. Тверь.
Внешний вид вагон-контейнеров для перевозки ТУК-84. Его длина более 28 м. Источник.
В итоге в ноябре 2016 года на ПО «Маяк» прибыл первый опытный вагон-контейнер, доставивший на радиохимический завод кассету с ОЯТ реакторов АМБ, которая была извлечена из транспортно-упаковочного комплекта и помещена в бассейн-хранилище завода РТ-1. С 30 октября 2017 такие поставки осуществляются на регулярной основе в штатном режиме. В концу 2019 года был завершен первый этап вывоза ОЯТ — было вывезено 124 кассеты с ТВС АМБ.
Посмотреть как происходит доставка топлива и его выгрузка можно вот в этом видеосюжете от информационного центра ПО «Маяк».
Переработка ОЯТ на ПО «Маяк»
На ПО «Маяк» с 1977 года работает единственный в России завод по переработке ОЯТ РТ-1. На нем перерабатывается широкий спектр топлива энергетических и исследовательских реакторов, топлива ледокольного и подводного атомного флота. Однако линии по переработке топлива АМБ в силу его специфичности и небольшой серии, на РТ-1 никогда не было. Тем не менее, ряд исследований, проведенных ранее, показал принципиальную возможность переработки ОЯТ АМБ по технологии классического ПУРЕКС-процесса с растворением топлива в кислотах и выделением ценных компонентов (урана и плутония), но без «привязки» таких работ к технологии завода РТ-1. Проведенные позже исследования показали, что эта переработка возможна на недозагруженной второй линии переработки топлива быстрых реакторов на РТ-1. Так что принципиальных сложностей с самой переработкой нет. Однако необходимо создание инфраструктуры и цехов по приему и разделке ОЯТ АМБ. Для этих задач на ПО «Маяк» проектируется специальное здание отделения разделки и пеналирования (ОРП) для подготовки к переработке топлива, как уже размещенного на «Маяке», так и топлива в кассетах при их дальнейшей поставке с Белоярской АЭС.
Проект отделение разделки и пеналирования (ОРП) на ФГУП ПО «Маяк». Источник.
В рамках ФЦП ЯРБ-1 (Федеральная целевая программа «Обеспечение ядерной и радиационной безопасности на 2008 год и на период до 2015 года») в 2012 году началось сооружение первой очереди комплекса по обращению с ОЯТ АМБ. В рамках той же программы финансировались работы по созданию ТУК-84 и необходимой инфраструктуры на самой Белоярской АЭС. В 2015 году завершен первый этап проекта подготовки отделения разделки и пеналирования ОЯТ, в том числе опытный стенд по разделке ТВС и реконструкция бассейна выдержки Б-4, позволившие с 2016 начать прием топлива на ПО «Маяк».
Опытный стенд по разделке ТВС на ПО «Маяк»
В конце 2019-го были разыграны конкурсные процедуры по достройке второго этапа ОРП («объекта 630»), стоимостью около 2 млрд рублей. Финансирование работ осуществляется уже в рамках ФЦП ЯРБ-2 (Федеральная целевая программа «Обеспечение ядерной и радиационной безопасности на 2016 – 2020 годы и на период до 2030 года»). В 2024 году планируется приступить к переработке топлива реакторов АМБ-100 и АМБ-200. До этого момента уже вывезенное топливо будет храниться на ПО «Маяк», а вывоз оставшегося ОЯТ будет произведен в 2026-2027 годах.
Стоит отметить, что решение проблемы топлива реакторов АМБ – это лишь один из примеров проблем ядерного наследия в виде накопленного топлива. Помимо него, многие реакторные установки накопили пусть небольшое по количеству, но разнообразное в силу исследовательских работ по качеству топливо, которое ранее не перерабатывалось – топливо некоторых исследовательских реакторов, экспериментальное топливо реакторов атомных подводных лодок. Часть из этого топлива дефектное. Кроме того, в большом количестве уже накопилось топливо мощных серийных реакторов АЭС – РБМК и ВВЭР-1000.
В рамках ликвидации этого ядерного наследия, на заводе РТ-1 ПО «Маяк» не только задействовали вторую технологическую нитку для переработки ОЯТ реакторов АМБ, но в 2016 году уже завершили реконструкцию и ввели в работу третью технологическую нитку. На ней можно перерабатывать топливо нескольких видов, включая то, которое раньше никогда и нигде не перерабатывалось. Например, первой операцией на модернизированной нитке стала переработка уран-бериллиевого топлива с атомных подводных лодок. На данной нитке стала возможной переработка длинномерного ОЯТ, такого как ВВЭР-1000, которого в России накоплено более шести тысяч тонн. В результате всех запланированных модернизаций, завод РТ-1 на ПО «Маяк» сможет перерабатывать практически всю номенклатуру отечественного ядерного топлива, как уже накопленного, так и вновь образующегося.
Доставка отработавшего ядерного топлива реакторов ВВЭР-1000 с Ростовской АЭС в декабре 2016. Источник.
После запуска участка разделки и переработки топлива АМБ на «Маяке», первую очередь Белоярской АЭС можно будет окончательно вывести из эксплуатации, разобрать и очистить площадку для нового промышленного строительства. Таким образом должен безопасно завершится жизненный цикл самых первых из реакторов российских АЭС промышленной мощности.
Первые атомные электростанции и их роль в развитии ядерной энергетики
Современные атомные электростанции широко распространены во всем мире, так как они обладают высокой мощностью и производительностью. Первые атомные электростанции уступали новейшим АЭС по многим характеристикам. Строительство первых АЭС было начато в середине прошлого века.
Запуск первой АЭС в СССР
Разработка плана первой АЭС была начата после успешного испытания первой в СССР атомной бомбы, когда на ядерном реакторе вырабатывался плутоний, а также было организовано производство обогащенного урана. Масштабное обсуждение перспектив и основных проблем запуска ядерных электростанций для получения энергии пришлось на осень 1949 года.
Работы по возведению первой АЭС были запущены в середине 20 века. На протяжении 4-х лет с 1950 по 1954 год была построена первая атомная станция. Первая АЭС была официально введена в действие 27 июня 1954 года на территории Советского союза, в городе Обнинске. Функционирование этой АЭС обеспечивалось благодаря реактору АМ-1, предельная мощность которого составляла всего лишь 5 МВт.
Данная электростанция бесперебойно функционировала на протяжении практически 48 лет. В апреле 2002 года реактор станции был остановлен. Решение об остановке станции было принято ввиду экономических соображений и нецелесообразности ее дальнейшего применения. Обнинская АЭС стала не только первой запущенной, но и первой остановленной атомной электростанцией в России.
Значимость первой АЭС
Первые атомные электростанции в СССР смогли открыть дорогу применению атомной энергии с мирными целями. Эксплуатация самых первых АЭС также позволила накопить инженерный и научный опыт, необходимый для дальнейшего проектирования и возведения более крупных станций.
Возведенная в Обнинске атомная электростанция еще в период строительства трансформировалась в своеобразную школу для подготовки кадров, эксплуатационного персонала и научных сотрудников. Данную роль Обнинская АЭС осуществляла на протяжении нескольких десятилетий в ходе промышленного применения и большого количества проведенных на ней экспериментов.
Первые АЭС в разных странах
Продолжительный опыт эксплуатации первой советской атомной электростанции подтвердил практически все инженерные и технические решения, выдвинутые профессионалами в данной сфере. Это предоставило возможность построить и успешно запустить в 1964 году Белоярскую АЭС, мощность которой достигла 300 МВт.
В Британии самая первая АЭС была официально запущена только в октябре 1956 года. За пределами территории Советского союза данный объект стал первой станцией промышленного предназначения в своей категории. Мощность построенной в британском населенном пункте Колдер-Холл электростанции составляла 46 МВт на момент запуска. Несколькими годами позднее началось строительство еще нескольких крупных атомных электростанций.
На территории Соединенных Штатов первая АЭС начала свою работу в 1957 году. Электростанция мощностью 60 МВт расположилась в американском штате Шиппингпорт. США остановили возведение реакторов в 1979 году после глобальной аварии на АЭС Три-Майл-Айленд. Сооружение двух новых реакторов на основе прежней станции запланировано только на 2017 год.
Произошедшая в 1986 году крупная авария на атомной электростанции в Чернобыле оказала серьезное воздействие на мировую ядерную энергетику и заставила пересмотреть ряд сопутствующих вопросов. Эксперты из разных стран активно начали решать проблему безопасности и задумались о важности международного взаимодействия с целью обеспечения максимальной безопасности АЭС.
На сегодняшний день в таких странах, как Индия, Канада, Россия, Индия, Корея, Китай, США и Финляндия, активно прорабатываются и внедряются программы дальнейшего развития атомной энергетики. В современных условиях, во всем мире на этапе возведения находятся 56 реакторов и еще 143 реактора предполагается соорудить до 2030 года.
Преимущества и недостатки использования АЭС
Потребление электроэнергии во всем мире постоянно возрастает. При этом рост потребления увеличивается более ускоренными темпами, чем выработка энергии, а практическое применение современных перспективных технических решений в данной области по многим причинам начнется через несколько лет. Решением данной проблемы становится совершенствование ядерной энергетики и возведение новых атомных электростанций. Можно выделить следующие преимущества эксплуатации атомных электростанций:
Несмотря на большое количество положительных сторон эксплуатации атомных электростанций, существует несколько проблем. Основной недостаток заключается в тяжких последствиях аварийных ситуаций, для предотвращения которых электростанции оснащаются довольно сложными системами безопасности с большими запасами и резервированием. Таким образом обеспечивается исключение повреждения центрального внутреннего механизма даже при масштабной аварии.
Большой проблемой для эксплуатации АЭС также является их уничтожение после выработки ресурсов. Стоимость их ликвидации может достигать 20% от всех затрат на их сооружение. Кроме того, по техническим соображениям для атомных электростанций является нежелательным функционирование в маневренных режимах.
Первые атомные электростанции в мире позволили сделать большой шаг в усовершенствовании ядерной энергетики. В современных условиях в России около 17% электроэнергии вырабатывается именно при помощи АЭС. По причине выгоды эксплуатации АЭС многие страны приступают к строительству новых реакторов и рассматривают их как перспективный источник электроэнергии.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.