что такое сетевое программирование

Сетевое программирование для разработчиков игр. Часть 1: UDP vs. TCP

От переводчика: Это перевод первой статьи из цикла «Networking for game programmers». Мне очень нравится весь цикл статей, плюс всегда хотелось попробовать себя в качестве переводчика. Возможно, опытным разработчикам статья покажется слишком очевидной, но, как мне кажется, польза от нее в любом случае будет.

Привет, меня зовут Гленн Фидлер и я приветствую вас в первой статье из моей онлайн-книги “Сетевое программирование для разрабочиков игр”.

что такое сетевое программирование. 464c46fab563132e080ecec1d1546e84. что такое сетевое программирование фото. что такое сетевое программирование-464c46fab563132e080ecec1d1546e84. картинка что такое сетевое программирование. картинка 464c46fab563132e080ecec1d1546e84. От переводчика: Это перевод первой статьи из цикла «Networking for game programmers». Мне очень нравится весь цикл статей, плюс всегда хотелось попробовать себя в качестве переводчика. Возможно, опытным разработчикам статья покажется слишком очевидной, но, как мне кажется, польза от нее в любом случае будет.

В этой статье мы начнем с самых базовых аспектов сетевого программирования — приема и передачи данных по сети. Прием и передача данных — это основная и наиболее простая часть из всего круга задач, которыми занимаются сетевые программисты, но часто бывает сложно определить, каким путем лучше двигаться. Уделите этой части достаточно внимания — если у вас останется непонимание, то это может привести к ужасным последствиям для вашей многопользовательской игры в дальнейшем!

Вы, скорее всего, уже что-нибудь слышали о сокетах, и, возможно, знаете, что они делятся на два основных типа — TCP и UDP. Первое, что нужно решить при разработке многопользовательской игры — это какой тип сокетов использовать — TCP, UDP, или оба?

Выбор типа сокетов полностью зависит от жанра игры, которую разрабатываете. В данном цикле статей я буду считать, что вы пишете игру в стиле action — наподобие Halo, Battlefield 1942, Quake, Unreal, CounterStrike, Team Fortress и т.п.

Теперь мы более подробно рассмотрим свойства каждого типа сокетов (учитывая тот факт, что мы разрабатыватаем игру в стиле action), и немного углубимся в детали работы сети интернет. После подробного обзора правильный вариант станет очевиден!

TCP расшифровывается как “transmission control protocol” (протокол контроля передачи), а IP — как “internet protocol”. Вместе они лежат в основе практически всего, что вы делаете в сети, начиная от просмотра веб-страниц и кончая общением в IRC и электронной почтой — все это работает на основе TCP/IP.

Если вы когда-либо уже использовали TCP сокеты, то вы должны знать, что TCP — это протокол, использующий принцип надежного соединения. Это означает, что вы устанавливаете соединение между двумя компьютерами, и затем пересылаете данные между ними подобно тому, как если бы вы записывали информацию в файл на одном компьютере, а на другом — считывали бы ее из того же файла.

При этом соединение считается надежным и последовательным — то есть, вся информация, которую вы посылаете, гарантированно должна дойти до получателя в том же порядке, в каком была отправлена. Также TCP соединение можно считать непрерывным потоком данных — протокол сам заботится о разбивке данных на пакеты и пересылке их по сети.

Еще разок — все просто, как обычная запись или чтение из файла. Элементарно, Ватсон!

Но такая простота в обращении совершенно отличается от того, что на самом деле происходит «под капотом», на более низком уровне — уровне протокола IP.

На этом уровне нет понятия соединения — вместо этого отдельные пакеты передаются от одного компьютера к другому. Можно представить этот процесс как передачу записки от одного человека к другому в комнате, полной народу: в конце концов записка попадает к кому надо, но при этом пройдя через множество рук.

При этом нет никакой гарантии того, что записка дойдет до адресата. Отправитель просто отправляет записку в надежде, что она дойдет, но при этом даже не знает, дошло ли послание или нет — до тех пор, пока получатель не решит написать в ответ.
Естественно, в реальности все немного сложнее, поскольку компьютер-отправитель не знает точную последовательность компьютеров в сети, через которые надо передать пакет, чтобы он добрался как можно быстрее. Иногда IP передает несколько копий одного и того же пакета, которые могут идти до адресата разными путями — и, скорее всего, дойдут в разное время.

Так происходит потому, что сеть интернет — это самоорганизующаяся и самовосстанавливающаяся система, которая может “обходить” проблемные участки в сети. На самом деле, то, что происходит на таком низком уровне в сети — реально круто. Вы можете почитать об этом более подробно в уже ставшей классикой книге — “TCP/IP Illustrated”.

А что, если мы захотим пересылать информацию между компьютерами не в стиле чтения/записи в файл, а непосредственно отправляя и получая отдельные пакеты?

Что ж, мы можем сделать это, используя UDP. UDP расшифровывается как “user datagram protocol” (протокол пользовательских датаграмм), и он работает поверх IP (как и TCP), но вместо добавления кучи функциональности он представляет собой лишь небольшую надстройку над IP.

Используя UDP, мы можем отослать пакет по определенному IP адресу (к примеру, 112.140.20.10) и порту (к примеру, 52423), и он будет передаваться от компьютера к компьютеру, пока не достигнет цели (или не потеряется по пути).

При этом, на стороне приемника мы просто сидим и ждем, прослушивая определенный порт (52423 в нашем случае), и, когда на него приходит пакет от кого-либо (помним, что соединения не используются), мы получаем об этом уведомление с адресом и портом компьютера-отправителя, размером пакета, и после этого можем прочитать данные из этого пакета.

Протокол UDP не гарантирует доставку данных. На практике большинство пакетов, конечно, доходят, но всегда имеются потери около 1-5%, а иногда бывают периоды времени, в которые пакеты вообще не доходят (помните, что между отправителем и получателем могут находиться тысячи компьютеров, на любом из которых что-то может отказать или сломаться).

Также UDP не гарантирует порядок доставки пакетов. Вы можете отправить пять пакетов по порядку — 1, 2, 3, 4, 5 — а прийти они могут совершенно в другом порядке — к примеру, 3, 1, 2, 5, 4. Опять же, на практике, они скорее всего придут в правильном порядке в большинстве случаев, но полагаться на это нельзя!

Наконец, хоть UDP и ничего особо не добавляет к IP, одну вещь он все-таки гарантирует. Если вы пересылаете пакет, то он либо дойдет полностью, либо не дойдет вообще. Так, если вы пересылаете пакет в 256 байт другому компьютеру, то он не может получить только первые 100 байт от пакета — он обязательно должен получить все 256 байт. Это реально единственная вещь, которую гарантирует протокол UDP — все остальное ложится на ваши плечи.

Итак, нам нужно решить — использовать TCP или UDP сокеты? Давайте взглянем на их свойства:

Использовать TCP — это наверное, худшая ошибка, которую можно совершить, разрабатывая многопользовательскую игру. Чтобы понять почему, давайте разберемся, что делает TCP таким простым в использовании!

Как работает TCP

TCP и UDP оба работают поверх IP, но по факту они совершенно разные. UDP ведет себя очень похоже на IP, в то время как TCP абстрагирует пользователя от всех проблем с пакетами, делая взаимодействие с ним похожим на чтение/запись в файл.

Итак, как же он это делает?

Во-первых, TCP использует абстракцию потока данных — вы можете просто записывать байты данных в этот поток, и TCP позаботится о том, чтобы они дошли до адресата. Так как протокол IP передает данные пакетами, а TCP работает поверх IP, TCP должен разбивать поток входных данных пользователя на отдельные пакеты. Таким образом, внутри TCP некоторая логика собирает данные в очередь, и, когда их накапливается достаточно много, она формирует пакет и отправляет его адресату.

Такое поведение может стать проблемой для нашей многопользовательской игры, если нужно передавать очень маленькие пакеты. Может случиться так, что TCP решит не передавать наши данные, пока их не накопится достаточно, чтобы сформировать пакет определенного размера (скажем, больше ста байт). И это — большая проблема, потому что необходимо передавать данные с клиента (нажатия клавиш игрока) на сервер как можно быстрее, и если при этом будут возникать задержки из-за буферизации данных протоколом, то для игрока на клиентской стороне игра будет происходить далеко не самым приятным образом. При этом обновление объектов игры будет происходить с задержкой и редко — тогда как нам нужно делать обновление объектов вовремя и часто.

В TCP есть опция, призванная исправить это — “TCP_NODELAY”. Она говорит протоколу, чтобы он не ждал накопления данных в очереди на отправку, а отсылал их сразу.

К сожалению, даже с установленной данной опцией, у TCP наблюдается множество проблем при использовании его в сетевых играх.

Корень всех проблем заключается в том, каким образом TCP обрабатывает пакеты, потерянные или пришедшие вне очереди, создавая иллюзию надежного и последовательного соединения.

Как TCP обеспечивает надежность соединения

При передаче TCP разбивает поток данных на отдельные пакеты, пересылает их по сети, используя ненадежный протокол IP, и затем на принимающем компьютере восстанавливает из принятых пакетов первоначальный поток.

Но что будет, если один из пакетов не дойдет? Или если пакеты придут не по порядку, или с дубликатами?

Если особо не углубляться в детали работы TCP (а это реально очень сложная тема — можете почитать в TCP/IP Illustrated), процесс выглядит так: TCP отправляет пакет, определяет, что пакет не дошел, и заново отправляет тот же пакет адресату. Дублирующиеся пакеты отсеиваются на стороне адресата, а пакеты, пришедшие не по порядку — переупорядочиваются, чтобы все было как надо — надежно и по порядку.

Проблема заключается в том, что когда TCP таким образом “синхронизирует” поток данных, в случае потери пакета передача останавливается до тех пор, пока потерянный пакет не будет отправлен заново (и получен адресатом). Если во время ожидания придут новые данные, они будут поставлены в очередь, и вы не сможете прочитать их, пока не дойдет тот самый потерянный пакет. Сколько времени занимает посылка пакета заново? Она занимает как минимум время, равное времени прохождения пакета туда и обратно (когда TCP определяет, какой пакет надо отправить заново), плюс время на повторную доставку потерянного пакета. Так что, если пинг между компьютерами составляет 125 мс, повторная передача пакета займет примерно одну пятую секунды, а в худшем случае — до полсекунды (представьте, если вдруг заново отправленный пакет тоже потеряется). Веселуха!

Почему никогда не стоит использовать TCP для многопользовательских игр

Проблема с использованием TCP в сетевых играх заключается в том, что, в отличие от браузеров, электронной почты и прочих приложений, игры завязаны на взаимодействии в реальном времени. Для многих аспектов игры, например, нажатых пользователем клавиш и положения игроков в игре, неважно, что происходило секунду назад, а важно только наиболее актуальное состояние игрового мира.

Рассмотрим простой пример многопользовательской игры, например, 3d-шутер. Сетевая часть в игре построена очень просто: каждую итерацию цикла игры клиент посылает на сервер описание всех действий игрока (нажатые клавиши, положение мыши и т.п.), и каждую итерацию сервер обрабатывает эти данные, обновляет модель игрового мира и посылает обратно клиенту текущие позиции объектов мира, чтобы тот отрисовал игроку новый кадр.

К сожалению, изменить такое поведение TCP никак нельзя, да и не надо, так как в нем и заключается смысл TCP. Это — необходимость, чтобы сделать передачу данных через интернет надежным и последовательным потоком данных.
Но нам не нужен надежный и последовательный поток данных.

Нам нужно, чтобы данные доходили от клиента к серверу как можно быстрее, и мы не хотим ждать повторной отправки данных.
Вот почему никогда не следует использовать TCP для многопользовательских игр.

Но подождите! Почему я не могу использовать и UDP, и TCP вместе?

Для игровых данных реального времени, например, нажатий пользователя и состояния игрового мира, важны только наиболее актуальные данные, но для других типов данных, например, наборов команд, пересылаемых от одного компьютера к другому, надежность и последовательность канала может быть очень важна.

Конечно, велико искушение использовать UDP для передачи данных пользовательского ввода и состояния мира, а TCP — для тех данных, которые должны быть гарантированно доставлены. Возможно, вы даже думаете, что можно сделать несколько “потоков” команд — например, один для загрузки уровней, другой — для команд AI. Вы думаете: “Мне не нужно, чтобы команды AI ждали в очереди, если потеряется пакет с данными для загрузки уровня, ведь они же совершенно не связаны!”. В данном случае вы правы, и вы можете решить создать по TCP сокету на каждый поток команд.

На первый взгляд, это отличная идея. Но проблема в том, что раз TCP и UDP оба работают поверх IP, пакеты обоих протоколов будут влиять друг на друга — уже на уровне IP. Как конкретно будет проявляться это влияние — очень сложный вопрос, и связан он с механизмами обеспечения надежности в TCP. Но, в любом случае, знайте, что использование TCP обычно приводит к увеличению потерь UDP пакетов. Если хотите узнать об этом больше, можете прочитать вот эту статью.

Заключение

Я рекомендую не просто использовать UDP, но и использовать только UDP и больше ничего. Не используйте TCP и UDP вместе — вместо этого лучше узнайте, как реализовать те “фишки” TCP, которые вам нужны, самостоятельно, на основе UDP.

В следующих статьях я расскажу, как это сделать — от реализации собственного протокола с использованием соединений на основе UDP, до реализации обеспечения надежности передачи и контроля потока данных.

Источник

Начинающему сетевому программисту

В общем, посмотрев на всё это, я решил написать базовую статью по созданию простейшего клиент-сервер приложения на С++ под Windows с детальным описанием всех используемых функций. Это приложение будет использовать Win32API и делать незамысловатую вещь, а именно: передавать сообщения от клиента к серверу и обратно, или, иначе говоря – напишем программу по реализации чата для двух пользователей.

Сразу оговорюсь, что статья рассчитана на начинающих программистов, которые только входят в сетевое программирование под Windows. Необходимые навыки – базовое знание С++, а также теоретическая подготовка по теме сетевых сокетов и стека технологии TCP/IP.

Теория сокетов за 30 секунд для «dummies»

Начну всё-таки немного с теории в стиле «for dummies». В любой современной операционной системе, все процессы инкапсулируются, т.е. скрываются друг от друга, и не имеют доступа к ресурсам друг друга. Однако существуют специальные разрешенные способы взаимодействия процессов между собой. Все эти способы взаимодействия процессов можно разделить на 3 группы: (1) сигнальные, (2) канальные и (3) разделяемая память.

Для того, чтобы сокеты заработали под Windows, необходимо при написании программы пройти следующие Этапы:

Инициализация сокетных интерфейсов Win32API.

Инициализация сокета, т.е. создание специальной структуры данных и её инициализация вызовом функции.

«Привязка» созданного сокета к конкретной паре IP-адрес/Порт – с этого момента данный сокет (его имя) будет ассоциироваться с конкретным процессом, который «висит» по указанному адресу и порту.

Для серверной части приложения: запуск процедуры «прослушки» подключений на привязанный сокет.

Для клиентской части приложения: запуск процедуры подключения к серверному сокету (должны знать его IP-адрес/Порт).

Акцепт / Подтверждение подключения (обычно на стороне сервера).

Обмен данными между процессами через установленное сокетное соединение.

Закрытие сокетного соединения.

Итак, попытаемся реализовать последовательность Этапов, указанных выше, для организации простейшего чата между клиентом и сервером. Запускаем Visual Studio, выбираем создание консольного проекта на С++ и поехали.

Этап 0: Подключение всех необходимых библиотек Win32API для работы с сокетами

Сокеты не являются «стандартными» инструментами разработки, поэтому для их активизации необходимо подключить ряд библиотек через заголовочные файлы, а именно:

WinSock2.h – заголовочный файл, содержащий актуальные реализации функций для работы с сокетами.

WS2tcpip.h – заголовочный файл, который содержит различные программные интерфейсы, связанные с работой протокола TCP/IP (переводы различных данных в формат, понимаемый протоколом и т.д.).

Также нам потребуется прилинковать к приложению динамическую библиотеку ядра ОС: ws2_32.dll. Делаем это через директиву компилятору: #pragma comment(lib, “ws2_32.lib”)

Ну и в конце Этапа 0 подключаем стандартные заголовочные файлы iostream и stdio.h

Итого по завершению Этапа 0 в Серверной и Клиентской частях приложения имеем:

Обратите внимание: имя системной библиотеки ws2_32.lib именно такое, как это указано выше. В Сети есть различные варианты написания имени данной библиотеки, что, возможно, связано иным написанием в более ранних версиях ОС Windows. Если вы используете Windows 10, то данная библиотека называется именно ws2_32.lib и находится в стандартной папке ОС: C:/Windows/System32 (проверьте наличие библиотеки у себя, заменив расширение с “lib” на “dll”).

Этап 1: Инициализация сокетных интерфейсов Win32API

Прежде чем непосредственно создать объект сокет, необходимо «запустить» программные интерфейсы для работы с ними. Под Windows это делается в два шага следующим образом:

Нужно определить с какой версией сокетов мы работаем (какую версию понимает наша ОС) и

Запустить программный интерфейс сокетов в Win32API. Ну либо расстроить пользователя тем, что ему не удастся поработать с сокетами до обновления системных библиотек

Итого код Этапа 1 следующий:

Да, кода мало, а описания много. Так обычно и бывает, когда хочешь глубоко в чем-то разобраться. Так что на лабе будешь в первых рядах.

Этап 2: Создание сокета и его инициализация

Тип сокета: обычно задается тип транспортного протокола TCP ( SOCK_STREAM ) или UDP ( SOCK_DGRAM ). Но бывают и так называемые «сырые» сокеты, функционал которых сам программист определяет в процессе использования. Тип обозначается SOCK_RAW

Тип протокола: необязательный параметр, если тип сокета указан как TCP или UDP – можно передать значение 0. Тут более детально останавливаться не будем, т.к. в 95% случаев используются типы сокетов TCP/UDP.

При необходимости подробно почитать про функцию socket() можно здесь.

Код Этапа 2 будет выглядеть так:

Этап 3: Привязка сокета к паре IP-адрес/Порт

Сокет уже существует, но еще неполноценный, т.к. ему не назначен внешний адрес, по которому его будут находить транспортные протоколы по заданию подключающихся процессов, а также не назначен порт, по которому эти подключающиеся процессы будут идентифицировать процесс-получатель.

В ней уже более понятные пользователю поля, а именно:

Технический массив на 8 байт ( sin_zero[8] )

Соответственно, ввод данных для структуры типа sockaddr_in выглядит следующим образом:

Создание структуры типа sockaddr_in : sockaddr_in servInfo;

Заполнение полей созданной структуры servInfo

В случае ошибки функция возвращает значение меньше 0.

Соответственно, если мы хотим привязать сокет к локальному серверу, то наш код по преобразованию IPv4 адреса будет выглядеть так:

erStat = inet_pton(AF_INET, “127.0.0.1”, &ip_to_num);

Результат перевода IP-адреса содержится в структуре ip_to_num. И далее мы передаем уже в нашу переменную типа sockaddr_in значение преобразованного адреса:

Этап 4 (для сервера): «Прослушивание» привязанного порта для идентификации подключений

После вызова данной функции исполнение программы приостанавливается до тех пор, пока не будет соединения с Клиентом, либо пока не будет возвращена ошибка прослушивания порта. Код Этапа 4 для Сервера:

Этап 4 (для Клиента). Организация подключения к серверу

Функция возвращает 0 в случае успешного подключения и код ошибки в ином случае.

Этап 5 (только для Сервера). Подтверждение подключения

Всё, соединение между Клиентом и Сервером установлено! Самое время попробовать передать информацию от Клиента к Серверу и обратно. Как мы в начале и договорились, мы будет реализовывать простейший чат между ними.

Этап 6: Передача данных между Клиентом и Сервером

Рассмотрим прототипы функций recv() и send() :

Флаги в большинстве случаев игнорируются – передается значение 0.

Функции возвращают количество переданных/полученных по факту байт.

Как видно из прототипов, по своей структуре и параметрам эти функции совершенно одинаковые. Что важно знать:

и та, и другая функции не гарантируют целостности отправленной/полученной информации. Это значит, что при реализации прикладных задач по взаимодействию Клиента и Сервера с их использованием требуется принимать дополнительные меры для контроля того, что все посланные байты действительно посланы и, что еще более важно, получены в том же объеме на другой стороне

предельно внимательно надо относиться к параметру «размер буфера». Он должен в точности равняться реальному количеству передаваемых байт. Если он будет отличаться, то есть риск потери части информации или «замусориванию» отправляемой порции данных, что ведет к автоматической поломке данных в процессе отправки/приёма. И совсем замечательно будет, если размер буфера по итогу работы функции равен возвращаемому значению функции – размеру принятых/отправленных байт.

В качестве буфера рекомендую использовать не классические массивы в С-стиле, а стандартный класс С++ типа char, т.к. он показал себя как более надежный и гибкий механизм при передаче данных, в особенности при передаче текстовых строк, где важен терминальный символ и «чистота» передаваемого массива.

Процесс непрерывного перехода от send() к recv() и обратно реализуется через бесконечный цикл, из которого совершается выход по вводу особой комбинации клавиш. Пример блока кода для Серверной части:

Пришло время показать итоговый рабочий код для Сервера и Клиента. Чтобы не загромождать и так большой текст дополнительным кодом, даю ссылки на код на GitHub:

Несколько важных финальных замечаний:

В итоговом коде я не использую проверку на точное получение отосланной информации, т.к. при единичной (не циклической) отсылке небольшого пакета информации накладные расходы на проверку его получения и отправку ответа будут выше, чем выгоды от такой проверки. Иными словами – такие пакеты теряются редко, а проверять их целостность и факт доставки очень долго.

При тестировании примера также видно, что чат рабочий, но очень уж несовершенный. Наиболее проблемное место – невозможность отправить сообщение пока другая сторона не ответила на твоё предыдущее сообщение. Суть проблемы в том, что после отсылки сообщения сторона-отправитель вызывает функцию recv(), которая, как я писал выше, блокирует исполнение последующего кода, в том числе блокирует вызов прерываний для осуществления ввода. Это приводит к тому, что набирать сообщение и что-то отправлять невозможно до тех пор, пока процесс не получит ответ от другой стороны, и вызов функции recv() не будет завершен. Благо введенная информация с клавиатуры не будет потеряна, а, накапливаясь в системном буфере ввода/вывода, будет выведена на экран как только блокировка со стороны recv() будет снята. Таким образом, мы реализовали так называемый прямой полудуплексный канал связи. Сделать его полностью дуплексным в голой сокетной архитектуре достаточно нетривиальная задача, частично решаемая за счет создания нескольких параллельно работающих потоков или нитей (threads) исполнения. Один поток будет принимать информацию, а второй – отправлять.

В последующих статьях я покажу реализацию полноценного чата между двумя сторонами (поможет разобраться в понятии «нити процесса»), а также покажу полноценную реализацию прикладного протокола по копированию файлов с Сервера на Клиент.

Источник

Сеть: Отличный гайд по сетевому программированию

Brian «Beej Jorgensen» Hall
beej@beej.us
Version 3.0.14
September 8, 2009
Copyright © 2009 Brian «Beej Jorgensen» Hall
Оригинал материала: http://beej.us/guide/bgnet/

Эй! Программирование сокетов тебя достало? Оно слишком заковыристо, чтобы изучить его по манам? Вы хотите писать сетевые программы, но у вас нет времени, чтобы разбираться в дебрях документации, чтобы всего лишь узнать, что перед connect() нужно вызывать bind() и т.д. и т.п.?

Знаете что? Я уже проделал эту грязную работу и горю желанием поделиться со всеми полученными знаниями! Вы сюда удачно зашли! Этот документ даст среднему программисту на C достаточно знаний, чтобы начать писать сетевые программы на C.

И ещё: я наконец нашел время и дополнил гайд информацией о программировании IPv6! Наслаждайтесь!

Этот документ написан в качестве учебника, а не справочного материала. Наверно, лучше всего он будет восприниматься теми, кто только начинает изучать программирование сокетов и ищет точку опоры. Это не полное глобальное руководство по программированию сокетов.
Надеюсь, однако, его будет достаточно, чтобы понять суть и смысл сокетов… что такое сетевое программирование. smile. что такое сетевое программирование фото. что такое сетевое программирование-smile. картинка что такое сетевое программирование. картинка smile. От переводчика: Это перевод первой статьи из цикла «Networking for game programmers». Мне очень нравится весь цикл статей, плюс всегда хотелось попробовать себя в качестве переводчика. Возможно, опытным разработчикам статья покажется слишком очевидной, но, как мне кажется, польза от нее в любом случае будет.

Платформа и компилятор

Код, приведённый в этом документе, был скомпилирован на компьютере под управлеием GNU/Linux компилятором GNU GCC. Однако, он будет работать и на любой другой платформе, использующей gcc. Естественно, это не касается windows — смотрите раздел Программистам Windows.

Официальный сайт и книги

Официальное и изначальное местонахождение этого документа — http://beej.us/guide/bgnet/. Там вы также найдете примеры кода и переводы руководства на различные языки.

Чтобы купить красиво переплетенные копии этого документа (некоторые называют их «книги»), посетите http://beej.us/guide/url/bgbuy. Я ценю заказы своих книг, поскольку они помогают поддерживать мой документо-писательский образ жизни!

Программистам Solaris и SunOS

Если всё ещё возникают ошибки, добавьте ещё и «-lxnet». Я не знаю, что это такое, но у некоторых людей это решало проблему.

Другое узкое место — вызов setsockopt(). Прототип отличается от такогого в Linux, так что вместо

Так как у меня нет соляриса, я не тестировал ничего из этого. Всё это мне пришло в отзывах на e-mail.

Исторически этот гайд не рассчитан на windows. Просто потому, что windows я не люблю. Но стоит быть действительно честным и признать, что у windows есть огромная база программ и пользователей, и в сущности это прекрасная ОС.

Я всё ещё надеюсь, что вы попробуете Linux, BSD или любой другой Unix.
Но людям нравится то, что им нравится, и ребята под windows имеют право на свою долю информации. Этот документ полезен и им тоже, с небольшими изменениями в коде.

Во-первых, вы можете поставить такую штуку, как Cygwin. Это коллекция инструментов Unix под Windows. Насколько я понимаю, это позволит оставить код без изменений.

Но некоторые из вас, возможно, захотят писать код под чистый windows. Это очень плохо, и вы должны немедленно поставить Unix!
Нет-нет, шучу. Нужно быть windows-терпеливым ближайшие дни…

Во-первых, вы должны игнорировать почти все хэдер-файлы, которые я использую. Всё, что вам нужно включать, это:

Стоп! Ещё вы должны вызывать WSAStartup() перед всем остальным кодом, относящимся к сокетам. Выглядит это примерно так:

<
WSADATA wsaData ; // if this doesn’t work
//WSAData wsaData; // then try this instead

// MAKEWORD(1,1) for Winsock 1.1, MAKEWORD(2,0) for Winsock 2.0:

Ну, я слышал, что это примерно так делается.

В конце работы с сокетами вы должны вызывать WSACleanup().

Если вы сделаете всё это, остальные примеры из этого учебника должны, по идее, работать, хоть и с некоторыми исключениями.
Во-первых, вместо close() вам нужно использовать closesocket(). select() работает только с дескриптором сокета, с дескриптором файла, как в unix, не работает.

Существует так же класс для работы с сокетами, CSocket, можете поискать его в учебниках.

Чтобы получить больше информации о Winsock, читайте Winsock FAQ.

Наконец, насколько я знаю, в windows, к сожалению, нет системы fork(), использующейся в некоторых примерах. Может быть, вы сможете прилинковать для форка библиотеку POSIX, или использовать вместо него CreateProcess(). Форк не принимает аргументов, а CreateProcess принимает миллиарды. Если вам не хочется в них разбираться, используйте CreateThread, это немного проще… К сожалению, дискуссия о многопоточности выходит за рамки этого документа.

Обычно я доступен по электронной почте, если вам нужна помощь или есть вопросы, так чир не стесняйтесь писать, но я не могу гарантировать свой ответ. Я веду довольно занятой жизни и Есть моменты, когда я просто не могу ответить на ваш вопрос. Когда так случается, я обычно просто удаляю сообщение. Ничего личного, у меня просто никогда не будет времени, чтобы дать подробный ответ, которого вы требуете.

Как правило, чем более объемный вопрос, тем менее вероятно, что я отвечу. Если вы можете сузить свой вопрос, прежде чем отправить его мне, и не забудьте включить любую соответствующую информацию (например, платформу, компилятор, сообщения об ошибках, которые вы получаете и все остальное, что, как вам кажется, может мне помочь в устранении неполадок), вы имеете гораздо больше шансов получить ответ.

Если вы не получите ответа, подумайте над ним еще некоторое время, попробуйте найти ответ, и если он по-прежнему неуловимым, то напишите мне снова с дополнительной информацией, которую Вы нашли и, надеюсь, этого мне будет достаточно для помощи вам.

Зеркалирование этого материала более чем приветствуется, будь то государственные или частные сайты. Если вы опубликовали зеркало и хотите, чтобы я разместил ссылку на него на главной странице, напишите мне на beej@beej.us.

Авторские права и распространение

Руководство Beej по сетевому программированию © 2009 Brian «Beej Jorgensen» Hall.

За некоторыми исключениями исходного кода и переводов, ниже, эта работа под лицензией Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Чтобы просмотреть копию данной лицензии, посетите http://creativecommons.org/licenses/by-nc-nd/3.0/ или отправьте письмо в Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Одним из конкретных исключений «No Derivative Works» части лицензии является следующее: это руководство может быть свободно переведено на любой язык при условии, что перевод является точным, и руководство перепечатано в полном объеме. Такие же ограничения лицензии относятся как переводу, так и к исходному руководству. Перевод может также включать имя и контактную информацию переводчиков.

Исходный код, представленный в данном документе, настоящим объявляется общественным достоянием, и полностью свободен от каких-либо лицензионных ограничений.

Педагогам свободно предлагается рекомендовать или предоставить копии этого руководства своим студентам.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *