Как транспонировать матрицу в матлабе

Документация

Много функций в MATLAB® могут взять элементы существующего массива и поместить их в различную форму или последовательность. Это может быть полезно для предварительной обработки ваших данных для последующих расчетов или анализа данных.

Изменение

reshape функционируйте изменяет размер и форму массива. Например, измените форму матрицы 3 на 4 к матрице 2 на 6.

Транспонирование и зеркальное отражение

Создайте 3х3 матрицу и вычислите транспонировать.

Подобный оператор ‘ вычисляет сопряженное транспонирование для комплексных матриц. Эта операция вычисляет сопряженное комплексное число каждого элемента и транспонирует его. Создайте комплексную матрицу 2 на 2 и вычислите ее сопряженное транспонирование.

flipud инвертирует строки матрицы в направлении «сверху вниз» и fliplr инвертирует столбцы в направлении «слева направо».

Перемена и вращение

Можно переключить элементы массива определенным числом положений с помощью circshift функция. Например, создайте матрицу 3 на 4 и переключите ее столбцы направо 2. Второй аргумент [0 2] говорит circshift переключать строки 0 мест и переключать столбцы 2 места направо.

rot90 функция может вращать матрицу против часовой стрелки 90 градусами.

Сортировка

Сортировка данных в массиве является также ценным инструментом, и MATLAB предлагает много подходов. Например, sort функциональные виды элементы каждой строки или столбца матрицы отдельно в порядке возрастания или убывания. Создайте матричный A и вид каждый столбец A в порядке возрастания.

Сортировка каждой строки в порядке убывания. Второе значение аргумента 2 указывает, что вы хотите отсортировать построчный.

Чтобы отсортировать целые строки или столбцы друг относительно друга, используйте sortrows функция. Например, отсортируйте строки A в порядке возрастания согласно элементам в первом столбце. Положения изменения строк, но порядок элементов в каждой строке сохраняются.

Похожие темы

Открытый пример

У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?

Документация MATLAB

Поддержка

© 1994-2021 The MathWorks, Inc.

1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.

2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.

4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.

5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.

Источник

Документация

Матрицы в среде MATLAB

Создание матриц

MATLAB имеет много функций, которые создают различные виды матриц. Например, можно создать симметрическую матрицу с записями на основе треугольника Паскаля:

Другим примером является 3 2 прямоугольная матрица случайных целых чисел. В этом случае первый вход к randi описывает область значений возможных значений для целых чисел, и вторые два входных параметров описывают количество строк и столбцов.

Для получения дополнительной информации о создании и работе с матрицами, смотрите Создание, конкатенацию и расширение матрицы.

Добавление и вычитание матриц

Сложение и вычитание требуют, чтобы обе матрицы имели совместимые размерности. Если размерности несовместимы, ошибка заканчивается:

Для получения дополнительной информации см. Массив по сравнению Матричные операции.

Векторные произведения и транспонируют

Если x и y являются оба действительными вектор-столбцами, то продукт x*y не задан, но эти два продукта

Комплексное сопряженное транспонирование z :

Неспрягаемый комплекс транспонирует, где комплексная часть каждого элемента сохраняет свой знак, обозначается z.’ :

Умножение матриц

Прямоугольные умножения матриц должны удовлетворить условия совместимости размерности. Поскольку A имеет размер 3х3, и C 3 2, можно умножить их, чтобы добраться 3 2 результат (общие внутренние отмены размерности):

Однако умножение не работает в обратном порядке:

Можно умножить что-либо со скаляром:

Единичная матрица

Общепринятое математическое обозначение использует прописную букву I, чтобы обозначить единичные матрицы, матрицы различных размеров с единицами на основной диагонали и нулях в другом месте. Эти матрицы имеют свойство, что A I = A и I A = A каждый раз, когда размерности совместимы.

Исходная версия MATLAB не могла использовать I с этой целью, потому что это не различало прописные и строчные буквы, и i уже служил индексом и как комплексной единицей. Таким образом, английская игра слов языка была введена. Функция

возвращает m-by- n прямоугольная единичная матрица, и eye(n) возвращает n-by- n квадратная единичная матрица.

Матричная инверсия

Продукт тензора Кронекера

Кронекеров продукт часто используется с матрицами нулей и единиц, чтобы создать повторенные копии маленьких матриц. Например, если X является матрицей 2 на 2

и I = eye(2,2) является единичной матрицей 2 на 2, затем:

Векторные и матричные нормы

В случаях, где вы хотите вычислить норму каждой строки или столбец матрицы, можно использовать vecnorm :

Используя многопоточное вычисление с функциями линейной алгебры

MATLAB поддерживает многопоточное вычисление во многой линейной алгебре и поэлементных числовых функциях. Эти функции автоматически выполняются на нескольких потоках. Для функции или выражения, чтобы выполниться быстрее на нескольких центральных процессорах, много условий должны быть верными:

Функция выполняет операции, что легко раздел в разделы, которые выполняются одновременно. Эти разделы должны смочь выполниться с небольшой связью между процессами. Они должны потребовать немногих последовательных операций.

Размер данных является достаточно большим так, чтобы любые преимущества параллельного выполнения перевесили время, требуемое разделить данные и управлять отдельными потоками выполнения. Например, большинство функций убыстряется только, когда массив содержит несколько тысяч элементов или больше.

Операция не ограничена памятью; время вычислений не во власти времени доступа к памяти. Как правило сложные функции ускоряют больше, чем простые функции.

Источник

Документация

Транспонируйте вектор или матрицу

Синтаксис

Описание

B = transpose( A ) альтернативный путь состоит в том, чтобы выполнить A.’ и включает перегрузку операторов для классов.

Примеры

Действительная матрица

Комплексная матрица

Входные параметры

A — Входной массив
вектор | матрица

Входной массив в виде вектора или матрицы.

Типы данных: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | logical | char | string | struct | cell | categorical | datetime | duration | calendarDuration
Поддержка комплексного числа: Да

Советы

Расширенные возможности

Генерация кода C/C++
Генерация кода C и C++ с помощью MATLAB® Coder™.

Генерация кода графического процессора
Сгенерируйте код CUDA® для NVIDIA® графические процессоры с помощью GPU Coder™.

Генерация HDL-кода
Сгенерируйте Verilog и код VHDL для FPGA и проекты ASIC с помощью HDL Coder™.

Эта функция полностью поддерживает основанные на потоке среды. Для получения дополнительной информации смотрите функции MATLAB Запуска в Основанной на потоке Среде.

Массивы графического процессора
Ускорьте код путем работы графического процессора (GPU) с помощью Parallel Computing Toolbox™.

Распределенные массивы
Большие массивы раздела через объединенную память о вашем кластере с помощью Parallel Computing Toolbox™.

Смотрите также

Открытый пример

У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?

Документация MATLAB

Поддержка

© 1994-2021 The MathWorks, Inc.

1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.

2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.

4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.

5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.

Источник

Документация

Матрицы в среде MATLAB

Создание матриц

MATLAB имеет много функций, которые создают различные виды матриц. Например, можно создать симметрическую матрицу с записями на основе треугольника Паскаля:

Другим примером является 3 2 прямоугольная матрица случайных целых чисел. В этом случае первый вход к randi описывает область значений возможных значений для целых чисел, и вторые два входных параметров описывают количество строк и столбцов.

Вектор-столбцом является m-by-1 матрица, вектор-строка является 1 n матрицей, и скаляр является матрицей 1 на 1. Чтобы задать матрицу вручную, используйте квадратные скобки [ ] обозначить начало и конец массива. В скобках используйте точку с запятой ; обозначить конец строки. В случае скаляра (матрица 1 на 1), не требуются скобки. Например, эти операторы производят вектор-столбец, вектор-строку и скаляр:

Для получения дополнительной информации о создании и работе с матрицами, смотрите Создание, конкатенацию и расширение матрицы.

Сложение и вычитание матриц

Сложение и вычитание требуют, чтобы обе матрицы имели совместимые размерности. Если размерности несовместимы, ошибка заканчивается:

Для получения дополнительной информации см. Массив по сравнению Матричные операции.

Векторные произведения и транспонирование

Для векторов перемещение превращает вектор-строку в вектор-столбец (и наоборот):

Если x и y оба действительные вектор-столбцы, затем продукт x*y не задан, но эти два продукта

Комплексное сопряженное транспонирование z :

Неспрягаемый комплекс транспонирует, где комплексная часть каждого элемента сохраняет свой знак, обозначается z.’ :

Для комплексных векторов, эти два скалярных произведения x’*y и y’*x сопряженные комплексные числа друг друга и скалярное произведение x’*x из комплексного вектора с собой действительно.

Умножение матриц

Матрица A может быть умножена справа вектор-столбцом и слева вектором-строкой:

Прямоугольные умножения матриц должны удовлетворить условиям совместимости размерности. Начиная с A имеет размер 3х3 и C 3 2, можно умножить их, чтобы добраться 3 2 результат (общие внутренние отмены размерности):

Однако умножение не работает в обратном порядке:

Можно умножить что-либо со скаляром:

Единичная матрица

Общепринятое математическое обозначение использует прописную букву I, чтобы обозначить единичные матрицы, матрицы различных размеров с единицами на основной диагонали и нулях в другом месте. Эти матрицы имеют свойство, что A I = A и I A = A каждый раз, когда размерности совместимы.

Исходная версия MATLAB не могла использовать I с этой целью, потому что это не различало прописные и строчные буквы, и i уже служил индексом и как комплексной единицей. Таким образом, английская игра слов языка была введена. Функция

возвращает m-by- n прямоугольная единичная матрица и eye(n) возвращает n-by- n квадратная единичная матрица.

Обращение матриц

Продукт тензора Кронекера

Кронекеров продукт часто используется с матрицами нулей и единиц, чтобы создать повторенные копии маленьких матриц. Например, если X матрица 2 на 2

и I = eye(2,2) единичная матрица 2 на 2, затем:

Векторные и матричные нормы

В случаях, где вы хотите вычислить норму каждой строки или столбца матрицы, можно использовать vecnorm :

Используя многопоточное вычисление с функциями линейной алгебры

MATLAB поддерживает многопоточный расчет во многой линейной алгебре и поэлементных числовых функциях. Эти функции автоматически выполняются на нескольких потоках. Для функции или выражения, чтобы выполниться быстрее на нескольких центральных процессорах, много условий должны быть верными:

Функция выполняет операции, что легко раздел в разделы, которые выполняются одновременно. Эти разделы должны смочь выполниться с небольшой связью между процессами. Они должны потребовать немногих последовательных операций.

Размер данных является достаточно большим так, чтобы любые преимущества параллельного выполнения перевесили время, требуемое разделить данные и управлять отдельными потоками выполнения. Например, большинство функций убыстряется только, когда массив содержит несколько тысяч элементов или больше.

Операция не ограничена памятью; время вычислений не во власти времени доступа к памяти. Как правило сложные функции ускоряют больше, чем простые функции.

Источник

Документация

Матрицы в среде MATLAB

Создание матриц

MATLAB имеет много функций, которые создают различные виды матриц. Например, можно создать симметрическую матрицу с записями на основе треугольника Паскаля:

Другим примером является 3 2 прямоугольная матрица случайных целых чисел. В этом случае первый вход к randi описывает область значений возможных значений для целых чисел, и вторые два входных параметров описывают количество строк и столбцов.

Вектор-столбцом является m-by-1 матрица, вектор-строка является 1 n матрицей, и скаляр является матрицей 1 на 1. Чтобы задать матрицу вручную, используйте квадратные скобки [ ] обозначить начало и конец массива. В скобках используйте точку с запятой ; обозначить конец строки. В случае скаляра (матрица 1 на 1), не требуются скобки. Например, эти операторы производят вектор-столбец, вектор-строку и скаляр:

Для получения дополнительной информации о создании и работе с матрицами, смотрите Создание, конкатенацию и расширение матрицы.

Сложение и вычитание матриц

Сложение и вычитание требуют, чтобы обе матрицы имели совместимые размерности. Если размерности несовместимы, ошибка заканчивается:

Для получения дополнительной информации см. Массив по сравнению Матричные операции.

Векторные произведения и транспонирование

Для векторов перемещение превращает вектор-строку в вектор-столбец (и наоборот):

Если x и y оба действительные вектор-столбцы, затем продукт x*y не задан, но эти два продукта

Комплексное сопряженное транспонирование z :

Неспрягаемый комплекс транспонирует, где комплексная часть каждого элемента сохраняет свой знак, обозначается z.’ :

Для комплексных векторов, эти два скалярных произведения x’*y и y’*x сопряженные комплексные числа друг друга и скалярное произведение x’*x из комплексного вектора с собой действительно.

Умножение матриц

Матрица A может быть умножена справа вектор-столбцом и слева вектором-строкой:

Прямоугольные умножения матриц должны удовлетворить условиям совместимости размерности. Начиная с A имеет размер 3х3 и C 3 2, можно умножить их, чтобы добраться 3 2 результат (общие внутренние отмены размерности):

Однако умножение не работает в обратном порядке:

Можно умножить что-либо со скаляром:

Единичная матрица

Общепринятое математическое обозначение использует прописную букву I, чтобы обозначить единичные матрицы, матрицы различных размеров с единицами на основной диагонали и нулях в другом месте. Эти матрицы имеют свойство, что A I = A и I A = A каждый раз, когда размерности совместимы.

Исходная версия MATLAB не могла использовать I с этой целью, потому что это не различало прописные и строчные буквы, и i уже служил индексом и как комплексной единицей. Таким образом, английская игра слов языка была введена. Функция

возвращает m-by- n прямоугольная единичная матрица и eye(n) возвращает n-by- n квадратная единичная матрица.

Обращение матриц

Продукт тензора Кронекера

Кронекеров продукт часто используется с матрицами нулей и единиц, чтобы создать повторенные копии маленьких матриц. Например, если X матрица 2 на 2

и I = eye(2,2) единичная матрица 2 на 2, затем:

Векторные и матричные нормы

В случаях, где вы хотите вычислить норму каждой строки или столбца матрицы, можно использовать vecnorm :

Используя многопоточное вычисление с функциями линейной алгебры

MATLAB поддерживает многопоточный расчет во многой линейной алгебре и поэлементных числовых функциях. Эти функции автоматически выполняются на нескольких потоках. Для функции или выражения, чтобы выполниться быстрее на нескольких центральных процессорах, много условий должны быть верными:

Функция выполняет операции, что легко раздел в разделы, которые выполняются одновременно. Эти разделы должны смочь выполниться с небольшой связью между процессами. Они должны потребовать немногих последовательных операций.

Размер данных является достаточно большим так, чтобы любые преимущества параллельного выполнения перевесили время, требуемое разделить данные и управлять отдельными потоками выполнения. Например, большинство функций убыстряется только, когда массив содержит несколько тысяч элементов или больше.

Операция не ограничена памятью; время вычислений не во власти времени доступа к памяти. Как правило сложные функции ускоряют больше, чем простые функции.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *