что такое свободный вектор
1.1. Понятие вектора. Свободный вектор
Это «альфа» и «омега» аналитической геометрии.
Сначала вспомним школьное определение вектора. Вектором называется направленный отрезок, для которого указано его начало и конец:
В данном случае началом отрезка является точка , а концом отрезка – точка
. Сам вектор обозначен через
. Направление имеет существенное значение, если переставить стрелку на другой конец отрезка, то получится вектор
, и это уже совершенно другой вектор. Понятие вектора удобно отождествлять с движением физического тела: согласитесь, зайти в двери института и выйти из дверей института – это две разные вещи.
Отдельные точки удобно считать так называемым нулевым вектором . У этого вектора начало и конец совпадают и его направление не определено.
Как многие помнят, в геометрии рассматривают векторы плоскости и векторы пространства, и излагаемые факты справедливы (если на сказано иного) как для плоскости, так и для пространства.
Обозначения: многие сразу обратили внимание на палочку без стрелочки в обозначении и сказали: «там же вверху еще стрелку ставят»! Верно, можно записать со стрелкой:
, но допустима и запись
, которую я буду использовать в дальнейшем. Такая привычка сложилась из практических соображений – слишком разнокалиберными и «мохнатыми» получались мои стрелки в школе и ВУЗе. В некоторых источниках векторы выделяют жирным шрифтом:
, подразумевая тем самым, что это вектор.
Со стилистикой разобрались и теперь о главном:
1) Векторы можно записать двумя большими латинскими буквами:
и так далее. При этом первая буква обязательно обозначает точку-начало вектора, а вторая буква – точку-конец вектора.
2) Векторы также записывают маленькими латинскими буквами:
В частности, наш вектор
можно для краткости переобозначить маленькой латинской буквой
.
Длиной или модулем ненулевого вектора называется длина отрезка
. Длина нулевого вектора
равна нулю.
Длина вектора обозначается знаком модуля: ,
Как находить длину вектора мы узнаем (или повторим, для кого как) чуть позже.
То были элементарные сведения о векторе, знакомые всем школьникам. В аналитической же геометрии рассматривается так называемый свободный вектор.
Свободный вектор – это множество сонаправленных отрезков равной длины:
Часто говорят, что «вектор, равный данному, можно отложить от любой точки», но далеко не все понимают настоящий смысл этого действия. С математической точки зрения это ОДИН И ТОТ ЖЕ ВЕКТОР. В чём состоит свобода? В ходе решения задачи вы можете «пристроить» направленный отрезок в ЛЮБУЮ, нужную вам точку плоскости или пространства. И это очень крутое свойство! Представьте направленный отрезок произвольной длины и направления – его можно «клонировать» в любой точке плоскости или пространства, по сути, он существует ВЕЗДЕ.
Следует отметить, что с точки зрения физики понятие свободного вектора в общем случае некорректно, и точка приложения вектора имеет значение. Ударьте кулаком по подушке и по кирпичу и почувствуйте разницу :). Кроме того, несвободные векторы рассматриваются и в некоторых разделах математики.
Далее, если не оговаривается иное, речь пойдёт только о свободных векторах.
Понятие вектора. Свободный вектор
Сначала повторим школьное определение вектора. Вектором называется направленныйотрезок, для которого указано его начало и конец:
В данном случае началом отрезка является точка , концом отрезка – точка
. Сам вектор обозначен через
. Направление имеет существенное значение, если переставить стрелку в другой конец отрезка, то получится вектор
, и это уже совершенно другой вектор. Понятие вектора удобно отождествлять с движением физического тела: согласитесь, зайти в двери института или выйти из дверей института – это совершенно разные вещи.
Отдельные точки плоскости, пространства удобно считать так называемым нулевым вектором . У такого вектора конец и начало совпадают.
. Примечание:Здесь и далее можете считать, что векторы лежат в одной плоскости или можете считать, что они расположены в пространстве – суть излагаемого материала справедлива и для плоскости и для пространства.
Обозначения: Многие сразу обратили внимание на палочку без стрелочки в обозначении и сказали, там же вверху еще стрелку ставят! Верно, можно записать со стрелкой:
, но допустима и запись
, которую я буду использовать в дальнейшем. Почему? Видимо, такая привычка сложилась из практических соображений, слишком разнокалиберными и мохнатыми получались мои стрелки в школе и ВУЗе. В учебной литературе иногда вообще не заморачиваются клинописью, а выделяют буквы жирным шрифтом:
, подразумевая тем самым, что это вектор.
То была стилистика, а сейчас о способах записи векторов:
1) Векторы можно записать двумя большими латинскими буквами:
и так далее. При этом первая буква обязательно обозначает точку-начало вектора, а вторая буква – точку-конец вектора.
2) Векторы также записывают маленькими латинскими буквами:
В частности, наш вектор
можно для краткости переобозначить маленькой латинской буквой
.
Длиной или модулем ненулевого вектора называется длина отрезка
. Длина нулевого вектора
равна нулю. Логично.
Длина вектора обозначается знаком модуля: ,
Как находить длину вектора мы узнаем (или повторим, для кого как) чуть позже.
То были элементарные сведения о векторе, знакомые всем школьникам. В аналитической же геометрии рассматривается так называемый свободный вектор.
Если совсем просто – вектор можно отложить от любой точки:
Такие векторы мы привыкли называть равными (определение равных векторов будет дано ниже), но чисто с математической точки зрения это ОДИН И ТОТ ЖЕ ВЕКТОР или свободный вектор. Почему свободный? Потому что в ходе решения задач вы можете «пристроить» тот или иной вектор в ЛЮБУЮ, нужную вам точку плоскости или пространства. Это очень крутое свойство! Представьте вектор произвольной длины и направления – его можно «клонировать» бесконечное количество раз и в любой точке пространства, по сути, он существует ВЕЗДЕ. Есть такая студенческая присказка: Каждому лектору в ж**у по вектору. Ведь не просто остроумная рифма, всё математически корректно – вектор можно пристроить и туда. Но не спешите радоваться, чаще страдают сами студенты =)
Итак, свободный вектор – это множество одинаковых направленных отрезков. Школьное определение вектора, данное в начале параграфа: «Вектором называется направленный отрезок…», подразумевает конкретный направленный отрезок, взятый из данного множества, который привязан к определённой точке плоскости или пространства.
Далее, если не оговаривается иное, речь пойдёт только о свободных векторах.
Понятие вектора. Свободный вектор
Действия с векторами. Коллинеарность векторов
В школьном курсе геометрии рассматривается ряд действий и правил с векторами:сложение по правилу треугольника, сложение по правилу параллелограмма, правило разности векторов, умножения вектора на число, скалярное произведение векторов и др.Для затравки повторим два правила, которые особенно актуальны для решения задач аналитической геометрии.
Правило сложения векторов по правилу треугольников
Рассмотрим два произвольных ненулевых вектора и
:
Требуется найти сумму данных векторов. В силу того, что все векторы считаются свободными, отложим вектор
от конца вектора
:
Суммой векторов и
является вектор
. Для лучшего понимания правила в него целесообразно вложить физический смысл: пусть некоторое тело совершило путь по вектору
, а затем по вектору
. Тогда сумма векторов
представляет собой вектор результирующего пути
с началом в точке отправления и концом в точке прибытия. Аналогичное правило формулируется для суммы любого количества векторов. Как говорится, тело может пройти свой путь сильно поддатым по зигзагу, а может и на автопилоте – по результирующему вектору суммы.
Кстати, если вектор отложить от начала вектора
, то получится эквивалентное правило параллелограмма сложения векторов.
Умножение вектора на число
Сначала о коллинеарности векторов. Два вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых. Грубо говоря, речь идёт о параллельных векторах. Но применительно к ним всегда используют прилагательное «коллинеарные».
Представьте два коллинеарных вектора. Если стрелки данных векторов направлены в одинаковом направлении, то такие векторы называются сонаправленными. Если стрелки смотрят в разные стороны, то векторы будут противоположно направлены.
Обозначения: коллинеарность векторов записывают привычным значком параллельности: , при этом возможна детализация:
(векторы сонаправлены) или
(векторы направлены противоположно).
Произведением ненулевого вектора на число
является такой вектор
, длина которого равна
, причём векторы
и
сонаправлены при
и противоположно направлены при
.
Правило умножения вектора на число легче понять с помощью рисунка:
Разбираемся более детально:
1) Направление. Если множитель отрицательный, то вектор меняет направление на противоположное.
2) Длина. Если множитель заключен в пределах или
, то длина векторауменьшается. Так, длина вектора
в два раза меньше длины вектора
. Если множитель
по модулю больше единицы, то длина вектора увеличивается в
раз.
3) Обратите внимание, что все векторы коллинеарны, при этом один вектор выражен через другой, например, . Обратное тоже справедливо: если один вектор можно выразить через другой, то такие векторы обязательно коллинеарны. Таким образом: если мы умножаем вектор на число, то получится коллинеарный (по отношению к исходному) вектор.
4) Векторы сонаправлены. Векторы
и
также сонаправлены. Любой вектор первой группы противоположно направлен по отношению к любому вектору второй группы.
Как найти длину отрезка?
Длина, как уже отмечалось, обозначается знаком модуля.
Если даны две точки плоскости и
, то длину отрезка
можно вычислить по формуле
Если даны две точки пространства и
, то длину отрезка
можно вычислить по формуле
Примечание: Формулы останутся корректными, если переставить местами соответствующие координаты: и
, но более стандартен первый вариант
Даны точки и
. Найти длину отрезка
.
Решение: по соответствующей формуле:
Ответ:
Для наглядности выполню чертёж
Отрезок – это не вектор, и перемещать его куда-либо, конечно, нельзя. Кроме того, если вы выполните чертеж в масштабе: 1 ед. = 1 см (две тетрадные клетки), то полученный ответ
можно проверить обычной линейкой, непосредственно измерив длину отрезка.
Да, решение короткое, но в нём есть ещё пара важных моментов, которые хотелось бы пояснить:
Во-первых, в ответе ставим размерность: «единицы». В условии не сказано, ЧТО это, миллиметры, сантиметры, метры или километры. Поэтому математически грамотным решением будет общая формулировка: «единицы» – сокращенно «ед.».
Во-вторых, повторим школьный материал, который полезен не только для рассмотренной задачи:
Обратите внимание на важный технический приём – вынесение множителя из-под корня. В результате вычислений у нас получился результат и хороший математический стиль предполагает вынесение множителя из-под корня (если это возможно). Подробнее процесс выглядит так:
. Конечно, оставить ответ в виде
не будет ошибкой – но недочетом-то уж точно и весомым аргументом для придирки со стороны преподавателя.
Вот другие распространенные случаи:
Нередко под корнем получается достаточно большое число, например . Как быть в таких случаях? На калькуляторе проверяем, делится ли число на 4:
. Да, разделилось нацело, таким образом:
. А может быть, число
ещё раз удастся разделить на 4?
. Таким образом:
. У числа
последняя цифра нечетная, поэтому разделить в третий раз на 4 явно не удастся. Пробуем поделить на девять:
. В результате:
Готово.
Вывод: если под корнем получается неизвлекаемое нацело число, то пытаемся вынести множитель из-под корня – на калькуляторе проверяем, делится ли число на: 4, 9, 16, 25, 36, 49 и т.д.
В ходе решения различных задач корни встречаются часто, всегда пытайтесь извлекать множители из-под корня во избежание более низкой оценки да ненужных заморочек с доработкой ваших решений по замечанию преподавателя.
Давайте заодно повторим возведение корней в квадрат и другие степени:
Правила действий со степенями в общем виде можно найти в школьном учебнике по алгебре, но, думаю, из приведённых примеров всё или почти всё уже ясно.
Задание для самостоятельного решения с отрезком в пространстве:
Даны точки и
. Найти длину отрезка
.
Решение и ответ в конце урока.
Как найти длину вектора?
Если дан вектор плоскости , то его длина вычисляется по формуле
.
Если дан вектор пространства , то его длина вычисляется по формуле
.
Данные формулы (как и формулы длины отрезка) легко выводятся с помощью небезызвестной теоремы Пифагора.
Даны точки и
. Найти длину вектора
.
Я взял те же точки, что и в Примере 3.
Решение: Сначала найдём вектор :
По формуле вычислим длину вектора:
Ответ:
Не забываем указывать размерность – «единицы»! Всегда ли, кстати, нужно рассчитывать приближенное значение (в данном примере 8,94), если этого не требуется в условии? С моей точки зрения, лишним не будет, отсутствие приближенного значения тянет на придирку. Округление целесообразно проводить до 2-3 знаков после запятой.
Выполним чертеж к задаче:
В чём принципиальное отличие от Примера 3? Отличие состоит в том, что здесь речь идёт о векторе, а не об отрезке. Вектор можно переместить в любую точку плоскости.
А в чём сходство Примера 3 и Примера 5? Геометрически очевидно, что длина отрезка равна длине вектора
. Так же очевидно, что длина вектора
будет такой же. По итогу:
Задачу 3 можно было решить и вторым способом, повторю условие: Даны точки и
. Найти длину отрезка
.
Вместо применения формулы , поступаем так:
1) Находим вектор .
2) А теперь ссылаемся на то, что длина отрезка равна длине вектора
:
Этот способ широко практикуется в ходе решений задач аналитической геометрии.
Вышесказанное справедливо и для пространственного случая
а) Даны точки и
. Найти длину вектора
.
б) Даны векторы ,
,
и
. Найти их длины.
Решения и ответы в конце урока.
Понятие вектора. Свободный вектор
Сначала повторим школьное определение вектора. Вектором называется направленныйотрезок, для которого указано его начало и конец:
В данном случае началом отрезка является точка , концом отрезка – точка
. Сам вектор обозначен через
. Направление имеет существенное значение, если переставить стрелку в другой конец отрезка, то получится вектор
, и это уже совершенно другой вектор. Понятие вектора удобно отождествлять с движением физического тела: согласитесь, зайти в двери института или выйти из дверей института – это совершенно разные вещи.
Отдельные точки плоскости, пространства удобно считать так называемым нулевым вектором . У такого вектора конец и начало совпадают.
. Примечание: Здесь и далее можете считать, что векторы лежат в одной плоскости или можете считать, что они расположены в пространстве – суть излагаемого материала справедлива и для плоскости и для пространства.
Обозначения: Многие сразу обратили внимание на палочку без стрелочки в обозначении и сказали, там же вверху еще стрелку ставят! Верно, можно записать со стрелкой:
, но допустима и запись
, которую я буду использовать в дальнейшем. Почему? Видимо, такая привычка сложилась из практических соображений, слишком разнокалиберными и мохнатыми получались мои стрелки в школе и ВУЗе. В учебной литературе иногда вообще не заморачиваются клинописью, а выделяют буквы жирным шрифтом:
, подразумевая тем самым, что это вектор.
То была стилистика, а сейчас о способах записи векторов:
1) Векторы можно записать двумя большими латинскими буквами:
и так далее. При этом первая буква обязательно обозначает точку-начало вектора, а вторая буква – точку-конец вектора.
2) Векторы также записывают маленькими латинскими буквами:
В частности, наш вектор
можно для краткости переобозначить маленькой латинской буквой
.
Длиной или модулем ненулевого вектора называется длина отрезка
. Длина нулевого вектора
равна нулю. Логично.
Длина вектора обозначается знаком модуля: ,
Как находить длину вектора мы узнаем (или повторим, для кого как) чуть позже.
То были элементарные сведения о векторе, знакомые всем школьникам. В аналитической же геометрии рассматривается так называемый свободный вектор.
Если совсем просто – вектор можно отложить от любой точки:
Такие векторы мы привыкли называть равными (определение равных векторов будет дано ниже), но чисто с математической точки зрения это ОДИН И ТОТ ЖЕ ВЕКТОР илисвободный вектор. Почему свободный? Потому что в ходе решения задач вы можете «пристроить» тот или иной вектор в ЛЮБУЮ, нужную вам точку плоскости или пространства. Это очень крутое свойство! Представьте вектор произвольной длины и направления – его можно «клонировать» бесконечное количество раз и в любой точке пространства, по сути, он существует ВЕЗДЕ. Есть такая студенческая присказка: Каждому лектору в ж**у по вектору. Ведь не просто остроумная рифма, всё математически корректно – вектор можно пристроить и туда. Но не спешите радоваться, чаще страдают сами студенты =)
Итак, свободный вектор – это множество одинаковых направленных отрезков. Школьное определение вектора, данное в начале параграфа: «Вектором называется направленный отрезок…», подразумевает конкретный направленный отрезок, взятый из данного множества, который привязан к определённой точке плоскости или пространства.
Далее, если не оговаривается иное, речь пойдёт только о свободных векторах.
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).