что такое визуальная память в пк
Что на самом деле может виртуальная память
Мы в 1cloud стараемся рассказывать о различных технологиях — например, контейнерах, SSL или флеш-памяти.
Сегодня мы продолжим тему памяти. Разработчик Роберт Элдер (Robert Elder) в своем блоге опубликовал материал с описанием возможностей виртуальной памяти, которые известны не всем инженерам. Мы представляем вашему вниманию основные мысли этой заметки.
Примечание: Исходный материал содержит большое количество сложных терминов и технологических описаний, поэтому если вы обнаружили какую-то ошибку или неточность — напишите нам личным сообщением, чтобы мы могли внести правки и сделать материал лучше.
Занявшись обновлением собственного компилятора C и написанием спецификации CPU Элдер понял, что с виртуальной памятью связано очень много вопросов, которые до конца не понятны начинающим разработчикам. По этой причине он решил написать свое интерактивное пособие.
Прежде чем переходить к статье Элдера, можете посмотреть видео, на котором Джейсон Питт (Jason Pitt) рассказывает о том, что такое виртуальная память.
Как это работает
Элдер создал на своем сайте таблицу с физическим и виртуальным представлениями 256-байтного адресного пространства. Ниже представлен скриншот этой таблицы. Интерактивная версия доступна в блоге инженера по этой ссылке.
Обозначения, встречающиеся в интерактивной таблице Элдера:
0x0 | Это указатель на страничную структуру верхнего уровня. На машинах Intel это значение хранится в регистре CR3. С ARM все немного сложнее. |
Первая страничная структура. При двухуровневой организации таблиц часто называется «директорией» страниц. В нашем случае каждая запись в директории занимает 8 бит (1 байт) и содержит информацию о месторасположении таблицы страниц. | |
Вторая страничная структура – это так называемая таблица страниц (page table). Каждая запись содержит информацию о расположении физической страницы. | |
Физическая страница, с которой в настоящий момент ведется работа. | |
Активная запись директории страниц или таблицы страниц. | |
Выбранное расположение в памяти. | |
Память, доступная для чтения (Readable Memory). В данном примере разрешения не анализируются, однако в реальной системе будет осуществляться проверка бита на соответствие требуемому методу доступа. | |
Память, доступная для записи (Writeable Memory). | |
Память, для которой разрешено выполнение (Executable Memory). | |
Недоступная виртуальная память (Inaccessible Virtual Memory). | |
Неинициализированная физическая память (Unitialised Physical Memory). К ней нельзя обратиться через адресное пространство виртуальной памяти – это вызовет страничное нарушение. | |
Недоступная физическая память (Inaccessible Physical Memory). Участки памяти, к которым нельзя получить доступ. |
Отображение адресов «один в один» (Identity Mapping)
Это один из самых простых способов отображения виртуальной памяти: каждый физический адрес отображается на такой же виртуальный адрес. Этот вариант не слишком подходит для работы многофункциональной ОС, но может быть весьма полезен для быстрой разработки некоторых систем (вот пример микроядра, над которым ведет работу Элдер).
Рекурсивное отображение (Recursive Mapping)
Чтобы управлять памятью, нужно знать, где в физической памяти располагаются страничные структуры. Когда блок управления памятью (MMU) начинает работу, вы можете взаимодействовать напрямую только с адресами виртуальной памяти. По этой причине отслеживать физические адреса бывает очень трудно.
Одним из решений этой проблемы могут служить рекурсивные таблицы страниц. Если добавить к страничной структуре верхнего уровня рекурсивную запись, то вы сможете с легкостью сказать, какой виртуальный адрес позволит получить доступ к любому физическому адресу в пределах этой структуры. Вам нужно лишь решить, какой виртуальный адрес сгенерировать, чтобы «попасть» на рекурсивную запись.
Как только вы сгенерируете виртуальные адреса, соответствующие записям в директории страниц (соединенные через рекурсивную запись), записи директории страниц можно будет считать записями таблицы страниц. Если структура записей таблицы страниц соответствует структуре записей директории страниц, то их можно считать равнозначными при трансляции адресов.
В итоге это дает возможность ссылаться на любую страничную структуру через виртуальную память. Недостатком рекурсивного отображения можно считать необходимость выделения дополнительного адресного пространства.
Отображение на одну страницу (Everything Mapped to the Same Page)
Важная особенность виртуальной памяти состоит в том, что она позволяет отображать физические страницы на множество виртуальных адресов в памяти. Это дает возможность отображать страницы, принадлежащие участку разделяемой памяти с атрибутом «только для чтения», на несколько процессов.
Страничные нарушения (Page Faults Everywhere)
Страничные нарушения возникают тогда, когда мы обращаемся к области, для которой не установлен инициализирующий бит. Еще страничное нарушение проявляется в тот момент, когда мы пытаемся провести некое действие, идущее вразрез с правами доступа (хотя в представленном примере разрешения не проверяются, в реальной системе подобное возможно).
Переключение контекста между двумя процессами (Context Switching Between 2 Processes)
Изменяя указатель на страничную структуру верхнего уровня, мы переходим в другую страничную директорию. При этом доступные адреса остаются теми же, но их содержимое меняется. Это объясняет, почему в ОС с виртуальной памятью множество процессов могут использовать один и тот же виртуальный указатель.
Решение проблемы внешней фрагментации (Solving External Fragmentation)
Внешняя фрагментация – это весьма неприятная вещь. Рассмотрим такую ситуацию: у вашего компьютера 4 ГБ памяти, но нет жесткого диска. После нескольких операций распределения памяти система оказалась в ситуации, когда все пространство памяти свободно, кроме одного байта в самой середине. В этом случае, если вам потребуется разместить большой трехгигабайтный блок, вы не сможете этого сделать (несмотря на то, что свободной памяти достаточно).
Из этой ситуации есть два выхода:
Второй вариант так же не сработает, потому что процесс ждет, что выделенный ему участок памяти будет непрерывным. Если он перестанет быть таковым, то придется создавать совершенно новый набор инструкций и сохранять информацию о том, как получить корректный адрес второй половины.
Виртуальная память помогает достаточно эффективно разрешить эту проблему. Можно с легкостью переназначить пространство виртуальных адресов, чтобы несвязанные между собой части физической памяти выглядели единым целым. В этом случае не происходит никакого перемещения данных – мы просто обновляем записи таблицы страниц.
Копирование при записи (Copy-On-Write)
Виртуальная память крайне полезна для повышения производительности при выполнении команды fork. Если делать полные копии каждой страницы памяти, которую использует процесс, то это приведет к пустой трате циклов CPU и RAM. Идея копирования при записи состоит в том, что мы просто отображаем образ памяти родительского процесса в адресное пространство дочернего процесса.
После этого ОС запрещает обоим процессам писать в эту память. Действительная копия будет создана только в исключительных ситуациях. На практике выходит так, что после создания процесса-копии большинство страниц никогда не модифицируется, а это только повышает эффективность метода, делая его менее ресурсоемким.
Эксперимент со страницами
Элдер провел эксперимент на своем компьютере с операционной системой Ubuntu 14.04. Он объявил несколько переменных подряд, чтобы посмотреть, будут ли их указатели также располагаться рядом друг с другом.
Вот, что он получил на выходе:
Видно, что указатели следуют не в заданном порядке. Элдер пошел дальше и провел еще один эксперимент, в котором показал, что константы, символы и функции хранятся в той последовательности, в которой их объявил программист. Код и объяснение вы можете найти здесь.
Вызов функции с помощью констант
В следующей программе задаются несколько произвольных констант (которые позже будут заменены) и функция, которая принимает на входе целое число и увеличивает его на 8. В данном примере функция main следует сразу за функцией func1. После запуска программа выводит информацию, необходимую для выполнения функции func1.
Можно просто скопировать эти значения в целочисленные константы, которые будут расположены в памяти одна за другой (пример может не сработать, если ваша система отличается от системы Элдера). Теперь, поскольку они находятся на одной странице, можно обратиться к ним как к исполняемым данным и использовать вместо указателя на функцию указатель на «a».
На выходе по-прежнему имеем число 37.
Виртуальная память компьютера. Как изменить объем памяти
В компьютере, как известно, есть оперативная память, используемая для хранения данных, которые нужны процессору в первую очередь, но есть также такое понятие, как виртуальная память компьютера.
Процессор постоянно решает какие-то задачи и все данные, которые нужны для его работы, помещаются в оперативную память и поскольку оперативная память имеет очень высокое быстродействие, то процессор также быстро получает доступ к необходимой информации.
Но оперативная память часто ограничена по размеру, так в домашних компьютерах, к примеру, размер ее редко превышает четыре гигабайта. Обычный размер оперативной памяти для ноутбуков, это 1 или 2 гигабайта.
Что такое виртуальная память компьютера
Для того, чтобы помочь компьютеру, несколько разгрузить оперативную память, операционная система Windows создает специальный файл, который в дальнейшем выполняет роль виртуальной памяти.
Этот файл называют также файлом подкачки – pagefile.sys, он располагаться на жестком диске компьютера и содержит атрибуты скрытый и системный.
Этот файл используется системой, чтобы хранить части программ и файлов, которые не умещаются в оперативной памяти, но необходимы для работы компьютера в данный момент.
По мере надобности Windows передает данные из файла виртуальной памяти в оперативную память и процессор получает таким образом быстрый доступ к этим данным.
Доступ к виртуальной памяти
Чтобы увидеть файл подкачки, заходим в программу Проводник и зайдем на диск С. Если отключено отображение скрытых файлов, то можно зайти в настройки программы Проводник, в меню – Упорядочить – Свойства – Параметры папок и поиска – Вид и откроется окошко Параметры папок.
Если собрана сеть, то доступ можно получить в Центре управления сетями и общим доступом. Тут опять же избираем Сервис – Параметры папок.
Откроется одноименное окно, выбираем в нем Вид и в Дополнительных параметрах снимаем пометку Скрывать защищенные системные файлы, а также нажимаем Показывать скрытые файлы, папки и диски. Жмем Применить.
Теперь на диске С появляются несколько папок и файлов, которые имеют атрибуты скрытый или системный. Здесь же можно увидеть файл pagefile.sys, который отмечен, как системный и его объем на данный момент составляет более 3 Гб.
По мере работы компьютера и запуска различных программ размер файла виртуальной памяти может увеличиваться. При этом можно увидеть, что размер свободного места на диске С непрерывно меняется.
В первую очередь это связано с тем, что работает виртуальная память, постоянно в нее помещаются какие-то файлы, фрагменты программ и поэтому этот файл постоянно изменяет свой размер.
Иногда при работе на компьютере может появиться сообщение о том, что недостаточно виртуальной памяти. Речь при этом идет как раз таки о том, что файл подкачки оказался мал.
При этом может быть две ситуации. Во-первых, место на диске С уменьшилось до таких размеров, что файл подкачки не может более увеличиваться в объеме.
Вторая ситуация, это файл подкачки ограничен в объеме пользователем и его не достаточно для хорошего функционирования компьютера.
Если появилось сообщение о недостаточности виртуальной памяти, надо сначала проверить свободное место на системном диске, как правило, это диск С.
Свободное место на диске С требуется как для работы файла подкачки, так и для работы различных программ, поскольку они создают различные временные файлы, в большинстве случаев они затем удаляются, как только работа программы будет закончена.
Объем современных жестких дисков исчисляется часто терабайтами, поэтому оставить достаточное свободное место на диске С проблем не составит.
Как изменить объем виртуальной памяти
Для изменения объема виртуальной памяти необходимо перейти из панели управления в окно Система или нажимаем клавиши Windows + Pause.
В окне Система переходим во вкладку Дополнительные параметры системы. Открывается окно Свойства системы и в нем есть блок Быстродействие.
Нажимаем на кнопку Параметры, откроется окошко Параметры быстродействия. Открываем вкладку Дополнительно, где есть раздел Виртуальная память.
Нажимаем здесь на кнопку Изменить. В открывшемся окне снимаем галочку Автоматически выбирать объем файла подкачки и отмечаем Указать размер вручную.
Если размер установлен автоматически, то операционная система будет изменять размер по своему желанию. Можно этот размер ограничить, допустим 3500 Мб.
В этом случае виртуальная память компьютера всегда будет одного размера и пространство на диске С не будет изменяться из-за файла подкачки.
Есть возможность также выбрать какой-то диапазон значений и тогда файл виртуальной памяти станет меняться в заданных пределах.
Можно установить опцию Без файла подкачки и тогда виртуальная память компьютера использоваться вообще не будет.
Тогда быстродействие операционной системы несколько повысится, потому как оперативная память работает намного быстрее, чем жесткий диск.
Но произойдет это только в том случае, если на компьютере установлено достаточно оперативной памяти.
Чаще всего файл подкачки отключить невозможно, поэтому указываем его величину вручную, либо оставляем галочку Автоматически изменять объем файла подкачки. Нажимаем OK и выбранные параметры вступают в силу после того, как компьютер будет перезагружен.
Виртуальная память
Виртуа́льная па́мять (англ. Virtual memory ) — технология управления памятью ЭВМ, разработанная для многозадачных операционных систем. При использовании данной технологии для каждой программы используются независимые схемы адресации памяти, отображающиеся тем или иным способом на физические адреса в памяти ЭВМ. Позволяет увеличить эффективность использования памяти несколькими одновременно работающими программами, организовав множество независимых адресных пространств (англ.), и обеспечить защиту памяти между различными приложениями. Также позволяет программисту использовать больше памяти, чем установлено в компьютере, за счет откачки неиспользуемых страниц на вторичное хранилище (см. Подкачка страниц).
При использовании виртуальной памяти упрощается программирование, так как программисту больше не нужно учитывать ограниченность памяти, или согласовывать использование памяти с другими приложениями. Для программы выглядит доступным и непрерывным все допустимое адресное пространство, вне зависимости от наличия в ЭВМ соответствующего объёма ОЗУ.
Применение механизма виртуальной памяти позволяет:
В настоящее время эта технология имеет аппаратную поддержку на всех современных бытовых процессорах. В то же время во встраиваемых системах и в системах специального назначения, где требуется либо очень быстрая работа, либо есть ограничения на длительность отклика (системы реального времени) виртуальная память используется относительно редко. Также в таких системах реже встречается многозадачность и сложные иерархии памяти.
Содержание
История
В 1940-е и 1950-е годы, до развития виртуальной памяти, все большие программы писались с учётом наличия двух уровней памяти — первичного и вторичного. Основной причиной введения виртуальной памяти стало не стремление увеличить объём основной памяти, а метод такого увеличения, который бы был максимально прост для программистов.
Первые системы с поддержкой виртуальной памяти появились в конце 1960-х годов. Более широкое распространение метод получил в 80-х годах (системы, использовавшие UNIX, VAX/VMS), а начиная с середины 90-х годов стал массово применяться в персональных компьютерах (в операционных системах OS/2, *BSD, Linux, Windows NT)
Страничная организация виртуальной памяти
Сегментная организация виртуальной памяти
Механизм организации виртуальной памяти, при котором виртуальное пространство делится на части произвольного размера — сегменты. Этот механизм позволяет, к примеру, разбить данные процесса на логические блоки. [2] Для каждого сегмента, как и для страницы, могут быть назначены права доступа к нему пользователя и его процессов. При загрузке процесса часть сегментов помещается в оперативную память (при этом для каждого из этих сегментов операционная система подыскивает подходящий участок свободной памяти), а часть сегментов размещается в дисковой памяти. Сегменты одной программы могут занимать в оперативной памяти несмежные участки. Во время загрузки система создает таблицу сегментов процесса (аналогичную таблице страниц), в которой для каждого сегмента указывается начальный физический адрес сегмента в оперативной памяти, размер сегмента, правила доступа, признак модификации, признак обращения к данному сегменту за последний интервал времени и некоторая другая информация. Если виртуальные адресные пространства нескольких процессов включают один и тот же сегмент, то в таблицах сегментов этих процессов делаются ссылки на один и тот же участок оперативной памяти, в который данный сегмент загружается в единственном экземпляре. Система с сегментной организацией функционирует аналогично системе со страничной организацией: время от времени происходят прерывания, связанные с отсутствием нужных сегментов в памяти, при необходимости освобождения памяти некоторые сегменты выгружаются, при каждом обращении к оперативной памяти выполняется преобразование виртуального адреса в физический. Кроме того, при обращении к памяти проверяется, разрешен ли доступ требуемого типа к данному сегменту.
Виртуальный адрес при сегментной организации памяти может быть представлен парой (g, s), где g — номер сегмента, а s — смещение в сегменте. Физический адрес получается путем сложения начального физического адреса сегмента, найденного в таблице сегментов по номеру g, и смещения s.
Недостатком данного метода распределения памяти является фрагментация на уровне сегментов и более медленное по сравнению со страничной организацией преобразование адреса.
Организация виртуальной памяти
Привет, Хабрахабр!
В предыдущей статье я рассказал про vfork() и пообещал рассказать о реализации вызова fork() как с поддержкой MMU, так и без неё (последняя, само собой, со значительными ограничениями). Но прежде, чем перейти к подробностям, будет логичнее начать с устройства виртуальной памяти.
Конечно, многие слышали про MMU, страничные таблицы и TLB. К сожалению, материалы на эту тему обычно рассматривают аппаратную сторону этого механизма, упоминая механизмы ОС только в общих чертах. Я же хочу разобрать конкретную программную реализацию в проекте Embox. Это лишь один из возможных подходов, и он достаточно лёгок для понимания. Кроме того, это не музейный экспонат, и при желании можно залезть “под капот” ОС и попробовать что-нибудь поменять.
Введение
Любая программная система имеет логическую модель памяти. Самая простая из них — совпадающая с физической, когда все программы имеют прямой доступ ко всему адресному пространству.
При таком подходе программы имеют доступ ко всему адресному пространству, не только могут “мешать” друг другу, но и способны привести к сбою работы всей системы — для этого достаточно, например, затереть кусок памяти, в котором располагается код ОС. Кроме того, иногда физической памяти может просто не хватить для того, чтобы все нужные процессы могли работать одновременно. Виртуальная память — один из механизмов, позволяющих решить эти проблемы. В данной статье рассматривается работа с этим механизмом со стороны операционной системы на примере ОС Embox. Все функции и типы данных, упомянутые в статье, вы можете найти в исходном коде нашего проекта.
Будет приведён ряд листингов, и некоторые из них слишком громоздки для размещения в статье в оригинальном виде, поэтому по возможности они будут сокращены и адаптированы. Также в тексте будут возникать отсылки к функциям и структурам, не имеющим прямого отношения к тематике статьи. Для них будет дано краткое описание, а более полную информацию о реализации можно найти на вики проекта.
Общие идеи
Аппаратная поддержка
Обращение к памяти хорошо описанно в этой хабростатье. Происходит оно следующим образом:
Процессор подаёт на вход MMU виртуальный адрес
Если MMU выключено или если виртуальный адрес попал в нетранслируемую область, то физический адрес просто приравнивается к виртуальному
Если MMU включено и виртуальный адрес попал в транслируемую область, производится трансляция адреса, то есть замена номера виртуальной страницы на номер соответствующей ей физической страницы (смещение внутри страницы одинаковое):
Если запись с нужным номером виртуальной страницы есть в TLB [Translation Lookaside Buffer], то номер физической страницы берётся из нее же
Если нужной записи в TLB нет, то приходится искать ее в таблицах страниц, которые операционная система размещает в нетранслируемой области ОЗУ (чтобы не было промаха TLB при обработке предыдущего промаха). Поиск может быть реализован как аппаратно, так и программно — через обработчик исключения, называемого страничной ошибкой (page fault). Найденная запись добавляется в TLB, после чего команда, вызвавшая промах TLB, выполняется снова.
Таким образом, при обращении программы к тому или иному участку памяти трансляция адресов производится аппаратно. Программная часть работы с MMU — формирование таблиц страниц и работа с ними, распределение участков памяти, установка тех или иных флагов для страниц, а также обработка page fault, ошибки, которая происходит при отсутствии страницы в отображении.
В тексте статьи в основном будет рассматриваться трёхуровневая модель памяти, но это не является принципиальным ограничением: для получения модели с бóльшим количеством уровней можно действовать аналогичным образом, а особенности работы с меньшим количеством уровней (как, например, в архитектуре x86 — там всего два уровня) будут рассмотрены отдельно.
Программная поддержка
Виртуальный адрес
Page Global Directory (далее — PGD) — таблица (здесь и далее — то же самое, что директория) самого высокого уровня, каждая запись в ней — ссылка на Page Middle Directory (PMD), записи которой, в свою очередь, ссылаются на таблицу Page Table Entry (PTE). Записи в PTE ссылаются на реальные физические адреса, а также хранят флаги состояния страницы.
То есть, при трёхуровневой иерархии памяти виртуальный адрес будет выглядеть так:
Значения полей PGD, PMD и PTE — это индексы в соответствующих таблицах (то есть сдвиги от начала этих таблиц), а offset — это смещение адреса от начала страницы.
В зависимости от архитектуры и режима страничной адресации, количество битов, выделяемых для каждого из полей, может отличаться. Кроме того, сама страничная иерархия может иметь число уровней, отличное от трёх: например, на x86 нет PMD.
Для обеспечения переносимости мы задали границы этих полей с помощью констант: MMU_PGD_SHIFT, MMU_PMD_SHIFT, MMU_PTE_SHIFT, которые в приведённой выше схеме равны 24, 18 и 12 соответственно их определение дано в заголовочном файле src/include/hal/mmu.h. В дальнейшем будет рассматриваться именно этот пример.
На основании сдвигов PGD, PMD и PTE вычисляются соответствующие маски адресов.
Эти макросы даны в том же заголовочном файле.
Для работы с виртуальной таблицами виртуальной памяти в некоторой области памяти хранятся указатели на все PGD. При этом каждая задача хранит в себе контекст struct mmu_context, который, по сути, является индексом в этой таблице. Таким образом, к каждой задаче относится одна таблица PGD, которую можно определить с помощью mmu_get_root(ctx).
Страницы и работа с ними
Размер страницы
В реальных (то есть не в учебных) системах используются страницы от 512 байт до 64 килобайт. Чаще всего размер страницы определяется архитектурой и является фиксированным для всей системы, например — 4 KiB.
С одной стороны, при меньшем размере страницы память меньше фрагментируется. Ведь наименьшая единица виртуальной памяти, которая может быть выделена процессу — это одна страница, а программам очень редко требуется целое число страниц. А значит, в последней странице, которую запросил процесс, скорее всего останется неиспользуемая память, которая, тем не менее, будет выделена, а значит — использована неэффективно.
С другой стороны, чем меньше размер страницы, тем больше размер страничных таблиц. Более того, при отгрузке на HDD и при чтении страниц с HDD быстрее получится записать несколько больших страниц, чем много маленьких такого же суммарного размера.
В дальнейшем речь пойдёт о страницах обычного размера.
Устройство Page Table Entry
В реализации проекта Embox тип mmu_pte_t — это указатель.
Каждая запись PTE должна ссылаться на некоторую физическую страницу, а каждая физическая страница должна быть адресована какой-то записью PTE. Таким образом, в mmu_pte_t незанятыми остаются MMU_PTE_SHIFT бит, которые можно использовать для сохранения состояния страницы. Конкретный адрес бита, отвечающего за тот или иной флаг, как и набор флагов в целом, зависит от архитектуры.
Можно установить сразу несколько флагов:
Здесь vmem_page_flags_t — 32-битное значение, и соответствующие флаги берутся из первых MMU_PTE_SHIFT бит.
Трансляция виртуального адреса в физический
Как уже писалось выше, при обращении к памяти трансляция адресов производится аппаратно, однако, явный доступ к физическим адресам может быть полезен в ряде случаев. Принцип поиска нужного участка памяти, конечно, такой же, как и в MMU.
Для того, чтобы получить из виртуального адреса физический, необходимо пройти по цепочке таблиц PGD, PMD и PTE. Функция vmem_translate() и производит эти шаги.
Сначала проверяется, есть ли в PGD указатель на директорию PMD. Если это так, то вычисляется адрес PMD, а затем аналогичным образом находится PTE. После выделения физического адреса страницы из PTE необходимо добавить смещение, и после этого будет получен искомый физический адрес.
Пояснения к коду функции.
mmu_paddr_t — это физический адрес страницы, назначение mmu_ctx_t уже обсуждалось выше в разделе “Виртуальный адрес”.
С помощью функции vmem_get_idx_from_vaddr() находятся сдвиги в таблицах PGD, PMD и PTE.
Работа с Page Table Entry
Для работы с записей в таблице страниц, а так же с самими таблицами, есть ряд функций:
Эти функции возвращают 1, если у соответствующей структуры установлен бит MMU_PAGE_PRESENT
Page Fault
Page fault — это исключение, возникающее при обращении к странице, которая не загружена в физическую память — или потому, что она была вытеснена, или потому, что не была выделена.
В операционных системах общего назначения при обработке этого исключения происходит поиск нужной странице на внешнем носителе (жёстком диске, к примеру).
Выталкивание страниц во внешнюю память и их чтение в случае page fault не реализовано. С одной стороны, это лишает возможности использовать больше физической памяти, чем имеется на самом деле, а с другой — не является актуальной проблемой для встраиваемых систем. Нет никаких ограничений, делающих невозможной реализацию данного механизма, и при желании читатель может попробовать себя в этом деле 🙂
Выделение памяти
Для виртуальных страниц и для физических страниц, которые могут быть использованы при работе с виртуальной памятью, статически резервируется некоторое место в оперативной памяти. Тогда при выделении новых страниц и директорий они будут браться именно из этого места.
Исключением является набор указателей на PGD для каждого процесса (MMU-контексты процессов): этот массив хранится отдельно и используется при создании и разрушении процесса.
Выделение страниц
Итак, выделить физическую страницу можно с помощью vmem_alloc_page
Функция page_alloc() ищет участок памяти из N незанятых страниц и возвращает физический адрес начала этого участка, помечая его как занятый. В приведённом коде virt_page_allocator ссылается на участок памяти, резервированной для выделения физических страниц, а 1 — количество необходимых страниц.
Выделение таблиц
Тип таблицы (PGD, PMD, PTE) не имеет значения при аллокации. Более того, выделение таблиц производится также с помощью функции page_alloc(), только с другим аллокатором (virt_table_allocator).
Участки памяти (Memory Area)
После добавления страниц в соответствующие таблицы нужно уметь сопоставлять участки памяти с процессами, к которым они относятся. У нас в системе процесс представлен структурой task, содержащей всю необходимую информацию для работы ОС с процессом. Все физически доступные участки адресного пространства процесса записываются в специальный репозиторий: task_mmap. Он представляет из себя список дескрипторов этих участков (регионов), которые могут быть отображены на виртуальную память, если включена соответствующая поддержка.
brk — это самый большой из всех физических адресов репозитория, данное значение необходимо для ряда системных вызовов, которые не будут рассматриваться в данной статье.
ctx — это контекст задачи, использование которого обсуждалось в разделе “Виртуальный адрес”.
struct dlist_head — это указатель на начало двусвязного списка, организация которого аналогична организации Linux Linked List.
За каждый выделенный участок памяти отвечает структура marea
Поля данной структуры имеют говорящие имена: адреса начала и конца данного участка памяти, флаги региона памяти. Поле mmap_link нужно для поддержания двусвязного списка, о котором говорилось выше.
Отображение виртуальных участков памяти на физические (Mapping)
Ранее уже рассказывалось о том, как происходит выделение физических страниц, какие данные о виртуальной памяти относятся к задаче, и теперь всё готово для того, чтобы говорить о непосредственном отображении виртуальных участков памяти на физические.
Отображение виртуальных участков памяти на физическую память подразумевает внесение соответствующих изменений в иерархию страничных директорий.
Подразумевается, что некоторый участок физической памяти уже выделен. Для того, чтобы выделить соответствующие виртуальные страницы и привязать их к физическим, используется функция vmem_map_region()
В качестве параметров передаётся контекст задачи, адрес начала физического участка памяти, а также адрес начала виртуального участка. Переменная flags содержит флаги, которые будут установлены у соответствующих записей в PTE.
Основную работу на себя берёт do_map_region(). Она возвращает 0 при удачном выполнении и код ошибки — в ином случае. Если во время маппирования произошла ошибка, то часть страниц, которые успели выделиться, нужно откатить сделанные изменения с помощью функции vmem_unmap_region(), которая будет рассмотрена позднее.
Рассмотрим функцию do_map_region() подробнее.
Макросы GET_PTE и GET_PMD нужны для лучшей читаемости кода. Они делают следующее: если в таблице памяти нужный нам указатель не ссылается на существующую запись, нужно выделить её, если нет — то просто перейти по указателю к следующей записи.
В самом начале необходимо проверить, выровнены ли под размер страницы размер региона, физический и виртуальный адреса. После этого определяется PGD, соответствующая указанному контексту, и извлекаются сдвиги из виртуального адреса (более подробно это уже обсуждалось выше).
Затем последовательно перебираются виртуальные адреса, и в соответствующих записях PTE к ним привязывается нужный физический адрес. Если в таблицах отсутствуют какие-то записи, то они будут автоматически сгенерированы при вызове вышеупомянутых макросов GET_PTE и GET_PMD.
Освобождение виртуального участка памяти (Unmapping)
После того, как участок виртуальной памяти был отображён на физическую, рано или поздно её придётся освободить: либо в случае ошибки, либо в случае завершения работы процесса.
Изменения, которые при этом необходимо внести в структуру страничной иерархии памяти, производятся с помощью функции vmem_unmap_region().
Все параметры функции, кроме последнего, должны быть уже знакомы. free_pages отвечает за то, должны ли быть удалены страничные записи из таблиц.
try_free_pte, try_free_pmd, try_free_pgd — это вспомогательные функции. При удалении очередной страницы может выясниться, что директория, её содержащая, могла стать пустой, а значит, её нужно удалить из памяти.
нужны как раз для случая двухуровневой иерархии памяти.
Заключение
Конечно, данной статьи не достаточно, чтобы с нуля организовать работу с MMU, но, я надеюсь, она хоть немного поможет погрузиться в OSDev тем, кому он кажется слишком сложным.