что такое сетевой префикс

Что означает сетевой префикс

IP адрес протокола IPv4 состоит из 32 бит, но не все биты в адресе имеют одинаковое значение. Биты делятся на две части: слева некоторое количество бит обозначают сеть, к которой относится данный адрес, оставшиеся биты справа идентифицируют устройство внутри сети. Подробнее об этом можно прочесть в статье про IPv4-адресацию. Граница между этими двумя группами бит может проходить в разных местах, например, для 32-битного адреса, первые 16 бит могут обозначать сеть, вторые – хост внутри сети, возможны любые другие сочетания (10 и 22, 8 и 24, 30 и 2) – в принципе, любые два числа, дающие в сумме 32 подойдут.

Для описания того, где проходит эта граница используется сетевой префикс. Он записывается обычно после адреса в виде десятичного числа через слеш, например 10.0.0.0/8 или 192.168.10.123/19 (8 и 19 – префиксы). Префикс обозначает, сколько бит в приведённом адресе хранят информацию о сети. Например, если префикс /24, это означает, что в адресе из 32-х бит 24 бита хранят информацию о сети, а оставшиеся 8 – информацию о хосте.

Предположим, что имеется такая задача: найти широковещательный адрес для адреса 172.20.35.123/20. Запишем адрес в двоичном виде 10101100.00010100.00100011.01111011, как мы помним из определения, чтобы получить широковещательный адрес, надо взять ту часть адреса, где хранится информация о хосте и заполнить её единицами. Так как префикс 20 – отсчитываем первые 20 бит и оставляем их без изменений (виде 10101100.00010100.0010), оставшиеся 12 бит заполняем единицами, так как там хранится хостовая часть адреса (1111.11111111), получится адрес 10101100.00010100.00101111.11111111, в десятичной системе это выглядит как 172.20.47.255.

Перевод префикса в маску подсети

Префикс и маска подсети обозначают одно и то же, только разными способами. Если надо найти маску подсети по префиксу, то надо просто написать столько единиц, сколько указано в префиксе, оставшуюся часть дополнить нулями (чтобы всего получилось 32 двоичные цифры) и дальше группами по 8 бит перевести в десятичную систему.

Например, стоит задача найти маску, соответствующую префиксу /19. Для этого запишем 19 единиц и дополним их 13 нулями, чтобы всего получилось 32 цифры:

11111111.11111111.11100000.00000000, то что получилось надо перевести в десятичный вид и получим маску подсети 255.255.224.0.

Сетевой префикс в IPv6

В IPv6 адрес состоит из 128 бит, и маски подсети не используются, так как пришлось бы иметь очень длинные маски — тоже по 128 бит. Вместо этого используется только префикс. Смысл префикса в IPv6 такой же как и для IPv4 — отделение части адреса, хранящей информацию о сети от части адреса, хранящей информацию о хосте. Правая часть, хранящая информацию о хосте имеет специальное название — «Идентификатор интерфейса» (Interface ID). В IPv6 клиенту выделяются сети с префиксом /64, что означает ещё 64 бита на хосты внутри сети. Таким образом, внутри сети моэет существовать 2 64 различных хостов.

Источник

IP-адреса

Определение:
IP-адрес — уникальный сетевой адрес узла в компьютерной сети, построенной по протоколу IP.

Содержание

IPv4-адреса [ править ]

IPv4 использует 32-битные адреса, ограничивающие адресное пространство 4 294 967 296 (2 32 ) возможными уникальными адресами. У каждого хоста и маршрутизатора в Интеренете есть IP-адрес. IP-адрес не имеет отношения к хосту. Он имеет отношение к сетевому интерфейсу, поэтому иногда хост или маршрутизатор могут иметь несколько IP-адресов.

IP-адреса имеют иерархическую организацию. Первая часть имеет переменную длину и задает сеть, а последняя указывает на хост.

Обычно IP-адреса записываются в виде 4 десятичных чисел, каждое в диапозоне от 0 до 255, разделенными точками (dot-decimal notation). Каждая часть представляет один байт адреса. Например, шестнадцатиричный адрес 80D00297 записывается как 128.208.2.151.

Определение:
Префикс — непрерывный блок пространства IP-адресов, соответствующий сети, в которой сетевая часть совпадает для всех хостов.

Префикс задается наименьшим IP-адресом в блоке и размером блока. Размер определяется числом битов в сетевой части, оставшиеся биты в части хоста могут варьироваться. Таким образом, размер является степенью двойки. Он записывается после префикса IP-адреса в виде слэша и длины сетевой части в битах. В предыдущем примере префикс содержит 2 8 адресов и поэтому для сетевой части отводится 24 бита. Записывается так: 128.208.2.0/24.

Классы IP-сетей [ править ]

Также, сколько бит используется сетевым ID и сколько бит доступно для идентификации хостов (интерфейсов) в этой сети, определяется сетевыми классами.

Всего 3 класса IP-адресов:

Сетевые адреса, адреса интерфейсов и широковещательные адреса [ править ]

IP адрес может означать одно из трех:

Почти все доступные сетевые IP-адреса принадлежат классу C.

Маска подсети [ править ]

Длина префикса не выводится из IP-адреса, поэтому протоколу маршрутизации вынуждены передавать префиксы на маршрутизаторы. Иногда префиксы задаются с помощью указания длины.

Определение:
Маска подсети — двоичная маска, соответствующая длине префикса, в которой единицы указывают на сетевую часть.

То есть маска подсети определяет как будут локально интерпретироваться IP адреса в сегменте IP сети, что для нас весьма важно, поскольку определяет процесс разбивки на подсети.

Выполненение операции И между маской и IP-адресом позволяет выделить сетевую часть.

О маске подсети нужно помнить три вещи:

Бесклассовая междоменная маршрутизация [ править ]

Изначально использовалась классовая адресация (INET), но со второй половины 90-х годов XX века она была вытеснена бесклассовой адресацией (CIDR), при которой количество адресов в сети определяется маской подсети.

Никто не знает точно, сколько всего сетей подключено к Интернету, но очевидно, что их много — возможно, порядка миллиона. Различные алгоритмы маршрутизации требуют, чтобы каждый маршрутизатор обменивался информацией о доступных ему адресах с другими маршрутизаторами. Чем больше размер таблицы, тем больше данных необходимо передавать и обрабатывать. С ростом размера таблицы время обработки растет как минимум линейно. Чем больше данных приходится передавать, тем выше вероятность потери (в лучшем случае временной) части информации по дороге, что может привести к нестабильности работы алгоритмов выбора маршрутов.

К счастью, способ уменьшить размер таблиц маршрутизации все же существует. Применим тот же принцип, что и при разбиении на подсети: маршрутизатор может узнавать о расположении IP-адресов по префиксам различной длины. Но вместо того чтобы разделять сеть на подсети, мы объединим несколько коротких префиксов в один длинный. Этот процесс называется агрегацией маршрута (route aggregation). Длинный префикс, полученный в результате, иногда называют суперсетью (supernet), в противоположность подсетям с разделением блоков адресов.

При агрегации IP-адреса содержатся в префиксах различной длины. Один и тот же IP-адрес может рассматриваться одним маршрутизатором как часть блока /22 (содержащего 2 10 адресов), а другим — как часть более крупного блока /20 (содержащего 2 12 адресов). Это зависит от того, какой информацией обладает маршрутизатор. Такой метод работает и для разбиения на подсети и называется CIDR (Classless InterDomain Routing — бесклассовая междоменная маршрутизация).

Источник

Что такое префикс сети, и как он помогает расшифровать IP-адрес

Вступление

Каждое устройство, подключённое к интернету, требует цифровой идентификатор. IP-адрес является цифровым кодом, используемым для определения различного оборудования, подключённого к Всемирной паутине. На сегодняшний день существует две версии IP: IPv4 и IPv6. Протокол версии 4 является все ещё основным, но количество доступных ресурсов исчерпалось, поэтому постепенно начинает использоваться 6 версия, позволяющая использовать гораздо большее количество ресурсов. Каждый идентификатор содержит информацию о конкретном соединении, а также о подключённом оборудовании. Префикс указывает, какие значения используются для обозначения сети, а какие — для обозначения устройства. Давайте детальнее рассмотрим, что такое сетевой префикс, и как он поможет расшифровать IP-адрес.

что такое сетевой префикс. your ip address struktura obzor. что такое сетевой префикс фото. что такое сетевой префикс-your ip address struktura obzor. картинка что такое сетевой префикс. картинка your ip address struktura obzor. IP адрес протокола IPv4 состоит из 32 бит, но не все биты в адресе имеют одинаковое значение. Биты делятся на две части: слева некоторое количество бит обозначают сеть, к которой относится данный адрес, оставшиеся биты справа идентифицируют устройство внутри сети. Подробнее об этом можно прочесть в статье про IPv4-адресацию. Граница между этими двумя группами бит может проходить в разных местах, например, для 32-битного адреса, первые 16 бит могут обозначать сеть, вторые – хост внутри сети, возможны любые другие сочетания (10 и 22, 8 и 24, 30 и 2) – в принципе, любые два числа, дающие в сумме 32 подойдут.

Любое устройство гарантированно получает свой уникальный идентификатор

Структура IP-адреса

Обычно IP-адрес записывается следующим образом: 192.168.10.100. Каждая секция представляет собой 8 бит или 1 байт информации. Сервер видит эти цифры как набор единиц и нулей, для нашего удобства они записываются в обычной десятичной системе. Максимальная её длина — 3 знака, а минимальная — 1. Суммарно вся запись занимает 32 бита и теоретически может быть 232 или 4.294.967.296 ресурсов.

Весь цифровой код делится на две части: адрес провайдера и хост. Первый из них определяет провайдера, через который вы работаете, а второй обозначает идентификатор конкретного устройства, как, например, ноутбук или планшет Андроид, в локальном подключении. Для того чтобы узнать, сколько бит обозначает каждый из показателей, записывается префикс сети через слеш. Тогда запись выглядит как 192.168.10.100/24. В нашем случае 24 обозначает, что первых 3 секции (3*8=24), а именно 192.168.10 является адресом соединения. Оставшиеся 8 бит, а именно 100 — это идентификатор оборудования (максимум 28 = 256 адресов). При 192.168.10.100/16 локальный ресурс будет 192.168, а хост — 10.100 (216 = 65536).

что такое сетевой префикс. IP adress format strukturu. что такое сетевой префикс фото. что такое сетевой префикс-IP adress format strukturu. картинка что такое сетевой префикс. картинка IP adress format strukturu. IP адрес протокола IPv4 состоит из 32 бит, но не все биты в адресе имеют одинаковое значение. Биты делятся на две части: слева некоторое количество бит обозначают сеть, к которой относится данный адрес, оставшиеся биты справа идентифицируют устройство внутри сети. Подробнее об этом можно прочесть в статье про IPv4-адресацию. Граница между этими двумя группами бит может проходить в разных местах, например, для 32-битного адреса, первые 16 бит могут обозначать сеть, вторые – хост внутри сети, возможны любые другие сочетания (10 и 22, 8 и 24, 30 и 2) – в принципе, любые два числа, дающие в сумме 32 подойдут.

Часто для определения адреса используется маска подсети. Её длина не отличается. Это, по сути, то же самое, что и префикс сети, только немножко по-другому организовано. Вы, наверное, обращали внимание, что провайдер указывает этот параметр при подключении к интернету. Она также показывает, какая часть IP относится к провайдеру, а какая — к хосту. Она записывается также в виде четырёх 8-битных секций. Единственное отличие, что в двоичном исчислении сначала должны идти только единицы. Если перевести двоичные 11111111 в десятичное исчисление, получится 255. Поэтому маска обязательно будет начинаться с 255.

что такое сетевой префикс. subnet mask ip adress obzor. что такое сетевой префикс фото. что такое сетевой префикс-subnet mask ip adress obzor. картинка что такое сетевой префикс. картинка subnet mask ip adress obzor. IP адрес протокола IPv4 состоит из 32 бит, но не все биты в адресе имеют одинаковое значение. Биты делятся на две части: слева некоторое количество бит обозначают сеть, к которой относится данный адрес, оставшиеся биты справа идентифицируют устройство внутри сети. Подробнее об этом можно прочесть в статье про IPv4-адресацию. Граница между этими двумя группами бит может проходить в разных местах, например, для 32-битного адреса, первые 16 бит могут обозначать сеть, вторые – хост внутри сети, возможны любые другие сочетания (10 и 22, 8 и 24, 30 и 2) – в принципе, любые два числа, дающие в сумме 32 подойдут.

Рассмотрим пример. Возьмём наш адрес 192.168.10.100 и маску 255.255.255.0. Соответственно, первых три раздела записи будут идентификатором LAN, а последняя — идентификатором компьютера. Если маска — 255.255.0.0, то сеть будет 192.168, а хост — 10.100.

Также маска лучше поможет определить, относятся ли два IP-ресурса к одному подключению. Возьмём, к примеру, 213.111.125.17 и 213.111.176.3. Если маска — 255.255.0.0, то оба адреса расположены в одной сети, если она 255.255.255.0, то в разной, так как 125 и 176 отличаются.

что такое сетевой префикс. subnet mask ip adress opredelenie. что такое сетевой префикс фото. что такое сетевой префикс-subnet mask ip adress opredelenie. картинка что такое сетевой префикс. картинка subnet mask ip adress opredelenie. IP адрес протокола IPv4 состоит из 32 бит, но не все биты в адресе имеют одинаковое значение. Биты делятся на две части: слева некоторое количество бит обозначают сеть, к которой относится данный адрес, оставшиеся биты справа идентифицируют устройство внутри сети. Подробнее об этом можно прочесть в статье про IPv4-адресацию. Граница между этими двумя группами бит может проходить в разных местах, например, для 32-битного адреса, первые 16 бит могут обозначать сеть, вторые – хост внутри сети, возможны любые другие сочетания (10 и 22, 8 и 24, 30 и 2) – в принципе, любые два числа, дающие в сумме 32 подойдут.

Префикс сети позволит определить её подмаску. Например, у нас есть запись 176.172.7.132/22. Как мы помним, 22 показывает количество бит, отвечающие за провайдера. В двоичной системе на самом начале запишем 22 единицы и дополним их 10 нулями, чтобы суммарно получилось 32 бита, и разделим точками секции по 8 бит — 11111111.11111111.11111100.00000000. Теперь переведём результат в десятичное исчисление, итоговым результатом у нас получится 255.255.252.0.

Для обратного расчёта возьмём адрес 176.172.7.132 и маску 255.255.128.0. Переводим её в двоичную систему, получим 11111111.11111111.10000000.00000000. Единиц в нашем случае 17, это и есть наш префикс сети. В десятичном виде запишем его как 255.255.128.0/17.

Заключение

После прочтения статьи вас не будут пугать длина цифровых записей при настройке подключения и термины «префикс сети» и другие. Если вы обычный пользователь системы Андроид, информации из статьи вам будет вполне достаточно. Если вы хотите вручную настроить домашнее подключение, возможно, придётся провести более глубокое исследование.

Считаете ли вы этот материал полезным? Будем благодарны за оставленные комментарии.

Источник

Еще раз про IP-адреса, маски подсетей и вообще

Чуточку ликбеза. Навеяно предшествующими копипастами разной чепухи на данную тему. Уж простите, носинг персонал.

IP-адрес (v4) состоит из 32-бит. Любой уважающий себя админ, да и вообще айтишник (про сетевых инженеров молчу) должен уметь, будучи разбуженным среди ночи или находясь в состоянии сильного алкогольного опьянения, правильно отвечать на вопрос «из скольки бит состоит IP-адрес». Желательно вообще-то и про IPv6 тоже: 128 бит.

Обстоятельство первое. Всего теоретически IPv4-адресов может быть:
2 32 = 2 10 *2 10 *2 10 *2 2 = 1024*1024*1024*4 ≈ 1000*1000*1000*4 = 4 млрд.
Ниже мы увидим, что довольно много из них «съедается» под всякую фигню.

Записывают IPv4-адрес, думаю, все знают, как. Четыре октета (то же, что байта, но если вы хотите блеснуть, то говорите «октет» — сразу сойдете за своего) в десятичном представлении без начальных нулей, разделенные точками: «192.168.11.10».

В заголовке IP-пакета есть поля source IP и destination IP: адреса источника (кто посылает) и назначения (кому). Как на почтовом конверте. Внутри пакетов у IP-адресов нет никаких масок. Разделителей между октетами тоже нет. Просто 32-бита на адрес назначения и еще 32 на адрес источника.

Однако, когда IP-адрес присваивается интерфейсу (сетевому адаптеру или как там его еще называют) компьютера или маршрутизатора, то кроме самого адреса данного устройства ему назначают еще и маску подсети. Еще раз: маска не передается в заголовках IP-пакетов.

Компьютерам маска подсети нужна для определения границ — ни за что не угадаете чего — подсети. Чтоб каждый мог определить, кто находится с ним в одной [под]сети, а кто — за ее пределами. (Вообще-то можно говорить просто «сети», часто этот термин используют именно в значении «IP-подсеть».) Дело в том, что внутри одной сети компьютеры обмениваются пакетами «напрямую», а когда нужно послать пакет в другую сеть — шлют их шлюзу по умолчанию (третий настраиваемый в сетевых свойствах параметр, если вы помните). Разберемся, как это происходит.

Маска подсети — это тоже 32-бита. Но в отличии от IP-адреса, нули и единицы в ней не могут чередоваться. Всегда сначала идет сколько-то единиц, потом сколько-то нулей. Не может быть маски

Но может быть маска

Сначала N единиц, потом 32-N нулей. Несложно догадаться, что такая форма записи является избыточной. Вполне достаточно числа N, называемого длиной маски. Так и делают: пишут 192.168.11.10/21 вместо 192.168.11.10 255.255.248.0. Обе формы несут один и тот же смысл, но первая заметно удобнее.

Чтобы определить границы подсети, компьютер делает побитовое умножение (логическое И) между IP-адресом и маской, получая на выходе адрес с обнуленными битами в позициях нулей маски. Рассмотрим пример 192.168.11.10/21:

11000000.10101000.00001011.00001010
11111111.11111111.11111000.00000000
———————————————-
11000000.10101000.00001000.00000000 = 192.168.8.0

Обстоятельство второе. Любой уважающий себя администратор обязан уметь переводить IP-адреса из десятичной формы в двоичную и обратно в уме или на бумажке, а также хорошо владеть двоичной арифметикой.

Адрес 192.168.8.0, со всеми обнуленными битами на позициях, соответствующих нулям в маске, называется адресом подсети. Его (обычно) нельзя использовать в качестве адреса для интерфейса того или иного хоста. Если же эти биты наоборот, установить в единицы, то получится адрес 192.168.15.255. Этот адрес называется направленным бродкастом (широковещательным) для данной сети. Смысл его по нынешним временам весьма невелик: когда-то было поверье, что все хосты в подсети должны на него откликаться, но это было давно и неправда. Тем не менее этот адрес также нельзя (обычно) использовать в качестве адреса хоста. Итого два адреса в каждой подсети — на помойку. Все остальные адреса в диапазоне от 192.168.8.1 до 192.168.15.254 включительно являются полноправными адресами хостов внутри подсети 192.168.8.0/21, их можно использовать для назначения на компьютерах.

Таким образом, та часть адреса, которой соответствуют единицы в маске, является адресом (идентификатором) подсети. Ее еще часто называют словом префикс. А часть, которой соответствуют нули в маске, — идентификатором хоста внутри подсети. Адрес подсети в виде 192.168.8.0/21 или 192.168.8.0 255.255.248.0 можно встретить довольно часто. Именно префиксами оперируют маршрутизаторы, прокладывая маршруты передачи трафика по сети. Про местонахождение хостов внутри подсетей знает только шлюз по умолчанию данной подсети (посредством той или иной технологии канального уровня), но не транзитные маршрутизаторы. А вот адрес хоста в отрыве от подсети не употребляется совсем.

Из данного обстоятельства в частности следует, что максимальной длиной маски для подсети с хостами является N=30. Именно сети /30 чаще всего используются для адресации на point-to-point-линках между маршрутизаторами.

И хотя большинство современных маршрутизаторов отлично работают и с масками /31, используя адрес подсети (нуль в однобитовой хоствой части) и бродкаст (единица) в качестве адресов интерфейсов, администраторы и сетевые инженеры часто попросту боятся такого подхода, предпочитая руководствоваться принципом «мало ли что».

А вот маска /32 используется достаточно часто. Во-первых, для всяких служебных надобностей при адресации т. н. loopback-интерфейсов, во-вторых, от криворукости: /32 — это подсеть, состоящая из одного хоста, то есть никакая и не сеть, в сущности. Чем чаще администратор сети оперирует не с группами хостов, а с индивидуальными машинами, тем менее сеть масштабируема, тем больше в ней соплей, бардака и никому непонятных правил. Исключением, пожалуй, является написание файрвольных правил для серверов, где специфичность — хорошее дело. А вот с пользователями лучше обращаться не индивидуально, а скопом, целыми подсетями, иначе сеть быстро станет неуправляемой.

Интерфейс, на котором настроен IP-адрес, иногда называют IP-интерфейсом или L3-интерфейсом («эл-три», см. Модель OSI).

Прежде чем посылать IP-пакет, компьютер определяет, попадает ли адрес назначения в «свою» подсеть. Если попадает, то шлет пакет «напрямую», если же нет — отсылает его шлюзу по умолчанию (маршрутизатору). Как правило, хотя это вовсе необязательно, шлюзу по умолчанию назначают первый адрес хоста в подсети: в нашем случае 192.168.8.1 — для красоты.

Обстоятельство четвертое. Из сказанного в частности следует, что маршрутизатор (шлюз и маршрутизатор — это одно и то же) с адресом интерфейса 192.168.8.1 ничего не знает о трафике, передаваемом между, например, хостами 192.168.8.5 и 192.168.8.7. Очень частой ошибкой начинающих администраторов является желание заблокировать или как-то еще контролировать с помощью шлюза трафик между хостами в рамках одной подсети. Чтобы трафик проходил через маршрутизатор, адресат и отправитель должны находиться в разных подсетях.

Таким образом в сети (даже самого маленького предприятия) обычно должно быть несколько IP-подсетей (2+) и маршрутизатор (точнее файрвол, но в данном контексте можно считать эти слова синонимами), маршрутизирующий и контролирующий трафик между подсетями.

Обстоятельство пятое. Как и любому приличному IT-шнику, администратору сети, если только он получает зарплату не за красивые глаза, положено знать наизусть степени двойки от 0 до 16.

Процесс объединения мелких префиксов (с длинной маской, в которых мало хостов) в крупные (с короткой маской, в которых много хостов) называется агрегацией или суммаризацией (вот не суммированием!). Это очень важный процесс, позволяющий минимизировать количество информации, необходимой маршрутизатору для поиска пути передачи в сети. Так, скажем, провайдеры выдают клиентам тысячи маленьких блоков типа /29, но весь интернет даже не знает об их существовании. Вместо этого за каждым провайдером закрепляются крупные префиксы типа /19 и крупнее. Это позволяет на порядки сократить количество записей в глобальной таблице интернет-маршрутизации.

Обстоятельство шестое. Чем больше длина маски, тем меньше в подсети может быть хостов, и тем большую долю занимает «съедение» адресов на адреса подсети, направленного бродкаста и шлюза по умолчанию. В частности в подсети с маской /29 (2 32-29 = 8 комбинаций) останется всего 5 доступных для реального использования адресов (62,5%). Теперь представьте, что вы провайдер, выдающий корпоративным клиентам тысячи блоков /29. Таким образом, грамотное разбиение IP-пространства на подсети (составление адресного плана) — это целая маленькая наука, включающая поиск компромиссов между разными сложными факторами.

При наличии достаточно большого диапазона адресов, как правило из блоков для частного использования 10.0.0.0/8, 172.16.0.0/12 и 192.168.0.0/16, конечно, удобно использовать маски, совпадающие по длине с границами октетов: /8, /16, /24 или, соответственно, 255.0.0.0, 255.255.0.0 и 255.255.255.0. При их использовании можно облегчить работу мозгу и калькулятору, избавившись от необходимости работать с двоичной системой и битами. Это правильный подход, но не стоит забывать, что злоупотребление расслабухой редко доводит до добра.

И последнее. Пресловутые классы адресов. Дорогие товарищи, забудьте это слово вообще! Совсем. Вот уже скоро 20 лет (!), как нет никаких классов. Ровно с тех пор, как стало понятно, что длина префикса может быть любой, а если раздавать адреса блоками по /8, то никакого интернета не получится.

Иногда «матерые специалисты» любят блеснуть словами «сеть класса такого-то» по отношению к подсети с той или иной длиной маски. Скажем, часто можно услышать слово «сеть класса C» про что-нибудь вроде 10.1.2.0/24. Класс сети (когда он был) не имел никакого отношения к длине маски и определялся совсем другими факторами (комбинациями битов в адресе). В свою очередь классовая адресация обязывала иметь маски только предписанной для данного класса длины. Поэтому указанная подсеть 10.1.2.0/24 никогда не принадлежала и не будет принадлежать к классу C.

Но обо всем этом лучше и не вспоминать. Единственное, что нужно знать — что существуют разные глобальные конвенции, собранные под одной крышей в RFC3330, о специальных значениях тех или иных блоков адресов. Так, например, упомянутые блоки 10/8, 172.16/12 и 192.168/16 (да, можно и так записывать префиксы, полностью откидывая хостовую часть) определены как диапазоны для частного использования, запрещенные к маршрутизации в интернете. Каждый может использовать их в частных целях по своему усмотрению. Блок 224.0.0.0/4 зарезервирован для мультикаста и т. д. Но все это лишь конвенции, призванные облегчить административное взаимодействие. И хотя лично я крайне не рекомендую вам их нарушать (за исключением надежно изолированных лабораторных тестов), технически никто не запрещает использовать любые адреса для любых целей, покуда вы не стыкуетесь с внешним миром.

Источник

Основы IPv6

Предисловие

Пост является кратким конспектом Wiki, TechNet’а, FreeBSD’шного handbook’a, Serverfault’a, множества RFC и документов IANA, а также курсов от Специалист.Ру для сотрудников Яндекса.

Пост можно рассматривать как копилку ссылок по актуальной на 2012 год спецификации IPv6. Однако он никак не описывает возможные способы установки IPv6 соединения с интернетом и не привязан к какой-либо определённой ОС.
Учтите, что прочтение данной хабрастатьи займёт у вас не более получаса, однако крайне рекомендуется ознакомиться со всеми приведёнными в статье ссылками… Последнее может занять несколько недель.

Prerequisites

Хоть статья и называется «Основы IPv6» она всё-таки подразумевает наличие базовых знаний о IP сетях и хотя бы небольшой практический опыт работы с IPv6, в противном случае хабрастатья будет даваться очень не легко.
Так же рекомендуется к прочтению документ Implementing IPv6 Addressing and Basic Connectivity от Cisco.
Ещё стоит заметить, что приведённые на википедию ссылки зачастую более примечательны разделом References нежели своим содержанием.

IPv6 Адреса

Анатомия IPv6 адресов

В первой версии этого хабрапоста тут было много текста, но с того момента на википедии выросла отличная статья: IPv6 Address.

Маски подсетей

Маски теперь задаются только /prefix’ами (CIDR), классовой адресации и стандартной decimal dotted нотации в IPv6 нет. Так же теперь первый и последний адрес сети не являются зарезервированными под идентификатор сети и broadcast соответственно.

Выделение IPv6 адресов

Типы адресов и их префиксы

Виды трафика

Address Scope

В IPv6 появилось такое понятие как Scope, он же Zone ID терминологии Microsoft. На самом деле оно было и в IPv4, однако не было задано явно: сети 10/8, 172.16/12 и 192.168/16 яркие тому примеры.

В случае Unicast/Anycast адресов приминимо следующее:
У каждого IPv6 enabled интерфейса есть свой Link-local адрес. Его scope, внезапно, local. Эти адреса уникальны в пределах линка, но не обязаны быть актуальными в пределах одного хоста. Так, например, VLAN созданный на интерфейсе будет иметь такой же link-local адрес, что и родительский интерфейс (так как без использования IPv6 Privacy Extensions он будет генериться из тогоже Link Layer адреса). Для того, чтобы явно указать интерфейс которому принадлежит IPv6 адрес нужно или указывать в ручную интерфейс для исходящих пакетов или использовать специальный суффикс при записи адреса: %ИндексИнтерфейса в Windows (fe80::2b0:d0ff:fee9:4143%3) или %ИмяИнтерфейса в *BSD/Linux (fe80::2b0:d0ff:fee9:4143%em0).
В случае Multicast адресов scope указан в последних четырёх битах вторго октета IPv6 адреса: ff0s:: и может быть interface-local, link-local, admin-local, site-local, organization-local или же global.
Дополнительно стоит ознакомиться с RFC4007 IPv6 Scoped Address Architecture

Жизненный цикл IPv6 адреса

IPv6 Пакет

Заголовок IPv6 пакета

Extension Headers

IPv6 Протоколы

ICMPv6

ICMP в IPv6 был заменён на ICMPv6. О ICMPv6 можно прочитать в RFC4443 Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification.
Сам по себе ICMPv6 довольно прост, однако на его основе сделано множество довольно не тривиальных протоколов, о которых мы поговорим чуть ниже.

Описание Neighbor Discovery Protocol, заменившего протокол ARP, доступно в RFC4861. Теперь это не отдельный протокол, а надстройка над ICMPv6 добавляющая несколько новых типов сообщений.
Основное предназначение NDP — производить мапинг между link-layer и IPv6 адресами, однако это лишь небольшая часть функциональности.

Автоконфигурация

Zeroconf

Как уже было упомянуто выше, хосты умеют автоматически генерировать себе IPv6 link-local адрес из адреса канального уровня. Так что без какой либо настройки любой IPv6-enabled хост подключённый к сети выдаёт сам себе адрес сетевого уровня.
В IPv4 эта технология использует зарезервированный IPv4 диапазон 169.254/16. Подробно технология описана в RFC3927 Dynamic Configuration of IPv4 Link-Local Addresses (Заметьте, что этот RFC вышел после IPv6’ого 2462).

Stateful

В IPv4 автоконфигурация возможна только с использованием DHCP сервера. В IPv6 эту возможность оставили: можно конфигурировать сеть с помощью DHCPv6 сервера и клиента. Однако, поддержка со стороны вендоров DHCPv6 пока не блещет, так например, dhclient во FreeBSD из коробки не умеет IPv6.

Stateless
Комбинированая

Могут использоваться одновременно оба вида автоконфигурации, например stateless для получения IPv6 префикса и stateful для получения адресов DNS-серверов и/или других параметров, которые нельзя передать с помощью Router Advertisement.

Прочее

Протоколы более высокого уровня

Часть протоколов, использующих адрес сетевого уровня в своей работе требовали внесения в них определённых изменением для того, чтобы начать работать по IPv6. Ярким примером такого протокола является FTP.

Тунелирование IPv6 трафика поверх IPv4 сетей

Mobile IPv6

Про него не знаю нечего, так что просто оставлю это здесь: Mobile IP.

IPv6 адрес как хранилище информации

Согласитесь 128бит — это огромный простор для фантазии. Существует множество технологий которые пытаются использовать эти самые 128бит. От кодирования туда IPv4 адреса и криптографических сигнатур до определения растояний между нодами (тут кстати даже мы думали в этом направлении, но пока присмтриваемся к ALTO: Application-Layer Traffic Optimization (ALTO) Problem Statement).

Socket API

Хабратопик описывает IPv6 с точки зрения NOC / системного администратора, но не с точки зрения программиста. Если кому-то интересны особенности программирования под IPv6, то рекомендую обратиться к RFC3493 — Basic Socket Interface Extensions for IPv6 и книжке IPv6 Network Programming

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *