что такое сельсин принцип работы
Сельсины: назначение, устройство, принцип действия
Сельсины представляют собой особый вид электрических машин переменного тока мощностью от нескольких ватт до нескольких сот ватт (менее киловатта). Служит сельсин для дистанционной передачи механического угла поворота электрическим путем между устройствами, не имеющими между собой механической связи.
Всякий сельсин имеет статор и ротор, на которых расположены обмотки переменного тока. Существуют сельсины с однокатушечной обмоткой на статоре и трехкатушечной на роторе, и, наоборот, с трехкатушечной обмоткой на статоре и однокатушечной на роторе, и, наконец, с трехкатушечной обмоткой на статоре и с такой же обмоткой на роторе.
По своему назначению в схемах авторегулирования сельсины делятся на:
Для уяснения работы сельсина рассмотрим рис. 1, а.
Сельсин-датчик и сельсин-приемник своими однокатушечными обмотками статора подключены к одной и той же сети переменного тока, а трехкатушечные обмотки ротора соединены между собой. Если теперь повернуть ротор датчика на произвольный угол, то на такой же угол повернется ротор приемника. Если ротор датчика вращать непрерывно с произвольной скоростью, то с такой же скоростью будет вращаться и ротор приемника.
Действие сельсинной связи основано на принципе электромагнитной индукции, заключающейся в следующем. Переменный ток однокатушечной обмотки статора индуктирует в трехкатушечной обмотке ротора токи, величины которых зависят от относительного расположения обмоток ротора и статора.
Если роторы обоих сельсинов расположены одинаково по отношению к своим статорам, то токи в соединительных проводах роторов равны и противоположны между собой, и поэтому ток в каждой катушке равен нулю. Как следствие, равен нулю вращающий момент на валу одного и другого сельсинов.
Если теперь вручную или иным способом повернуть ротор сельсин-датчика на определенный угол, то нарушится равновесие токов между роторами, и на валу сельсин-приемника возникнет вращающийся момент, благодаря чему его ротор будет поворачиваться до тех пор, пока не исчезнет неравновесие, токов, т. е. пока этот ротор не примет то же положение, что и сельсин-датчик.
В системах авторегулирования нередко сельсин-приемник работает в трансформаторном режиме (рис. 1, б). В этом случае ротор приемника закрепляется неподвижно, а обмотка его статора отключается от сети. В этой обмотке индуктируется э. д. с. со стороны ротора, по обмоткам которого протекают токи, обусловливаемые положением ротора сельсин-датчика. Это означает, что величина э. д. с. на зажимах ротор приемника пропорциональна углу поворота датчика.
В исходном положении роторы смещены на 90° относительно друг друга и в этом случае индуктируемая на роторе датчика э. д. с. равна нулю. Теперь при повороте ротора-датчика на роторе приемника будет индуктироваться э. д. с. Епр, пропорциональная углу рассогласования роторов
Епр = Емакс х sin θ
Дифференциальный сельсин применяется в тех случаях, когда нужно контролировать разность углов поворота двух осей, т. е. их рассогласование. В этом случае два сельсин-датчика находятся на двух валах, скорости которых сравниваются между собой. Трехкатушечными обмотками роторы этих сельсинов соединены с трехкатушечными обмотками статора и ротора третьего сельсина, являющегося дифференциальным (рис. 1, в). Угол поворота ротора дифференциального сельсина равен разности углов поворота сельсин-датчиков.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Что такое сельсин-датчик и зачем он необходим
Реализация технологического процесса предполагает использование различного оборудования. В некоторых случаях надо добиться синхронного и синфазного вращения осей различных устройств. Иногда по каким-то причинам механическое соединение не представляется возможным. Тогда вместо муфты используют сельсин — специальный датчик, благодаря которому можно добиться требуемой синхронизации. Он нередко входит в состав специальных систем, нуждающихся в повороте на некоторый угол на расстоянии. Сельсин работает в режиме приемника и передающего элемента. Стоит детально разобраться, что это такое, как работает и где может использоваться.
Виды синхронной связи
Прежде чем начать разбираться, что такое и как функционируют сельсины, стоит познакомиться с существующими разновидностями синхронной связи. По данному параметру системы принято делить на системы асинхронного вращения и поворота. Каждая разновидность имеет свои особенности.
Синхронное вращение
В состав входит два одинаковых асинхронных электродвигателя, оснащенных фазными роторами. Обмотки ротора соединяют. Статор подключают к 380 В.
Синхронный поворот
В состав входят сельсины, исполнение которых допускает самосинхронизацию. В зависимости от числа фаз они подразделяются на:
Посмотрите видео в конце, чтобы разобраться в особенностях подобной системы.
Системы синхронного поворота: основные режимы
Сельсины работают в двух режимах. Каждый из них имеет свои особенности которые надо обязательно учитывать при выборе оборудования.
Индикаторный
Если оборудование работает в данном режиме, значит, ротор принимающего устройства подсоединен к ведомой оси. Схема актуальна при выборе для ведомой оси минимального момента торможения и размещение на ней индикаторной стрелки. Обмотки возбуждения подключают к общей цепи. Синхронизирующие объединяют с линией связи.
Формируемые магнитные потоки инициируют возникновение ЭДС на обмотках всех фаз. Незначительная рассогласованность приводит к протеканию электротока. Благодаря потоку в датчиках и принимающем элементе сельсина образуются разнонаправленные моменты. С их помощью удается полностью нивелировать угол рассогласования.
Ротор, располагающийся на датчике, затормаживают. Как итог, момент синхронизации влияет на механизм, поворачивающий ведущую ось. Благодаря подобному конструктивному исполнению удается обеспечить одновременный поворот на одинаковый угол роторов обоих подключенных элементов.
Трансформаторный
Электросигнал, появляющийся при рассогласованности роторов, сначала поступает на усиливающую часть схемы. Далее — на ротор исполнительного механизма. Последний начинает поворачивать ротор принимающего элемента и ведомую ось до полного нивелирования имеющейся разницы. Подобный режим актуален при прикладывании к ведомой оси момента торможения, имеющий достаточно большую величину. То есть помогает повернуть механизм.
Обмотку датчика соединяют с ведущей осью и подключают к электросети на 220 В. Для подачи напряжения на элемент, отмечающий за управление двигателем, задействуют усилитель. Обмотку приемника используют для присоединения сельсина. Для объединения обмоток синхронизации двух сельсинов используется линия связи. В возбуждающей обмотке индуцируется ток, создающий в синхронизирующей обмотке ЭДС.
Ток протекает по обоим элементам, так как их обмотки соединены. В принимающем элементе формируются магнитные импульсы. Если элементы рассогласованы, под действием потока в обмотке возникает ЭДС. На входе появляется напряжение, запускающее специальный усиливающий элемент. От него напряжение поступает на статор, принадлежащий исполнительному устройству. Это приводит к тому, что ведомая ось начинает поворачиваться следом за ротором приемника. По мере устранения имеющейся разницы, напряжение становится равным нулю, и вращение ведомой оси прекращается.
Особенности используемой технологии и конструкция влияют на величину погрешности. К таковым относят:
При передаче угла неизбежно возникают погрешности. Их появление обусловлено определенными условиями эксплуатации. При изменении величины сопротивления в сети управления, порядок работы сельсинов изменится.
Конструкция
Исполнение сельсинов диктует их принцип действия. Принято выделять:
Каждая разновидность имеет свои отличительные особенности, с которым стоит обязательно ознакомиться, чтобы понять принцип работы.
Контактные
Контактные по своему исполнению аналогичны асинхронным электродвигателям с фазным ротором и малой мощностью. В их состав входят неявнополюсные ротор и статор. Благодаря этому обе обмотки – распределенные. У ротора предусмотрена обмотка возбуждения. Для подвода электротока используются два кольца.
У отдельных моделей уже имеется статор и ротор. Это их явное преимущество. В результате величина момента синхронизации возрастает. Однако контактные элементы в этом случае — явный недостаток.
Бесконтактные
Для их включения не нужны никакие контактные элементы. Обе обмотки изначально устанавливаются на статоре. Ротор имеет характерную цилиндрическую форму. Для его изготовления используется материал, имеющие ферримагнитные свойства. Алюминиевая прослойка делит роток на два полюса.
Торообразные сердечники располагаются на торцах сельсинов. Их внутренняя часть располагается над ротором. Наружная соединяется со стержнями внешнего магнитопровода. Для изготовления сердечников используется электротехническая листовая стали. Однофазная обмотка устройства состоит из двух дисковых катушек, располагающихся по обеим сторона статора между сердечниками и обмоткой синхронизации.
В процессе работы устройства происходит замыкание магнитного потока импульсного типа. Трехфазная синхронизирующая обмотка соединяется на статоре. Положение оси потока магнитной индукции по мере изменения пространственного положения ротора изменяется. Он занимает иное положение относительно синхронизирующих обмоток. Величина возникающей ЭДС напрямую зависит от величины угла, на который смог повернуться ротор.
К недостаткам подобных устройств является не такое эффективное использование активных материалов. Кроме того, они в среднем на 50% тяжелее контактных аналогов, что обусловлено большими воздушными зазорами. Благодаря последним, величина токов намагничивания возрастает.
Видео по теме
Сельсины
Содержание
Конструкция и принцип действия сельсина
Сельсинами называют электрические микромашины, обладающие способностью самосинхронизации и применяемые в индукционных системах синхронной связи в качестве датчиков и приемников. Слово «сельсин» происходит от английских слов self–synchronizing, что означает самосинхронизирующийся. Сельсин-передачи работают аналогично обычным механическим передачам, но в них крутящий момент между валами создаётся не при помощи непосредственно контактирующих шестерён, а посредством изменяющегося магнитного потока.
В системах автоматики и контроля часто возникает необходимость синхронного и синфазного вращения или поворота двух и более осей, механически не связанных друг с другом.
Сельсины применяются для различных целей:
Сельсины представляют собой индукционные электрические машины переменного тока. Статор и ротор сельсина выполняются в виде магнитопроводов специальной конструкции. Для уменьшения потерь они набираются из тонкой электротехнической стали. В пазах статора и ротора укладывается обмотка возбуждения (первичная обмотка) и обмотка синхронизации (вторичная обмотка).
Условное графическое изображение и буквенное обозначение сельсинов на схемах показано на рисунке 2.24. Выводы обмотки синхронизации маркируют буквами S1, S2, S3, выводы обмотки возбуждения – буквами R1, R2. Буквенное обозначение сельсинов: BE – приёмник, ВС – датчик.
Сельсины подразделяются на две группы: трёхфазные силовые и однофазные.
Трёхфазные сельсины применяются в системах, где требуется обеспечить синфазное и синхронное вращение двух двигателей (валов), находящихся на расстоянии друг от друга. Трехфазный сельсин имеет трехфазную обмотку возбуждения и трехфазную обмотку синхронизации. Такие сельсины по конструкции не отличаются от обычных асинхронных двигателей и применяются в основном при больших мощностях.
Однофазный сельсин содержит однофазную обмотку возбуждения (ОВ), трёхфазную обмотку синхронизации (ОС), магнитопровод, вал и конструктивные элементы. Сельсины бывают бесконтактными и контактными. В первых, обе обмотки расположены на статоре, во-вторых сельсинах – одна обмотка расположена на статоре, другая – на роторе. Обмотка синхронизации распределена по пазам, обмотка возбуждения выполняется сосредоточенной в виде катушек на полюсах либо распределённой по пазам. В контактном сельсине электрическая связь с обмоткой, расположенной на роторе, осуществляется с помощью контактных колец и щёток. Принцип работы сельсина не зависит от места расположения каждой из обмоток: на статоре или на роторе. Однако наибольшее распространение получили сельсины с обмоткой возбуждения на роторе и обмоткой синхронизации на статоре (рисунок 1, б). У них меньше контактных колец и щеток, что обеспечивает более высокую надежность, меньший момент трения и объем сельсина. В цепи передачи сигнала (линии связи обмоток синхронизации) отсутствуют скользящие контакты. При такой конструкции проще выполнить демпферную обмотку на роторе.
Наличие скользящих контактов значительно снижает надежность контактных сельсинов. Бесконтактные сельсины подразделяются на:
Недостатком бесконтактных сельсинов является худшее использование активных материалов. Их масса примерно в 1,5 раза больше, чем контактных. Объясняется это большими воздушными зазорами, вследствие чего сельсины имеют значительные потоки рассеяния и большие намагничивающие токи.
Для повышения точности применяют пару сельсинов – «грубый» и «точный» (последний установлен через редуктор и за один оборот основного вала делает несколько оборотов). Если сигнал с грубого сельсина слабее некоторого порога, автоматика передаёт в линию связи сигнал с точного сельсина. Для подавления колебаний ротора, не имеющего нагрузочного момента используются механические демпферы.
Однофазные сельсины могут работать в двух режимах: индикаторном и трансформаторном.
Сельсин–датчик принудительно поворачивается на определённый угол, а сельсин-приёмник устанавливается в соответствующее ему положение (рисунок 2.25). Индикаторная схема применяется для синхронной дистанционной передачи угла поворота и различных величин, предварительно преобразованных в угловое перемещение, когда на выходе нет значительного крутящего момента.
Если ротор сельсина-датчика вывести из согласованного положения и зафиксировать (затормозить), то угол рассогласования Δα = αД – αП будет отличным от нуля. В этом случае в обмотках синхронизации и линий связи потекут уравнительные токи Ii, так как ΔEi ≠0.
где ZФ – полное сопротивление фазной обмотки сельсина.
При взаимодействии магнитных потоков, создаваемых уравнительными токами, с потоком возбуждения ФД и ФП на валах роторов сельсина-датчика и сельсина-приемника возникают синхронизирующие моменты, которые стремятся повернуть роторы в согласованное положение. Так как ротор сельсин-приемник не заторможен, то под действием вращающего момента он придет в согласование (синфазное) положение с ротором сельсина-датчика, т.е. положение, когда Δα=αД–αП=0.
Величина момента, поворачивающего ротор сельсина-приемника, является функцией угла рассогласования:
где ММ – максимальный момент сельсина, определяемый его параметрами.
Моментно-угловая зависимость является статической характеристикой сельсинной пары, работающей в индикаторном режиме.
В индикаторном режиме передача угла происходит со статической угловой погрешностью. При работе без нагрузки погрешность, вызванная собственным моментом трения МТ сельсина-приемника, является основной и характеризует величину зоны нечувствительности приемника, в пределах которой ротор приемника может занять любое положение при одном и том же положении датчика.
В процессе эксплуатации на точность передачи влияют колебания напряжения и частоты питающей сети и сопротивление линии связи сельсинов. Уменьшение напряжения и увеличение частоты приводят к уменьшению потока возбуждения Ф. Увеличение расстояния между сельсинами и сопротивления линии связи снижает величину тока в обмотках синхронизации и МДС Fmax. В обоих случаях уменьшается синхронизирующий момент и точность передачи. Резкое снижение точности передачи наступает при появлении момента нагрузки на валу приемника.
Сельсин-датчик принудительно поворачивается на определённый угол, а на выходе сельсин-приёмника формируется напряжение, являющееся функцией угла рассогласования между ними (рисунок 2.26). Трансформаторная схема синхронной передачи угла применяется тогда, когда на ведомой оси имеется значительный момент сопротивления.
Обмотка возбуждения сельсина-датчика, как и в случае индикаторного режима, подключена к питающей сети и служит для создания в магнитной системе машины пульсирующего магнитного потока. Обмотки синхронизации датчика и приемника соединены между собой линия связи. Обмотка возбуждения сельсина-приемника предназначена для выработки сигнала (напряжения), зависящего от угла рассогласования. В исходном положении ротора СД ось обмотки 1 совпадает с осью обмотки возбуждения ОВ, в которой наводится максимальная э.д.с. При повороте ротора СД обмотки 1,2 и 3 смещаются. Эти токи создают в сельсине–приемнике магнитный поток, направленный под углом Δα=αД–αП к продольной оси выходной однофазной обмотки. В выходной обмотке наводится ЭДС, которая является выходным сигналом сельсинной пары:
где Uм – максимальное значение напряжения, наводимого в ОВ.
При этом по линии связи передается незначительный по мощности сигнал, затем сигнал усиливается, приводит во вращение исполнительный двигатель, который, перемещая объект управления, одновременно уменьшает угол рассогласования между сельсином-датчиком и сельсином-приемником.
Уменьшение максимально допустимых погрешностей сельсинов в трансформаторном режиме по сравнению с индикаторным объясняется тем, что точность работы сельсинов в трансформаторном режиме определяется только их магнитной и электрической симметрией, а не величиной паразитных моментов на валу.
Для обоих режимов существуют схемы включения:
Многократный режим включения
Иногда требуется передать на расстояние угловую величину не в одно, а в несколько мест. Например, когда положение какого-либо регулирующего органа необходимо передать на главный пульт управления и местные наладочные пульты и т.д. Тогда к одному датчику подключают несколько сельсинов–приемников. Такой режим называют многократным приемом (рисунок 2.27).
В силу снижения моментов у сельсинов-приемников точность передачи будет значительно снижена.
Для того чтобы сохранить синхронизирующий момент приемников, выбирают сельсин-датчик в n раз мощнее сельсинов–приемников, т.е. сопротивление его обмотки синхронизации будет в n раз меньше сопротивления обмотки синхронизации каждого сельсина-приемника.
Дифференциальный режим включения
В системах дистанционной передачи угла применяются дифференциальные сельсины, назначение которых – воспроизводить угол поворота, равный сумме или разности углов, заданных двумя сельсинами-датчиками. Дифференциальный сельсин имеет две трехфазные обмотки, одна из которых расположена в пазах неявнополюсного статора, а другая – в пазах неявнополюсного ротора. Вывод обмотки ротора для подключения к внешней сети осуществлен посредством трех контактных колец и щеток. Рассмотрим принцип работы индикаторной системы дистанционной передачи угла, содержащей два сельсина-датчика СД1 и СД2, и один дифференциальный сельсин приемник СП–СД (рисунок 2.28). Допустим, что ротор дифференциального сельсина заторможен. При включении в сеть переменного тока обмоток возбуждения сельсинов-датчиков СД1 и СД2 создаются пульсирующие магнитные потоки ФВ1 и ФВ2. Поток ФВ1 наводит в обмотках фазы синхронизации датчика СД1 электродвижущие силы, под действием которых в цепи синхронизации этого сельсина появятся токи. Проходя по обмотке синхронизации дифференциального сельсина, эти токи создают МДС FДС1. При повороте ротора датчика СД1 на угол αД1 по часовой стрелке вектор МДС FДС1 повернется на такой же угол, но против часовой стрелки. Аналогичные процессы происходят и в цепи синхронизации обмоток датчика СД2 и дифференциального сельсина: при повороте ротора датчика СД2 на угол αД2 по часовой стрелке вектор МДС FДС2 обмотки ротора дифференциального сельсина также повернется на угол αД2, но против часовой стрелки. В итоге между векторами МДС FДС1 и FДС2 дифференциального сельсина появится пространственный угол, равный разности углов, заданных датчиками СД1 и СД2.
В результате взаимодействия МДС FДС1 и FДС2 на роторе дифференциального сельсина возникает вращающий момент МД. Поэтому, если растормозить ротор дифференциального сельсина СП–ДС, то под действием момента МД ротор повернется на угол β так, чтобы векторы МДС FДС1 и FДС2 совпали по направлению и создали в магнитной системе дифференциального сельсина результирующий магнитный поток. Если роторы датчиков СД1 и СД2 повернуть на углы αД1 и αД2 в разные стороны, то ротором дифференциального сельсина будет воспроизведен угол поворота, равный разности заданных углов. Особенностью работы индикаторных систем с дифференциальными сельсинами является протекание токов в цепях синхронизации после отработки дифференциальным сельсином заданных углов, т.е. в согласованном состоянии.
Литература
Сельсины: назначение, устройство, принцип действия
Бесконтактные сельсины. Принцип действия бесконтактного сельсина.
В настоящее время широкое применение находят бесконтактные сельсины. У них отсутствуют скользящие контакты, что повышает надежность и точность их работы. В таких сельсинах (рисунок, позиция а) обмотки синхронизации и возбуждения размещают на статоре, а ротор не имеет обмоток. Ротор состоит из двух пакетов 1 и 2, набранных из листовой стали, между которыми имеется косой промежуток 3, заполненный немагнитным материалом, вследствие этого полюсы ротора в магнитном отношении разделены. Листы пакетов ротора располагаются параллельно оси вала, как показано на рисунке, позиции б. Основной пакет статора 4 имеет обычную конструкцию и в его пазах 5 размещается обмотка синхронизации 6. Обмотка возбуждения 7 состоит из двух кольцевых катушек, оси которых совпадают с осью ротора.
Бесконтактный сельсин схема
Магнитный поток, созданный обмоткой возбуждения 7, из полюса П1 в полюс П2 замыкается через боковые кольца 8 и пакет внешнего магнитопровода 9, набранного из полос электротехнической стали, а затем через зубцы и ярмо пакета статора.
В зубцовом слое статора магнитный поток, созданный обмоткой возбуждения, как и в контактном сельсине, будет сцепляться с обмоткой синхронизации. В зависимости от назначения и режимов работы различают: сельсины, работающие в индикаторном режиме; сельсины, работающие в трансформаторном режиме, и дифференциальные сельсины.
Общее устройство сельсина
Данные системы способны синхронно и плавно передавать на расстояние необходимые угловые величины. Механическая связь между ними отсутствует, а все передачи выполняются за счет электрических соединений, выступающих в качестве линий связи. Мощность таких приборов находится в пределах от нескольких ватт до 1 кВт, поэтому они могут использоваться для решения многих технических задач.
Как видно из представленной схемы, сельсины, задействованные в схемах автоматических регулировок, разделяются на следующие категории:
Основной функцией этих устройств является синхронный поворот или вращение двух или нескольких осей, не имеющих между собой механической связи. Аппарат, механически связанный с ведущей осью, считается датчиком, а другой такой же прибор, соединенный с ведомой осью называется приемником. Когда ротор датчика поворачивается на какой-то угол, то ротор приемника синхронно выполняет поворот на такой же угол.
Каждый сельсин имеет обмотки, разделяющиеся на первичную – обмотку возбуждения и вторичную – обмотку синхронизации. В зависимости от количества фаз первичной обмотки, устройства могут быть одно- или трехфазными. Вторичная обмотка практически всегда выполняется в трехфазном варианте.
Расположение первичной и вторичной обмотки не влияет на принцип работы сельсин-устройств. Тем не менее, обмотку синхронизации принято устанавливать на статоре, а обмотку возбуждения на роторе. Такое размещение позволяет снизить количество контактных колец и повысить общую надежность устройства.
Схема и принцип действия
На предложенных схемах изображены различные варианты включения (как датчика, как приемника и в качестве дифференциального устройства).
После их анализа можно сделать следующие выводы:
В основу данного эффекта заложен принцип э/м индукции, суть которого состоит в способности обмотки с переменным током наводить поле в близко расположенной катушке (на схеме – вариант «а»).
Важно! Индуцировать стороннее поле способен только меняющийся по величине или фазе (то есть переменный) ток. Величина наводимого в катушке статора ЭДС зависят от ее удаления от роторных обмоток
В случае, когда вращающиеся части двух приборов (приемного и передающего) разнесены от своих статоров на равное расстояние – наблюдается интересный эффект. Он состоит в том, что в этой ситуации токи в роторных контурах равны и противоположны по направлению, что приводит к обнулению их результирующей. Следствием этого является пропадание вращающего момента на валах обоих сельсинов (они неподвижны)!
Величина наводимого в катушке статора ЭДС зависят от ее удаления от роторных обмоток. В случае, когда вращающиеся части двух приборов (приемного и передающего) разнесены от своих статоров на равное расстояние – наблюдается интересный эффект. Он состоит в том, что в этой ситуации токи в роторных контурах равны и противоположны по направлению, что приводит к обнулению их результирующей. Следствием этого является пропадание вращающего момента на валах обоих сельсинов (они неподвижны)!
Принцип действия различных схем
Принцип действия системы наглядно виден на схемах, представленных на рисунке. На схеме «а» датчик и приемник подключены через статорные однокатушечные обмотки к единой сети переменного тока, а обмотки ротора с тремя катушками соединяются друг с другом. Получается система «датчик-приемник». При повороте ротора сельсин-датчика на какую-либо величину угла, ротор приемника повернется на точно такой же угол.
Основой синхронной связи является электромагнитная индукция. Под действием переменного тока обмотки статора, в роторной обмотке индуктируются токи, на величину которых оказывает влияние расположение обмоток статора и ротора относительно друг друга.
Когда роторы в обоих сельсин-устройствах располагаются одинаково относительно статоров, токи в проводах, соединяющий роторы будут при общем равенстве противоположны между собой. Поэтому в каждой катушке ток будет равен нулю. Следовательно валы сельсинов находятся в состоянии покоя и их вращающий момент также равен нулю.
При повороте ротора сельсин-датчика на какой-то угол, данное равновесие токов нарушается и на валу приемника появится вращающий момент. Его ротор будет вращаться до полного исчезновения неравновесия токов. Это неравновесие исчезнет, когда ротор сельсин-приемника примет такое же положение, что и ротор датчика.
В автоматическом регулировочном режиме довольно часто требуется работа приемника в режиме трансформатора. На схеме «б» видно, что ротор приемника закреплен неподвижно, а обмотка статора отключена от сети. Далее в ней будет индуктироваться ЭДС под влиянием тока, протекающего по обмоткам ротора. Величина этого тока будет зависеть от положения ротора датчика. То есть величина ЭДС ротора приемника будет находиться в пропорции с углом поворота сельсин-датчика. В исходном положении оба ротора смещаются на 90 градусов между собой, поэтому ЭДС на роторе датчика будет равна нулю. Таким образом, поворот ротора датчика вызовет индукцию ЭДС на роторе приемника, пропорциональной углу рассогласования обоих роторов.
Схема «в» отображает работу дифференциального сельсина, который используется для контроля разницы углов поворота сразу двух осей. Два датчика располагаются на двух отдельных валах с одинаковыми скоростями вращения. Третий сельсин-датчик является дифференциальным, а его угол поворота представляет собой разницу между углами поворота датчиков.
Функция датчика положения
Если взять и каким-либо способом (вручную, например) провернуть ротор одного из приборов на некоторый угол – равновесие токов в его катушке нарушается. Из-за электрической связи в катушках второго устройства наблюдается аналогичное рассогласование баланса токов. Вследствие этого появляется результирующая, отличная от нуля, что приводить к образованию э/м поля и момента индукции (вращающей силы). Под ее воздействием подвижный узел исполнительной части будет проворачиваться до состояния, в котором равновесие токов полностью восстановится. Нетрудно понять, что это состояние будет соответствовать положению другого прибора.
Авторегулирование
При авторегулировании приемник работает в трансформаторном режиме (на схеме – «б»). Его ротор в данной схеме неподвижен, а обмотка статора полностью отключена от сети. В ней наводится ЭДС за счет токов, протекающих в собственной роторной обмотке (их величина задается состоянием первого устройства). Отсюда следует, что величина наводимой в статоре приемника ЭДС полностью зависит от угла поворота подвижной части датчика.
Дополнительная информация: Из-за того, что обмотка статора приемника не подключена к сети – фаза напряжения в нем смещена на 90° относительно статорной катушки датчика.
Это обстоятельство учитываются при вычислении выходной ЭДС (через поправочный коэффициент).
Дифференциальный прибор
Это вариант исполнения применяется в тех случаях, когда возникает потребность в определении разности угловых положений двух электрически связанных приборов (таким образом, выявляется степень их рассогласования). Другими словами размещаемые на различных валах сельсиновые датчики в этом случае сравниваются по скорости перемещения их подвижных узлов, после чего определяется их рассогласование.
В данной схеме три катушки от двух крайних приборов электрически соединены с соответствующими обмотками ротора и статора еще одного (третьего) сельсина, который называется дифференциальным (на схеме – «в»). Угол вращения этого третьего определяется как разность показаний для двух приборов-датчиков.
Общие сведения, классификация
Машины синхронной связи предназначены для осуществления синхронного или синфазного поворотов двух осей, механически между собой не связанных, или для их вращения.
Индукционные системы синхронной связи делятся на трехфазные и однофазные. Трехфазные системы применяются для синхронизации двух валов приводных двигателей, не связанных механически. Обычно это силовые системы относительно большой мощности, носящие название систем электрического вала. Их используют, например, в механизмах разводки мостов, ворот шлюзов, в установках бумажной промышленности и т. д.
Однофазные системы применяются в маломощных установках и широко используются в схемах автоматических устройств. Микромашины, применяемые в индукционных системах синхронной связи в качестве датчиков и приемников, получили название сельсинов, подчеркивающее их способность к самосинхронизации (self synchron означает самосинхронизирующийся).
В теории синхронной связи автоматических устройств различают два понятия: синхронную индикаторную передачу — индикаторный режим сельсинов и следящий привод — трансформаторный режим сельсинов. В первом случае требуется передать лишь незначительный момент, необходимый, например, для поворота стрелки прибора (индикатора) для указания на расстоянии положения какого-либо регулирующего органа — клапана, задвижки, заслонки, вентиля и т. д. Передача показаний на пульт управления особенно важна в случаях, когда по каким- либо причинам человек не может подойти к регулируемому органу. Схема синхронной индикаторной передачи дана на рисунке 347. Здесь сельсин-датчик Д (заводящее устройство) и сельсин-приемник П (отрабатывающее устройство) при угле заводки а отрабатывают пропорциональный угол са непосредственно, то есть стрелка индикатора находится на оси приемника П.
При необходимости передать угол поворота механизму, к валу которого приложен более или менее значительный момент сопротивления, использовать индикаторную схему можно лишь при мощных силовых сельсинах. Мощной должна быть и линия связи. Рациональнее и проще поступить иначе: от датчика к приемнику передать слабый по мощности сигнал, который затем, будучи усилен, воздействует на исполнительный двигатель, связанный с приводным механизмом. В такой системе следящего привода схема связи построена так, чтобы напряжение приемника П (сигнал) было функцией угла поворота ротора датчика Д. Кроме того, между приемником и исполнительным двигателем должна быть обратная связь, приводящая роторы датчика и приемника в согласованное положение (положение нулевого сигнала) по окончании отработки. Схема следящего привода дана на рисунке 348. На заводящем устройстве Д, возбуждаемом напряжением сети, осуществляется механический поворот на угол а (угол заводки). Сигнал, выработанный в отрабатывающем устройстве Я, после предварительного усиления в усилительном устройстве УУ в виде напряжения управления подается на исполнительный двигатель ИД, возбуждаемый напряжением сети. Исполнительный двигатель, будучи соединен механически с валом нагрузки, приводит его во вращение. Рис. 347. Схема синхронной индикаторной передачи.
Рис. 348. Схема следящего привода.
Благодаря механической обратной связи исполнительного двигателя с отрабатывающим устройством П будет постепенно уменьшаться напряжение управления, и, когда отрабатывающее устройство П повернется на угол заводки a, Uy станет равным нулю и исполнительный двигатель остановится. В результате произойдет поворот вала нагрузки на угол а или пропорциональный ему са.
Индукционным системам синхронной связи присущ ряд положительных свойств: отсутствие искровой коммутации, то есть разрывов цепи питания датчиков при работе системы; высокая точность, обеспечивающая малые углы ошибки между положениями роторов датчика и приемника в согласованном режиме (не выше 2,5° для машин низшего класса); плавность отработки приемником поворота датчика; возможность иметь датчик и приемник бесконтактными; однотипность датчика и приемника.
Конструктивные особенности
Конструктивно синхронизирующие сельсины могут быть контактными и бесконтактными. В первом случае соединение роторной обмотки с внешней электрической цепью осуществляется с помощью щеток и контактных колец. Устройство контактных сельсинов напоминает асинхронный двигатель с маломощным фазным ротором.
Статоры и роторы таких сельсинов считаются неявнополюсными, а обмотки – распределенными. На роторе располагается обмотка возбуждения, к которой электрический ток подведен посредством двух контактных колец. Некоторые виды устройств имеют явно выраженные полюса статоров и роторов, что существенно повышает их синхронизирующий момент.
В процессе эксплуатации сельсинов контактные кольца постепенно изнашиваются и требуют замены. Этот фактор считается единственным серьезным недостатком данных устройств. Бесконтактные сельсины, назначение и конструкция которых предполагает отсутствие контактных элементов, имеют две обмотки, размещенные на статоре. Сам ротор представляет собой цилиндр, изготовленный из ферромагнитного материала. Специальная алюминиевая прослойка разделяет ротор на два полюса, изолированных друг от друга.
В торцах устройства установлены сердечники, для изготовления которых использовалась листовая электротехническая сталь. Поверхность этих сердечников со стороны внутренней части размещается над ротором. Наружная поверхность смыкается со стержнями внешнего магнитопровода.
Однофазная обмотка возбуждения представляет собой двухдисковые катушки, расположенные по обеим сторонам статора, между обмоткой синхронизации и сердечниками.
Во время работы бесконтактного сельсина происходит замыкание импульсного магнитного потока в магнитной системе. Одновременно он соединяется с трехфазной синхронизирующей статорной обмоткой. Весь путь замкнутого магнитного потока обозначен на рисунке прерывистой линией.
При повороте ротора ось магнитного потока изменяет свою позицию по отношению к синхронизирующим обмоткам. Поэтому ЭДС, возникающая в фазах синхронизирующей обмотки, находится в прямой зависимости от поворота ротора. В этом заключается принцип работы таких приборов.
Существенным недостатком бесконтактных сельсинов считается слабое и малоэффективное использование активных материалов. Масса таких моделей примерно в 1,5 раза превышает контактные конструкции, в основном из-за существенных воздушных зазоров. В результате, бесконтактные сельсины отличаются более высокими токами намагничивания и рассеивающими потоками.
Трансформаторы тока назначение и принцип действия
УЗО: Назначение, причины срабатывания, подключение УЗО
Контактор КМИ: назначение и принцип работы
Высоковольтные разрядники: виды и назначение
Назначение промежуточного реле
Недостатки, решения
У сельсинов невысокая точность синхронизации, особенно когда на валу сельсина-приёмника присутствует существенная механическая нагрузка.
Для решения этой проблемы сельсинных связей, применяются следящие электромеханические комбинированные связи — приёмный вал вращают вспомогательным электродвигателем, который включается в контур авторегулирования, в этом случае сельсин-приемник выступает в роли датчика угла рассогласования поворотов ведущего и ведомого валов. Т.е. по сути, сельсин в данном случае передаёт только угол поворота, за синхронность вращения валов отвечает авторегулятор, который управляет вспомогательным электродвигателем.
Другой недостаток сельсинов — относительно невысокая точность передачи угла, обусловленная погрешностями изготовления магнитопровода сельсина. Для повышения точности применяют пару сельсинов — «грубый» и «точный» (последний установлен через редуктор и за один оборот основного вала делает несколько оборотов). Если сигнал с грубого сельсина слабее некоторого порога, автоматика передаёт в линию связи сигнал с точного сельсина. Так же, для обеспечения точности, оба сельсина (датчик и приёмник) подключаются через редуктор.
Не имеющий нагрузочного момента ротор сельсина колеблется с частотой питающего переменного тока, поэтому для подавления этих колебаний приходится использовать механические демпферы. Из-за этого, в помещениях, где установлены сельсины, наблюдается постоянный монотонный шум.
В современных устройствах сельсины всё чаще заменяются энкодерами. И только там, где простота, надёжность и ремонтопригодность важнее точности (например, в авиации), сельсины всё ещё находят широкое применение.
Контактные сельсины. Принцип действия контактного сельсина.
У контактного сельсина имеются явно выраженные полюсы, на которых размещается однофазная сосредоточенная обмотка, включаемая в сеть переменного тока. Эта обмотка является обмоткой возбуждения. В пазах ротора укладываются три распределенные обмотки, сдвинутые в пространстве на 120°. Эти обмотки соединяют звездой и три их вывода подсоединяют к контактным кольцам, по которым скользят неподвижные щетки, соединенные с внешней цепью. Эти обмотки называются обмотками синхронизации.
Пакеты статора и ротора собраны из листовой электротехнической стали, причем ротор выполнен со скошенными пазами для ослабления зубцовых гармоник в кривых ЭДС. Иногда находит применение обращенная конструкция сельсинов, когда явно выраженные полюсы с обмоткой возбуждения размещают на роторе, а обмотки синхронизации — в пазах статора.
§ 5.8. СИНУСНО-КОСИНУСНЫЙ ВРАЩАЮЩИЙСЯ ТРАНСФОРМАТОР
Выходные напряжения. На статоре этого трансформатора расположены обмотки В и К, а на роторе — обмотки S и С (см. рис. 5.24). При холостом ходе напряжения на синусной S и косинусной С обмотках ротора равны соответствующим ЭДС:
(5.49)
US0 = ES0 = kЕв sin θ; UC0 = EC0 = kЕв cos θ,
Рис. 5.26. Векторная диаграмма МДС при подключении нагрузки к синусной обмотке |
Результирующий продольный поток Фd индуцирует ЭДС в обмотке S
ESq = 4,44f1 w2 ko62 Фqm cos θ = CFS cos2 θ,