что такое скорость химического превращения
Химическая кинетика
Описание
Законы химической термодинамики позволяют определить направление и предел протекания возможного при данных условиях химического процесса, а также его энергетический эффект. Однако термодинамика не может ответить на вопросы о том, как осуществляется данный процесс и с какой скоростью. Эти вопросы – механизм и скорость химической реакции – и являются предметом химической кинетики.
Оглавление
1. Скорость химической реакции
Дадим определение основному понятию химической кинетики – скорости химической реакции:
Скорость химической реакции есть число элементарных актов химической реакции, происходящих в единицу времени в единице объема (для гомогенных реакций) или на единице поверхности (для гетерогенных реакций).
Скорость химической реакции есть изменение концентрации реагирующих веществ в единицу времени.
Первое определение является наиболее строгим; из него следует, что скорость химической реакции можно также выражать как изменение во времени любого параметра состояния системы, зависящего от числа частиц какого-либо реагирующего вещества, отнесенное к единице объема или поверхности – электропроводности, оптической плотности, диэлектрической проницаемости и т.д. и т.п. Однако наиболее часто в химии рассматривается зависимость концентрации реагентов от времени. В случае односторонних (необратимых) химических реакций (здесь и далее рассматриваются только односторонние реакции) очевидно, что концентрации исходных веществ во времени постоянно уменьшаются (ΔСисх 0). Скорость реакции считается положительной, поэтому математически определение средней скорости реакции в интервале времени Δt записывается следующим образом:
В различных интервалах времени средняя скорость химической реакции имеет разные значения; истинная (мгновенная) скорость реакции определяется как производная от концентрации по времени:
Графическое изображение зависимости концентрации реагентов от времени есть кинетическая кривая (рисунок 2.1).
Рис. 2.1 Кинетические кривые для исходных веществ (А) и продуктов реакции (В).
Истинную скорость реакции можно определить графически, проведя касательную к кинетической кривой (рис. 2.2); истинная скорость реакции в данный момент времени равна по абсолютной величине тангенсу угла наклона касательной:
Рис. 2.2 Графическое определение Vист.
Необходимо отметить, что в том случае, если стехиометрические коэффициенты в уравнении химической реакции неодинаковы, величина скорости реакции будет зависеть от того, изменение концентрации какого реагента определялось. Очевидно, что в реакции
концентрации водорода, кислорода и воды изменяются в различной степени:
Скорость химической реакции зависит от множества факторов: природы реагирующих веществ, их концентрации, температуры, природы растворителя и т.д.
Одной из задач, стоящих перед химической кинетикой, является определение состава реакционной смеси (т.е. концентраций всех реагентов) в любой момент времени, для чего необходимо знать зависимость скорости реакции от концентраций. В общем случае, чем больше концентрации реагирующих веществ, тем больше скорость химической реакции. В основе химической кинетики лежит т. н. основной постулат химической кинетики:
Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в некоторых степенях.
Коэффициент пропорциональности k есть константа скорости химической реакции. Константа скорости численно равна скорости реакции при концентрациях всех реагирующих веществ, равных 1 моль/л.
Зависимость скорости реакции от концентраций реагирующих веществ определяется экспериментально и называется кинетическим уравнением химической реакции. Очевидно, что для того, чтобы записать кинетическое уравнение, необходимо экспериментально определить величину константы скорости и показателей степени при концентрациях реагирующих веществ. Показатель степени при концентрации каждого из реагирующих веществ в кинетическом уравнении химической реакции (в уравнении (II.4) соответственно x, y и z) есть частный порядок реакции по данному компоненту. Сумма показателей степени в кинетическом уравнении химической реакции (x + y + z) представляет собой общий порядок реакции. Следует подчеркнуть, что порядок реакции определяется только из экспериментальных данных и не связан со стехиометрическими коэффициентами при реагентах в уравнении реакции. Стехиометрическое уравнение реакции представляет собой уравнение материального баланса и никоим образом не может определять характера протекания этой реакции во времени.
В химической кинетике принято классифицировать реакции по величине общего порядка реакции. Рассмотрим зависимость концентрации реагирующих веществ от времени для необратимых (односторонних) реакций нулевого, первого и второго порядков.
1.1. Кинетическое уравнение химической реакции. Порядок реакции
Одной из задач, стоящих перед химической кинетикой, является определение состава реакционной смеси (т.е. концентраций всех реагентов) в любой момент времени, для чего необходимо знать зависимость скорости реакции от концентраций. В общем случае, чем больше концентрации реагирующих веществ, тем больше скорость химической реакции. В основе химической кинетики лежит т. н. основной постулат химической кинетики:
Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в некоторых степенях.
Коэффициент пропорциональности k есть константа скорости химической реакции. Константа скорости численно равна скорости реакции при концентрациях всех реагирующих веществ, равных 1 моль/л.
Зависимость скорости реакции от концентраций реагирующих веществ определяется экспериментально и называется кинетическим уравнением химической реакции. Очевидно, что для того, чтобы записать кинетическое уравнение, необходимо экспериментально определить величину константы скорости и показателей степени при концентрациях реагирующих веществ. Показатель степени при концентрации каждого из реагирующих веществ в кинетическом уравнении химической реакции (в уравнении (II.4) соответственно x, y и z) есть частный порядок реакции по данному компоненту. Сумма показателей степени в кинетическом уравнении химической реакции (x + y + z) представляет собой общий порядок реакции. Следует подчеркнуть, что порядок реакции определяется только из экспериментальных данных и не связан со стехиометрическими коэффициентами при реагентах в уравнении реакции. Стехиометрическое уравнение реакции представляет собой уравнение материального баланса и никоим образом не может определять характера протекания этой реакции во времени.
В химической кинетике принято классифицировать реакции по величине общего порядка реакции. Рассмотрим зависимость концентрации реагирующих веществ от времени для необратимых (односторонних) реакций нулевого, первого и второго порядков.
1.2. Реакции нулевого порядка
Для реакций нулевого порядка кинетическое уравнение имеет следующий вид:
Скорость реакции нулевого порядка постоянна во времени и не зависит от концентраций реагирующих веществ; это характерно для многих гетерогенных (идущих на поверхности раздела фаз) реакций в том случае, когда скорость диффузии реагентов к поверхности меньше скорости их химического превращения.
1.3. Реакции первого порядка
Рассмотрим зависимость от времени концентрации исходного вещества А для случая реакции первого порядка А → В. Реакции первого порядка характеризуются кинетическим уравнением вида (II.6). Подставим в него выражение (II.2):
После интегрирования выражения (II.7) получаем:
Константу интегрирования g определим из начальных условий: в момент времени t = 0 концентрация С равна начальной концентрации Со. Отсюда следует, что g = ln Со. Получаем:
Рис. 2.3 Зависимость логарифма концентрации от времени для реакций первого порядка.
Т.о., логарифм концентрации для реакции первого порядка линейно зависит от времени (рис. 2.3) и константа скорости численно равна тангенсу угла наклона прямой к оси времени.
Из уравнения (II.9) легко получить выражение для константы скорости односторонней реакции первого порядка:
Еще одной кинетической характеристикой реакции является период полупревращения t1/2 – время, за которое концентрация исходного вещества уменьшается вдвое по сравнению с исходной. Выразим t1/2 для реакции первого порядка, учитывая, что С = ½Со:
Как видно из полученного выражения, период полупревращения реакции первого порядка не зависит от начальной концентрации исходного вещества.
1.4. Реакции второго порядка
Для реакций второго порядка кинетическое уравнение имеет следующий вид:
Рассмотрим простейший случай, когда кинетическое уравнение имеет вид (II.14) или, что то же самое, в уравнении вида (II.15) концентрации исходных веществ одинаковы; уравнение (II.14) в этом случае можно переписать следующим образом:
После разделения переменных и интегрирования получаем:
Постоянную интегрирования g, как и в предыдущем случае, определим из начальных условий. Получим:
Таким образом, для реакций второго порядка, имеющих кинетическое уравнение вида (II.14), характерна линейная зависимость обратной концентрации от времени (рис. 2.4) и константа скорости равна тангенсу угла наклона прямой к оси времени:
Рис. 2.4 Зависимость обратной концентрации от времени для реакций второго порядка.
Если начальные концентрации реагирующих веществ Cо,А и Cо,В различны, то константу скорости реакции находят интегрированием уравнения (II.21), в котором CА и CВ – концентрации реагирующих веществ в момент времени t от начала реакции:
В этом случае для константы скорости получаем выражение
Порядок химической реакции есть формально-кинетическое понятие, физический смысл которого для элементарных (одностадийных) реакций заключается в следующем: порядок реакции равен числу одновременно изменяющихся концентраций. В случае элементарных реакций порядок реакции может быть равен сумме коэффициентов в стехиометрическом уравнении реакции; однако в общем случае порядок реакции определяется только из экспериментальных данных и зависит от условий проведения реакции. Рассмотрим в качестве примера элементарную реакцию гидролиза этилового эфира уксусной кислоты (этилацетата), кинетика которой изучается в лабораторном практикуме по физической химии:
Если проводить эту реакцию при близких концентрациях этилацетата и воды, то общий порядок реакции равен двум и кинетическое уравнение имеет следующий вид:
При проведении этой же реакции в условиях большого избытка одного из реагентов (воды или этилацетата) концентрация вещества, находящегося в избытке, практически не изменяется и может быть включена в константу скорости; кинетическое уравнение для двух возможных случаев принимает следующий вид:
2) Избыток этилацетата:
В этих случаях мы имеем дело с так назывемой реакцией псевдопервого порядка. Проведение реакции при большом избытке одного из исходных веществ используется для определения частных порядков реакции.
1.5. Методы определения порядка реакции
Проведение реакции в условиях, когда концентрация одного из реагентов много меньше концентрации другого (других) и скорость реакции зависит от концентрации только этого реагента, используется для определения частных порядков реакции – это т.н. метод избыточных концентраций или метод изолирования Оствальда. Порядок реакции по данному веществу определяется одним из перечисленных ниже методов.
Графический метод заключается в построении графика зависимости концентрации реагента от времени в различных координатах. Для различных частных порядков эти зависимости имеют следующий вид:
Зависимость концентрации от времени
Если построить графики этих зависимостей на основании опытных данных, то лишь одна из них будет являться прямой линией. Если, например, график, построенный по опытным данным, оказался прямолинейным к координатах lnC = f(t), то частный порядок реакции по данному веществу равен единице.
Метод подбора кинетического уравнения заключается в подстановке экспериментальных данных изучения зависимости концентрации вещества от времени в кинетические уравнения различных порядков. Подставляя в приведённые в таблице уравнения значения концентрации реагента в разные моменты времени, вычисляют значения константы скорости. Частный порядок реакции по данному веществу равен порядку того кинетического уравнения, для которого величина константы скорости остаётся постоянной во времени.
Выражение для константы скорости
Метод определения времени полупревращения заключается в определении t1/2 для нескольких начальных концентраций. Как видно из приведённых в таблице уравнений, для реакции первого порядка время полупревращения не зависит от Co, для реакции второго порядка – обратно пропорционально Co, и для реакции третьего порядка – обратно пропорционально квадрату начальной концентрации.
Скорость химических реакций в химии
Содержание:
Скорость химической реакции — это величина, показывающая как изменяются концентрации исходных веществ или продуктов реакции за единицу времени.
На странице -> решение задач по химии собраны решения задач и заданий с решёнными примерами по всем темам химии.
Скорость химических реакций
Сущность химических реакций сводится к разрыву связей в исходных веществах и возникновению новых связей в продуктах реакции. При этом общее число атомов каждого элемента до и после реакции остается постоянным. Поскольку образование связей происходит с выделением, а разрыв связей — с поглощением энергии, то химические реакции сопровождаются энергетическими эффектами. Очевидно, если разрушаемые связи в исходных веществах менее прочны, чем образующиеся в продуктах реакции, то энергия выделяется, и наоборот. Обычно энергия выделяется и поглощается в форме теплоты.
Со скоростью химических реакций связаны представления о превращении веществ, а также экономическая эффективность их получения в промышленных масштабах. Учение о скоростях и механизмах химических реакций называется химической кинетикой.
Под скоростью химической реакции понимают изменение концентрации одного из реагирующих веществ в единицу времени при неизменном объеме системы.
При этом безразлично, о каком из участвующих в реакции веществе идет речь: все они связаны между собой уравнением реакции, и по изменению концентрации одного из веществ можно судить о соответствующих изменениях концентраций всех остальных. Обычно концентрацию выражают в моль/л, а время — в секундах или минутах. Если, например, исходная концентрация одного из реагирующих веществ составляла 1 моль/л, а через 4 с от начала реакции она стала 0,6 моль/л, то средняя скорость реакции будет равна (1—0,6)/4= 0,1 моль/(лс).
Рассмотрим в общем виде скорость реакции, протекающей по уравнению
По мере расходования вещества А скорость реакции уменьшается (как это показано на рис. 4.1).
Отсюда следует, что скорость реакции может быть определена лишь для некоторого промежутка времени. Так как концентрация вещества А в момент времени измеряется величиной
, а в момент
— величиной
, то за промежуток времени
изменение концентрации вещества составит
, откуда определится средняя скорость реакции
:
Знак минус ставится потому, что, несмотря на убывание концентрации вещества А и, следовательно, на отрицательное значение разности , скорость реакции может быть только положительной величиной. Можно также следить за изменением концентрации одного из продуктов реакции — веществ С или D; она в ходе реакции будет возрастать, и потому в правой части уравнения нужно ставить знак плюс.
Поскольку скорость реакции все время изменяется, то в химической кинетике рассматривают только истинную скорость реакции , т. е. скорость в данный момент времени.
Факторы, влияющие на скорость реакции
Скорость химической реакции зависит от природы реагирующих веществ и условий протекания реакции: концентрации С, температуры t, присутствия катализаторов, а также от некоторых других факторов (например, от давления — для газовых реакций, от измельчения — для твердых веществ, от радиоактивного облучения).
Влияние концентраций реагирующих веществ
Чтобы осуществлялось химическое взаимодействие веществ А и В, их молекулы (частицы) должны столкнуться. Чем больше столкновений, тем быстрее протекает реакция. Число же столкновений тем больше, чем выше концентрация реагирующих веществ. Отсюда иа основе обширного экспериментального материала сформулирован основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентрации реагирующих веществ:
скорость химической реакции пропорциональна произведению концентраций реагирующих веществ.
Для реакции (I) этот закон выразится уравнением
где и
— концентрации веществ А и В, моль/л;
— коэффициент пропорциональности, называемый константой скорости реакции. Основной закон химической кинетики часто называют законом действующих масс.
Из уравнения (4.2) нетрудно установить физический смысл константы скорости : она численно равна скорости реакции, когда концентрации каждого из реагирующих веществ составляют 1 моль/л или когда их произведение равно единице.
Константа скорости реакции зависит от природы реагирующих веществ и от температуры, но не зависит от их концентраций.
Уравнение (4.2), связывающее скорость реакции с концентрацией реагирующих веществ, называется кинетическим уравнением реакции. Если опытным путем определено кинетическое уравнение реакции, то с его помощью можно вычислять скорости при других концентрациях тех же реагирующих веществ.
Основной закон химической кинетики не учитывает реагирующие вещества, находящиеся в твердом состоянии, ибо их концентрации постоянны и они реагируют лишь на поверхности. Так, например, для реакции горения угля: кинетическое уравнение реакции имеет вид:
, где
— константа скорости,
— концентрация твердого вещества; S — площадь поверхности. Это величины постоянные. Обозначив произведение постоянных величин через
, получим
, т. е. скорость реакции пропорциональна только концентрации кислорода.
Влияние температуры
Зависимость скорости реакции от температуры определяется правилом Вант-Гоффа:
при повышении температуры на каждые 10° скорость большинства реакций увеличивается в 2—4 раза.
Математически эта зависимость выражается соотношением
где ,
— скорости реакции соответственно при начальной
и конечной
температурах, а
— температурный коэффициент скорости реакции, который показывает, во сколько раз увеличивается скорость реакции с повышением температуры реагирующих веществ на 10°.
Правило Вант-Гоффа является приближенным и применимо лишь для ориентировочной оценки влияния температуры на скорость реакции. Температура влияет на скорость химической реакции, увеличивая константу скорости.
Энергия активации
Сильное изменение скорости реакции с изменением температуры объясняет теория активации. Согласно этой теории в химическое взаимодействие вступают только активные молекулы (частицы), обладающие энергией, достаточной для осуществления данной реакции. Неактивные частицы можно сделать активными, если сообщить им необходимую дополнительную энергию, — этот процесс называется активацией. Один из способов активации — увеличение температуры: при повышении температуры число активных частиц сильно возрастает, благодаря чему резко увеличивается скорость реакции.
Энергия, которую надо сообщить молекулам (частицам) реагирующих веществ, чтобы превратить их в активные, называется энергией активации.
Ее определяют опытным путем, обозначают буквой и обычно выражают в кДж/моль. Так, например, для соединения водорода и иода
= 167,4 кДж/моль, а для распада иодоводорода
= 186,2 кДж/моль.
Энергия активации зависит от природы реагирующих веществ и служит характеристикой каждой реакции. Эти представления поясняются рис. 4.2 на примере реакции в общем виде:
. Ось ординат характеризует потенциальную энергию системы, ось абсцисс — ход реакции: исходное состояние
переходное состояние
конечное состояние. Чтобы реагирующие вещества
и
образовали продукт реакции АВ, они должны преодолеть энергетический барьер С (рис. 4.2). На это затрачивается энергия активации
, на значение которой возрастает энергия системы. При этом в ходе реакции из частиц реагирующих веществ образуется промежуточная неустойчивая группировка, называемая переходным состоянием или активированным комплексом (в точке С), последующий распад которого приводит к образованию конечного продукта АВ. Механизм реакции можно изобразить схемой
Если при распаде активированного комплекса выделяется больше энергии, чем это необходимо для активации частиц, то реакция экзотермическая. Примером эндотермической реакции служит обратный процесс — образование из вещества АВ веществ и
:
. В этом случае процесс протекает также через образование активированного комплекса
, однако энергия активации больше, чем для прямого процесса:
(
—тепловой эффект реакции). Для протекания эндотермических реакций требуется подвод энергии извне.
Как видно из рис. 4.2, разность энергий конечного состояния системы () и начального (
) равна тепловому эффекту реакции (см. § 1.8):
Скорость реакции непосредственно зависит от значения энергии активации: если оно мало, то за определенное время протекания реакции энергетический барьер преодолеет большое число частиц и скорость реакции будет высокой, но если энергия активации велика, то реакция идет медленно.
При взаимодействии ионов энергия активации очень мала и ионные реакции протекают с очень большой скоростью (практически мгновенно).
Понятие о катализе и катализаторах
Увеличить скорость реакции можно с помощью катализаторов. Применять катализаторы выгоднее, чем повышать температуру, тем более, что ее повышение далеко не всегда возможно.
Катализаторами называются вещества, изменяющие скорость химических реакций.
Одни катализаторы сильно ускоряют реакцию — положительный катализ, или просто катализ, другие — замедляют — отрицательный катализ. Примерами положительного катализа могут служить получение серной кислоты, окисление аммиака в азотную кислоту с помощью платинового катализатора и др. Примерами отрицательного катализа являются замедление взаимодействия раствора сульфита натрия с кислородом воздуха в присутствии этилового спирта или уменьшение скорости разложения пероксида водорода в присутствии небольших количеств серной кислоты (0,0001 мае. частей) и др. Отрицательный катализ часто называют ингибированием, а отрицательные катализаторы, снижающие скорость реакции, — ингибиторами (механизм действия последних отличен от действия катализаторов).
Химические реакции, протекающие при участии катализаторов, называют каталитическими.
Каталитическое воздействие может быть оказано на большинство химических реакций. Число катализаторов очень велико, а их каталитическая активность весьма различна. Она определяется изменением скорости реакции, вызываемым катализатором.
Сам катализатор в реакциях не расходуется и в конечные продукты не входит.
Различают два вида катализа — гомогенный (однородный) и гетерогенный (неоднородный) катализ.
При гомогенном катализе реагирующие вещества и катализатор образуют однофазную систему — газовую или жидкую, между катализатором и реагирующими веществами отсутствует поверхность раздела. Например, каталитическое разложение пероксида водорода в присутствии раствора солей (жидкая фаза). Для гомогенного катализа установлено, что скорость химической реакции пропорциональна концентрации катализатора.
При гетерогенном катализе реагирующие вещества и катализатор образуют систему из разных фаз. В этом случае между катализатором и реагирующими веществами существует поверхность раздела. Обычно катализатор — твердое вещество, а реагирующие вещества — газы или жидкости. Примерами могут служить окисление аммиака (газообразная фаза) в присутствии платины (твердая фаза) или разложение пероксида водорода (жидкая фаза) в присутствии угля или оксида марганца (IV) (твердая фаза). Все реакции при гетерогенном катализе протекают на поверхности катализатора. Поэтому активность твердого катализатора зависит и от свойств его поверхности (размера, химического состава, строения и состояния).
Действие положительных катализаторов сводится к уменьшению энергии активации реакции, другими словами, — к снижению высоты энергетического барьера (см. рис. 4.2, пунктирная кривая). При этом образуется активированный комплекс с более низким уровнем энергии и скорость реакции сильно возрастает.
Механизм действия катализаторов обычно объясняют образованием промежуточных соединений с одним из реагирующих веществ. Так, если медленно протекающую реакцию А+В = АВ вести в присутствии катализатора К, то катализатор вступает в химическое взаимодействие с одним из исходных веществ, образуя непрочное промежуточное соединение:
Реакция протекает быстро, так как энергия активации этого процесса мала. Затем промежуточное соединение АК взаимодействуете другим исходным веществом, при этом катализатор высвобождается:
Энергия активации этого процесса также мала, а потому реакция протекает с достаточной скоростью. Если теперь оба процесса, протекающие одновременно, суммировать, то получим окончательное уравнение быстро протекающей реакции:
Приведем конкретный пример — окисление в
с участием катализатора
:
Эта реакция протекает медленно. Но при введении катализатора образуется промежуточное соединение:
Поверхность катализатора неоднородна. На ней имеются так называемые активные центры, на которых главным образом и протекают каталитические реакции. Реагирующие вещества адсорбируются на этих центрах, в результате чего увеличивается концентрация их на поверхности катализатора. А это отчасти приводит к ускорению реакции. Но главной причиной возрастания скорости реакции является сильное повышение химической активности адсорбированных молекул. Под действием катализатора у адсорбированных молекул ослабляются связи между атомами и они становятся более реакционноспособными. И в этом случае реакция ускоряется благодаря снижению энергии активации (в том числе за счет образования поверхностных промежуточных соединений).
Некоторые вещества снижают или полностью уничтожают активность твердого катализатора. Такие вещества называются каталитическими ядами. В качестве примера можно привести соединения мышьяка, ртути, свинца, цианистые соединения, к которым особенно чувствительны платиновые катализаторы. В производственных условиях реагирующие вещества подвергают очистке от каталитических ядов, а уже отравленные катализаторы регенерируют.
Однако имеются и такие вещества, которые усиливают действие катализаторов данной реакции, хотя сами катализаторами не являются. Эти вещества называются промоторами (промотирование платиновых катализаторов добавками железа, алюминия и др.).
Следует особо отметить, что действие катализаторов избирательно, поэтому, применяя разные катализаторы, можно получить из одного и того же вещества разные продукты. Так, например, в присутствии катализатора оксида алюминия при 300
С из этилового спирта получают воду и этилен:
При той же температуре, но в присутствии мелко раздробленной меди, из этилового спирта образуются водород и уксусный альдегид:
Опыт показывает, что для каждой реакции имеется свой оптимальный катализатор.
Роль катализаторов в химическом производстве исключительно велика. Получение серной кислоты, синтез аммиака, получение из твердого угля жидкого топлива, переработка нефти и природного газа, получение искусственного каучука, пластмасс, гидрогенизация жиров — вот далеко не полный перечень важнейших производств, где применяются катализаторы. Очевидно, поиски новых, все более совершенных катализаторов будут способствовать повышению производительности труда и снижению себестоимости продукции.
Особую роль играют биологические катализаторы — ферменты. При их участии протекают сложные химические процессы в растительных и животных организмах.
Необратимые и обратимые реакции
Реакции, которые протекают только в одном направлении и завершаются полным превращением исходных реагирующих веществ в конечные вещества, называются необратимыми.
Примером такой реакции может служить разложение хлората калия (бертолетовой соли) при нагревании:
Реакция прекратится тогда, когда весь хлорат калия превратится в хлорид калия и кислород. Необратимых реакций не так много. Большинство реакций являются обратимыми.
Обратимыми называются такие реакции, которые одновременно протекают в двух взаимно противоположных направлениях.
В уравнениях обратимых реакций между левой и правой частями ставят две стрелки, направленные в противоположные стороны. Примером такой реакции может служить синтез аммиака из водорода и азота:
В технике обратимые реакции, как правило, невыгодны. Поэтому различными методами (изменение температуры, давления и др.) их делают практически необратимыми.
Необратимыми называются такие реакции, при протекании которых:
1) образующиеся продукты уходят из сферы реакции — выпадают в виде осадка, выделяются в виде газа, например
2) образуется малодиссоциированное (см. § 5.10) соединение, например вода:
3) реакция сопровождается большим выделением энергии, например горение магния
В уравнениях необратимых реакций между левой и правой частями ставится знак равенства или стрелка.
Химическое равновесие
Обратимые реакции не доходят до конца и заканчиваются установлением химического равновесия. Например, в реакции синтеза аммиака (§ 10.4) равновесие наступает тогда, когда в единицу времени образуется столько же молекул аммиака, сколько их распадается на азот и водород. Следовательно,
химическое равновесие можно определить как такое состояние системы реагирующих веществ, при котором скорости прямой и обратной реакций равны между собой.
В состоянии равновесия прямая и обратная реакции не прекращаются. Поэтому такое равновесие называется подвижным или динамическим равновесием. И поскольку действие обеих реакций взаимно уничтожается, то в реагирующей смеси видимых изменений не происходит: концентрации всех реагирующих веществ — как исходных, так и образующихся — остаются строго постоянными. Концентрации реагирующих веществ, которые устанавливаются при химическом равновесии, называются равновесными. Они обычно обозначаются формулами реагирующих веществ, заключенными в квадратные скобки, например ,
,
, тогда как неравновесные концентрации обозначают так:
,
,
.
На состояние химического равновесия оказывают влияние концентрация реагирующих веществ, температура, а для газообразных веществ — и давление. При изменении одного из этих параметров равновесие нарушается и концентрация всех реагирующих веществ изменяется до тех пор, пока не установится новое равновесие, но уже при иных значениях равновесных концентраций. Подобный переход реакционной системы от одного состояния равновесия к другому называется смещением (или сдвигом) химического равновесия. Если при изменении условий увеличивается концентрация конечных веществ, то говорят о смещении равновесия в сторону продуктов реакции. Если же увеличивается концентрация исходных веществ, то равновесие смещается в сторону их образования.
Принцип Ле Шателье
Направление смещения химического равновесия при изменениях концентрации реагирующих веществ, температуры и давления (в случае газовых реакций) определяется общим положением, известным под названием принципа подвижного равновесия или принципа Ле Шателье:
если на систему, находящуюся в равновесии, производится какое-либо внешнее воздействие (изменяется концентрация, температура, давление), то оно благоприятствует протеканию той из двух противоположных реакций, которая ослабляет воздействие.
Поясним это на примере реакции синтеза аммиака:
Если внешнее воздействие выражается в увеличении концентрации азота или водорода, то оно благоприятствует реакции, вызывающей уменьшение концентрации этих веществ, и, следовательно, равновесие сместится в сторону образования аммиака. Соответственно увеличение концентрации аммиака смещает равновесие в сторону исходных веществ.
Поскольку прямая реакция, как видно из уравнения, протекает с выделением теплоты, повышение температуры смеси благоприятствует протеканию реакции с поглощением теплоты, и равновесие сместится в сторону исходных веществ; понижение температуры вызовет смещение равновесия в сторону продукта реакции.
Чтобы определить влияние давления на смещение равновесия, необходимо подсчитать число молекул в левой и правой частях уравнения. В приведенном примере в левой части уравнения содержится две молекулы, а в правой — одна. Поскольку увеличение давления должно благоприятствовать процессу, ведущему к уменьшению числа молекул, то в данном случае равновесие сместится в сторону продукта реакции. Очевидно, уменьшение давления сместит равновесие в сторону исходных веществ.
Если же в уравнении обратимой реакции число молекул в левой части равно числу молекул в правой части, например
то изменение, давления не вызывает смещения химического равновесия.
Следует заметить, что все катализаторы одинаково ускоряют как прямую, так и обратную реакции и поэтому на смещение равновесия влияния не оказывают, а только способствуют более быстрому его достижению.
Способы смещения равновесия в желаемом направлении, основанные на принципе Лe Шателье, играют огромную роль в химии. Синтез аммиака и многие другие промышленные процессы были освоены благодаря применению способов смещения равновесия в направлении, обеспечивающем высокий выход получаемого вещества.
Во многих процессах смещение химического равновесия в сторону продуктов реакции достигается путем вывода образующихся веществ из сферы реакции. Так, например, чтобы сместить равновесие в реакции этерификации
в сторону образования метилацетата, в систему вводят серную кислоту, поглощающую воду.
Скорость химических реакций очень кратко и подробно
Вы знаете, что химия изучает не только свойства и строение веществ, но и процессы превращения веществ друг в друга — химические реакции. На практике вы встречались с реакциями, которые протекают медленно, месяцами, как, например, коррозия железа. Многие реакции в растворах (между основаниями и кислотами, между солями) заканчиваются очень быстро, а некоторые реакции происходят мгновенно, например, взрывы. Следовательно, различные химические реакции происходят с самыми разными скоростями. Раздел химии, изучающий скорости химических реакций, называют химической кинетикой. Основным понятием в химической кинетике является понятие о скорости реакции. Для количественной характеристики скорости реакции используют изменение количества вещества или концентрации либо реагента, либо продукта химической реакции.
Скоростью химической реакции называют изменение концентрации реагента или продукта химической реакции во времени. Пусть для реакции концентрация вещества А в момент времени
в момент времени равна
Тогда математическое выражение для средней скорости V следующее:
Знак «минус» ставят по следующей причине. По мере протекания реакции концентрация вещества А убывает, следовательно,
будет иметь отрицательное значение, а скорость реакции всегда положительна, то перед дробью следует ставить знак «минус». Скорость реакции измеряют в
Существуют гомогенные и гетерогенные химические реакции.
Гомогенными называют химические реакции, протекающие в однородной среде (например, в жидком растворе или газовой фазе).
Гетерогенными называют реакции, происходящие между веществами, находящимися в разных фазах (например, газовой и жидкой, твердой и жидкой и др.).
Скорость гомогенной реакции определяется изменением количества одного из реагирующих веществ, вступивших в реакцию или образующихся в результате реакции веществ в единицу времени в единице объема:
Скорость гетерогенной реакции определяется числом молей веществ, вступивших в реакцию или образующихся в результате реакции в единицу времени на единице поверхности:
где — площадь поверхности твердой фазы,
— изменение количества вещества. В гетерогенных реакциях скорость не выражают через концентрацию, поскольку вещества реагируют не в объеме, а на поверхности.
Химическая реакция является результатом столкновения частиц (атомы, молекулы, ионы) исходных веществ; чем чаще столкновения, тем быстрее осуществляется химическая реакция.
Химические реакции происходят с самыми разными скоростями. Раздел химии, изучающий скорости химических реакций, называют химической кинетикой. Основным понятием в химической кинетике является понятие о скорости реакции. Скоростью химической реакции называют изменение концентрации реагента или продукта химической реакции во времени. Химическая реакция является результатом столкновения частиц реагирующих веществ; чем чаще столкновения, тем быстрее осуществляется химическая реакция.
Существуют гомогенные и гетерогенные химические реакции. Гомогенными называют химические реакции, протекающие в однородной среде. Гетерогенными называют реакции, происходящие между веществами, находящимися в разных фазах.
Факторы влияющие на скорость химической реакции
Скорость химической реакции зависит от ряда факторов, из которых важнейшими являются химическая природа реагирующих веществ, их концентрация, температура и присутствие катализатора. Рассмотрим факторы, влияющие на скорость химических реакций.
Природа реагирующих веществ
Природа реагирующих веществ оказывает решающее влияние на скорость реакции. Например, водород с фтором реагирует очень энергично (со взрывом) уже при комнатной температуре, а реакция водорода с йодом — только при нагревании до Говоря о влиянии природы реагирующих веществ на скорость химической реакции, следует отметить, что в ходе реакции химические связи частиц реагентов разрушаются и образуются новые связи между частицами продукта реакции. Реакции в газовой фазе протекают с более высокой скоростью, чем в растворах, а в растворах — быстрее, чем в твердой фазе.
Влияние концентрации реагентов
Скорость химической реакции зависит от концентрации реагирующих веществ. Известно, что химическое взаимодействие осуществляется при столкновении частиц, поэтому чем больше их концентрация, тем чаще сталкиваются молекулы реагирующих веществ во время своего хаотического движения. Влияние концентрации взаимодействующих веществ распространяется на газовые смеси и растворы.
На скорость реакций с участием газов также влияет давление, потому что оно непосредственно определяет их концентрации.
Гомогенные реакции протекают во всем объеме, и скорость гомогенных реакций зависит от концентраций реагентов.
Гетерогенные реакции протекают на поверхности твердых веществ.
Скорость гетерогенной реакции зависит от поверхности соприкосновения реагирующих веществ. Так, например, кусочек мела с соляной кислотой реагирует с замедленной скоростью, а мелко измельченный мел реагирует достаточно бурно. При размельчении мела поверхность соприкосновения увеличивается, следовательно, увеличивается количество молекул, соответственно возрастает и скорость реакции.
Зависимость скорости реакции от темпера туры
Большое влияние на скорость химической реакции оказывает температура. С повышением температуры скорость химической реакции, как правило, возрастает. При повышении температуры на Ю С скорость реакции увеличивается в 2—4 раза, потому что при повышении температуры возрастает скорость движения молекул веществ, и соответственно увеличивается число столкновений между ними. Таким образом, скорость химических реакций зависит от природы реагирующих веществ, концентрации (от давления газа), температуры и др.
На скорость химических реакций влияет природа реагирующих веществ, концентрация (от давления газа), температура и др. Влияние концентрации взаимодействующих веществ распространяется на газовые смеси и растворы. С повышением температуры скорость химической реакции, как правило, возрастает. При повышении температуры на скорость реакции увеличивается в 2—4 раза.
Катализаторы и ингибиторы
Большое влияние на скорость реакции оказывает присутствие в реагирующей системе катализатора.
Вещества которые изменяют химические реакции» но сами в итоге не расходуются» называют катализаторами.
Например, добавка небольшого количества диоксида марганца к раствору пероксида водорода значительно увеличивает скорость ее разложения на кислород и воду.
Реакции, протекающие под действием катализаторов, называют каталитическими. Влияние катализаторов на скорость реакции называется катализом. Различают гомогенный и гетерогенный катализ.
Гомогенным называют катализ» при котором реагенты и катализатор находятся в одном агрегатном состоянии (газообразном или жидком). Типичными гомогенными катализаторами являются кислоты и основания.
Гетерогенным называют катализ при котором реагенты и катализатор находятся в различных агрегатных состояниях: чаще всего катализатор — в твердом, а реагирующие — в жидком или газообразном. В качестве гетерогенных катализаторов применяют металлы, их оксиды и др.
Катализ широко распространен в природе, он играет огромную роль в жизнедеятельности организмов. Особенно сильно воздействуют на скорость реакции биологические катализаторы — ферменты. Превращения в организме белков, жиров и углеводов происходят с участием ферментов, поэтому биохимические процессы идут с очень большой скоростью. Следовательно, катализаторы способствуют более быстрому переходу системы из начального в конечное состояние. Наряду с катализаторами существуют вещества, которые замедляют химические процессы.
Вещества которые замедляют скорость химических реакций, называют ингибиторами.
Ингибиторы служат человеку: уменьшают скорость коррозии металлов, продлевают сохранность пищевых продуктов, предотвращают случайные взрывы чувствительных к сотрясениям, но необходимых в промышленности веществ, замедляют некоторые вредные для живого организма процессы, вызывающие заболевания, и поэтому используются в виде лекарств.
Таким образом, одним из важнейших факторов, влияющих на скорость химических реакций, является присутствие катализаторов.
На скорость химических реакций влияет присутствие катализаторов. Вещества, которые ускоряют химические реакции, но сами в итоге не расходуются называют катализаторами.
Реакции, протекающие под действием катализаторов, называют каталитическими. Влияние катали-____заторов на скорость реакции называется катализом.
Различают гомогенный и гетерогенный катализ.
Гомогенным называют катализ, при котором и реагенты и катализатор находятся в одном агрегатном состоянии.
Гетерогенным называют катализ, при котором реагенты и катализатор находятся в различных агрегатных состояниях. Наряду с катализаторами существуют вещества, которые замедляют химические процессы. Вещества. которые замедляют скорость химических реакций называют ингибиторами.
Услуги по химии:
Лекции по химии:
Лекции по неорганической химии:
Лекции по органической химии:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.