что такое реология полимеров

что такое реология полимеров. natural history mini. что такое реология полимеров фото. что такое реология полимеров-natural history mini. картинка что такое реология полимеров. картинка natural history mini. Реологияэто наука, изучающая деформацию и течение в материалах под воздействием внешних сил.

что такое реология полимеров. book scienceforum mini. что такое реология полимеров фото. что такое реология полимеров-book scienceforum mini. картинка что такое реология полимеров. картинка book scienceforum mini. Реологияэто наука, изучающая деформацию и течение в материалах под воздействием внешних сил.

что такое реология полимеров. 2003 image001. что такое реология полимеров фото. что такое реология полимеров-2003 image001. картинка что такое реология полимеров. картинка 2003 image001. Реологияэто наука, изучающая деформацию и течение в материалах под воздействием внешних сил.

что такое реология полимеров. Znak natc konkurs. что такое реология полимеров фото. что такое реология полимеров-Znak natc konkurs. картинка что такое реология полимеров. картинка Znak natc konkurs. Реологияэто наука, изучающая деформацию и течение в материалах под воздействием внешних сил.

что такое реология полимеров. diplom ruk big. что такое реология полимеров фото. что такое реология полимеров-diplom ruk big. картинка что такое реология полимеров. картинка diplom ruk big. Реологияэто наука, изучающая деформацию и течение в материалах под воздействием внешних сил.

что такое реология полимеров. Spivak. что такое реология полимеров фото. что такое реология полимеров-Spivak. картинка что такое реология полимеров. картинка Spivak. Реологияэто наука, изучающая деформацию и течение в материалах под воздействием внешних сил.

что такое реология полимеров. image 2003 5 600. что такое реология полимеров фото. что такое реология полимеров-image 2003 5 600. картинка что такое реология полимеров. картинка image 2003 5 600. Реологияэто наука, изучающая деформацию и течение в материалах под воздействием внешних сил.

что такое реология полимеров. image 2003 4 200. что такое реология полимеров фото. что такое реология полимеров-image 2003 4 200. картинка что такое реология полимеров. картинка image 2003 4 200. Реологияэто наука, изучающая деформацию и течение в материалах под воздействием внешних сил.

ОСНОВЫ РЕОЛОГИИ ПОЛИМЕРОВ

Реологияэто наука, изучающая деформацию и течение в материалах под воздействием внешних сил.

При приложении внешних сил (например, гидростатического давления) или при движении поверхностей, контактирующих с расплавом полимера, возникает течение, основная особенность которого заключается в том, что одновременно развиваются три вида деформации: мгновенная упругая, высокоэластическая (запаздывающая упругая) и пластическая (необратимая) [8].

Характер течения жидкостей оценивается с помощью зависимости напряжения сдвига от скорости сдвига или скорости деформации. Эта зависимость может быть представлена графически или в виде аналитической функции — реологическим уравнением состояния [3].

Применимость его для анализа реологических свойств наиболее просто проследить на примере рассмотрения вязких жидкостей.

Вязкие жидкости по характеру течения, а точнее в зависимости от соотношения напряжения и скорости сдвига, подразделяются на четыре вида: ньютоновские, вязкопластичные, дилатантные и псевдопластичные (псевдовязкие). Для несжимаемых, вязких жидкостей реологическое уравнение состояния имеет вид:

dv z / dy = v / y = v пл / h

Таким образом, скорость сдвига, — это интенсивность изменения скорости одного слоя потока относительно второго, расположенного на некотором расстоянии у.[12]

1.1 Деформация при течении полимеров

Существует большой класс жидкостей, у которых скорость сдвига увеличивается быстрее, чем напряжение сдвига.

Графики, подобные представленным на рисунке 40, обычно называют кривыми течения.

Опыт показывает, что большинство полимеров и их растворов в условиях переработки обладает аномалией вязкости, что сильно усложняет задачу построения количественных теорий процессов переработки.

На полной кривой течения (рис. 2) можно выделить три характерных участка: начальный участок (область I ), в пределах которого скорость деформации прямо пропорциональна напряжению сдвига (течение с наибольшей ньютоновской вязкостью); переходной участок (область II ), в пределах которого скорость деформации возрастает быстрее, чем напряжение сдвига (эффективная вязкость уменьшается с увеличением напряжения сдвига), и последний участок (область III ), в пределах которого скорость деформации вновь растет пропорционально напряжению сдвига (течение с минимальной ньютоновской вязкостью).

Кривые течения, имеющие все три участка, удается наблюдать для полимеров. В случае расплавов обычно можно получить только первые два участка.

Основная особенность течения полимеров заключается в одновременном развитии трех видов деформации: упругой γу, высокоэластической γви пластической γп. Деформации первых двух видов носят обратимый характер, деформации третьего вида являются необратимыми

Пластическая деформация представляет собой вязкое течение, связанное с необратимым перемещением молекул или их групп на расстояние, превышающее размеры самой молекулы. Скорость развития пластической деформации, так же как и высокоэластической, сильно зависит от температуры.

1.2 Ньютоновские жидкости

В последующем вязкость ньютоновских жидкостей будем обозначать буквой μ, а ненъютоновских η. К ньютоновским жидкостям относятся низкомолекулярные жидкости, у которых диссипация энергии вязкого течения обусловлена перемещением небольших молекул и не зависит от скорости сдвига.

Вязкость ньютоновских жидкостей изменяется только от температуры или строения вещества. Изменение вязкости достаточно хорошо отображается графически: чем выше вязкость, тем больше угол наклона линейной зависимости α (рис. 3, а).

1 — вязкопластичная (тело Шведова-Бингама); 2 — псевдопластичная;

3 — ньютоновская; 4 — дилатантная

1.3 Вязкопластичные жидкости (тело Шведова — Бингама)

1.4 Дилатантные жидкости

Течение дилатантных жидкостей характеризуется увеличением вязкости с ростом скорости сдвига. Это хорошо видно по увеличению угла наклона касательной к кривой на графической зависимости. При увеличении скорости течения подобных жидкостей напряжение сдвига опережает рост скорости сдвига, т.е. отношение напряжения сдвига к скорости сдвига, численно характеризующее вязкость, непрерывно увеличивается. Такой тип течения был впервые обнаружен Рейнольдсом в суспензиях при большом содержании твердой фазы. Некоторые исследователи считают, что когда подобные материалы подвергаются сдвигу с небольшой скоростью деформации, вероятно, жидкость служит как бы смазкой, уменьшающей трение частиц, а при больших скоростях сдвига плотная упаковка частиц нарушается, и материал несколько увеличивается в объеме. При новой структуре жидкости уже недостаточно для смазки трущихся друг о друга частиц и напряжения сдвига увеличиваются значительно быстрее, чем градиент скорости, поэтому вязкость возрастает, и угол наклона касательной к кривой а, увеличивается. [5]

1.5 Псевдопластичные (псевдовязкие) жидкости

Для псевдопластичных жидкостей характерно уменьшение вязкости с увеличением скорости сдвига. В данном случае напряжение сдвига растет медленнее, чем скорость сдвига. К псевдопластичным жидкостям относятся некоторые суспензии, содержащие асимметричные частицы. Проявление аномалии вязкости, в данном случае уменьшение ее с ростом скорости сдвига, объясняется тем, что с увеличением скорости течения асимметричные частицы постепенно ориентируются. При этом вязкость убывает до тех пор, пока сохраняется возможность дальнейшего ориентирования частиц, а затем зависимость напряжения от градиента скорости становится линейной, т.е. в дальнейшем течет как ньютоновская жидкость. [11]

Свойствами псевдопластичных жидкостей обладают также растворы и расплавы большинства полимеров. Однако для них аномалия вязкости обусловлена строением макромолекул, характером межмолекулярных связей и межмолекулярных образований, возникающих в расплаве. Для расплавов полимеров характерно также изменение степени аномалии вязкости в зависимости от скорости сдвига, т.е. интенсивность изменения вязкости при различных скоростях сдвига неодинакова. При высокой скорости сдвига вязкость уменьшается более значительно. Заметить это в обычных координатах τ( ) очень сложно, поэтому для анализа кривых течения применяют графическую зависимость, построенную в логарифмических координатах. Как видно из рисунка 42, для ньютоновской жидкости характерна линейная зависимость lg τ от lg с постоянным наклоном, равным 45°, (пунктирные линии). При уменьшении вязкости реологическая зависимость сдвигается вправо и вниз. Вязкость псевдопластичных жидкостей уменьшается от скорости сдвига, поэтому угол наклона линий меньше чем 45° и для описания реологических зависимостей применяют степенное уравнение:

Преимущество степенного уравнения заключается в том, что оно содержит два коэффициента, которые легко определяются графически или аналитически по данным реологических исследований. Представим уравнение (2) в логарифмическом виде:

Если зависимость в логарифмических координатах линейная, показатель степени можно рассчитать по формуле:

где 2 и 1 — скорости сдвига, соответствующие двум точкам реологической зависимости;

Реологические кривые для псевдопластичных жидкостей располагаются под меньшим углом, чем ньютоновские жидкости. При этом, чем большей аномалией вязкости обладает жидкость, т.е. чем сильнее уменьшается вязкость от скорости сдвига, тем сильнее это отклонение и меньше угол наклона кривой.

В тех случаях, когда зависимость в логарифмических координатах не является линейной, показатель степени является переменной величиной. Для нахождения коэффициента K реологическую зависимость интерполирует на ось ординат при =1, а показатель степени в данном случае рассчитывается по уравнению:

где τ i и i — текущие значения напряжения и скорости сдвига на реологической кривой.

Таким образом, в логарифмических координатах тангенс угла наклона кривой не пропорционален вязкости, а отражает лишь степень уменьшения вязкости от скорости сдвига.

Степень изменения аномалии вязкости системы отражается отклонением от прямолинейной графической зависимости. На рисунке 4 видно, что такое изменение отсутствует для жидкости с прямолинейной зависимостью (кривая 4). [13]

1— ньютоновская (угол наклона равен 45 о ); 2 — псевдопластичная с одной ньютоновской областью течения; 3 — псевдопластичная с двумя ньютоновскими областями течения: 4 — псевдопластичная с малой вязкостью и постоянной степенью аномалии вязкости (линейная зависимость, n = const )

1.6 Явления переноса

Прикладная наука о транспортных явлениях рассматривает перенос массы, количества движения и энергии. Она включает в себя те теоретические правила, с помощью которых инженеры решают задачи, связанные с течением жидкостей, теплопереносом и диффузией в многокомпонентных средах. Ниже приводится краткий обзор законов переноса, поскольку процессы переработки полимеров включают в себя транспортные процессы.

Применительно к процессам течения вязкой жидкости эти уравнения формулируются следующим образом. Если выделить внутри занятого движущейся жидкостью объема произвольный элемент и ограничить его воображаемой замкнутой поверхностью, то такой элемент будет представлять собой термодинамически замкнутую систему (т.е. такую систему, которая может обмениваться с окружающей средой только энергией). [7]

Несмотря на компактность векторной формы записи, при решении конкретных задач, связанных с исследованиями течения полимеров, приходится выбирать систему координат и определять в ней компоненты векторных и тензорных величин. [5]

2. Реологические свойства полимерных систем

Механические свойства. Одна из основных особенностей полимеров состоит в том, что отдельные отрезки цепей (сегменты) могут перемещаться путем поворота вокруг связи и изменения угла. Такое смещение, в отличие от растяжения связей при упругой деформации истинно твердых тел, не требует большой энергии и происходит при невысокой температуре. Эти виды внутреннего движения — смена конформаций, несвойственные другим твердым телам, придают полимерам сходство с жидкостями. В то же время большая длина искривленных и спиралеобразных молекул, их ветвление и взаимная сшивка затрудняют смещение, вследствие чего полимер приобретает свойства твердого тела.

Для некоторых полимеров в виде концентрированных растворов и расплавов характерно образование под действием поля (гравитационного, электростатического, магнитного) кристаллической структуры с параллельной упорядоченностью макромолекул в пределах небольшого объема—домена. Эти полимеры — так называемые жидкие кристаллы— находят широкое применение при изготовлении светоиндикаторов. [1]

Полимерам наряду с обычной упругой деформацией свойствен ее оригинальный вид — высокоэластическая деформация, ко­торая становится преобладающей при повышении температуры. Переход из высокоэластического состояния в стеклообразное, характеризующееся лишь упругой деформацией, называется стеклованием. Ниже температуры стеклования: состояние полимера твердое, стекловидное, высокоупругое, выше—эластическое. Температура стеклования разных полиме­ров находится в пределах 130. 300 К. Для детальной характеристики полимеров в специальных условиях в справочной лите­ратуре приводятся также значения температур перехода в хруп­кое состояние и холодостойкость.

Для прочных (конструкционных) полимеров кривая растяжения подобна аналогичной кривой для металлов (рис.4). По зна­чению модуля упругости Е конструкционные полимеры делятся на четыре группы: жесткие E>104 МПа, полужесткие E = (5. 10)·10 3 МПа, мягкие E = (1. 5)·10 3 МПа. Наиболее эла­стичные полимеры—эластомеры (каучуки) имеют модуль упру­гости E=10МПа. Как видно, даже высокомодульные полимеры уступают по жесткости металлам в десятки и сотни раз- Этот не­достаток удается в значительной мере преодолеть введением в полимер волокнистых и листовых наполнителей. [9]

Особенность полимеров состоит также в том, что их прочностные свойства зависят от времени, т. е. предельная деформация устанавливается не сразу после приложения нагрузки. Такая замедленная реакция их на механические напряжения объясняется инерционностью процесса смены конформаций, что можно представить с помощью модели. Для полимеров, находящихся в высокоэластическом состоянии, закон Гука в простейшей форме неприменим, т. е. напряжение непропорционально деформации. Поэтому обычные методы испытаний механических свойств применительно к полимерам могут давать неоднозначные результаты. По той же причине инженерных расчетных способов конструирования деталей из полимеров пока еще не существует и преобладает эмпирический подход.

Для полимеров характерна высокая стойкость по отношению к неорганическим реактивам и меньшая — к органическим. В принципе все полимеры неустойчивы в средах, обладающих резко выраженными окислительными свойствами, но среди них есть и такие, химическая стойкость которых выше, чем золота и платины. Поэтому полимеры широко используются в качестве кон­тейнеров для особо чистых реактивов и воды, защиты и гермети­зации радиокомпонентов, и особенно полупроводниковых приборов и ИС.

Особенность полимеров состоит еще и в том, что они по своей природе не являются вакуум плотными. Молекулы газообразных и жидких веществ, особенно воды, могут проникать в микропустоты, образующиеся при движении отдельных сегментов полимера. даже если его структура бездефектна.[6]

Полимеры выполняют роль защиты металлических поверхностей от коррозии в случаях, когда:

1) толщина слоя велика

2) полимер оказывает пассивирующее действие на активные (дефектные) центры металла, тем самым подавляя коррозионное действие влаги, проникающей к поверхности металла.

Как видно, герметизирующие возможности полимеров ограничены, а пассивирующее их действие неуниверсально. Поэтому по­лимерная герметизация применяется в неответственных издели­ях, эксплуатирующихся в благоприятных условиях.

Для большинства полимеров характерно старение — необратимое изменение структуры и свойств, приводящее к снижению их прочности. Совокупность химических процессов, приводящих под действием агрессивных сред (кислород, озон, растворы кис­лот и щелочей) к изменению строения и молекулярной массы, называется химической деструкцией. Наиболее распространенный ее вид — термоокислительная деструкция—происходит под действием окислителей при повышенной температуре. При деструкции не все свойства деградируют в равной мере: например, при окислении кремнийорганических полимеров их диэлектрические параметры ухудшаются несущественно, так как Si окисляется до оксида, который является хорошим диэлектриком. [14]

В неполярных полимерных диэлектриках имеет место преимущественно электронная поляризация, в полярных, кроме элек­тронной, могут быть дипольная, миграционная. Под действием электрического поля может происходить смещение участков цепи молекулы—сегментов; это так называемая дипольно-сегментальная поляризация. Смещение полярных групп атомов, находя­щихся в основной цепи или боковых цепях макромолекулы, проявляется как дипольно-групповая поляризация. В целях получения материала с заданными механическими, электрическими и теплофизическими свойствами широко применяются композиции, состоящие из полимерного связующего, наполнителей и других добавок. В таких полимерах наблюдается и миграционная поляризация.[9]

Диэлектрическая проницаемость более или менее резко зависит от двух основных внешних факторов: температуры и частоты приложенного напряжения. В неполярных полимерах она лишь слабо уменьшается с ростом температуры вследствие теплового расширения и уменьшения числа частиц в единице объема. В полярных полимерах диэлектрическая проницаемость сначала растет, а затем падает, причем максимум обычно приходится на температуру, при которой материал размягчается, т. е. лежит вне пределов рабочих режимов.

Диэлектрические потери вызываются не только полярными группами макромолекулы основного вещества, но и полярными молекулами примесей, например остатками растворителя, абсорбированной водой и т. д. Небольшие дипольные потери наблюдаются и в неполярных полимерах, так как даже при тщательной очистке мономеров и полимеров от полярных примесей в макромолекулах имеются карбонильные группы, гидроксильные группы или двойные связи, способные ориентироваться по полю.

Для полимеров, как ни для одних других диэлектриков, характерны процессы накопления поверхностных зарядов — электризация. Эти заряды возникают в результате трения, контакта с другим телом, электролитических процессов на поверхности. Механизмы электризации до конца неясны. Одним из них является возникновение при контакте двух тел так называемого двойного слоя, который состоит из слоев положительных и отрицательных зарядов, расположенных друг против друга. Возможно также образование на поверхности контактирующих материалов тонкой пленки воды, в которой имеются условия для диссоциации молекул примесей. При соприкосновении или трении разрушается пленка воды с двойным слоем и часть зарядов остается на разъединенных поверхностях. Электролитический механизм накопления зарядов при контактировании имеет место в полимерных материалах, на поверхности которых могут быть низко молекулярные ионогенные вещества—остатки катализаторов, пыль, влага.[12]

Достоинство олигомеров — низкая вязкость — дает возможность формования изделий при минимальном усилии прессования или вообще без него, под действием собственного веса. Более того, даже в смеси с наполнителями олигомеры сохраняют текучесть, что позволяет набрасывать материал на поверхность макета, не применяя давления, получать детали крупных размеров сложной формы. Низкая вязкость олигомеров позволяет также пропиты­вать листы ткани, а их склеивание под прессом и отверждение лежит в основе производства слоистых пластиков—оснований печатных плат. Олигомеры как ни один полимер подходят для пропитки и наклейки компонентов, особенно когда применение давления недопустимо. Для снижения вязкости в олигомер можно вводить добавки, которые способствуют повышению пластич­ности, негорючести, биологической стойкости и т, д.

Применяемая для этих целей смола чаще всего является смесью различных веществ, которую не всегда удобно готовить на месте, на предприятии-потребителе, из-за необходимости смеси­тельного и дозирующего оборудования, пожароопасности, токсичности и других ограничений. Поэтому широкое распространение получили компаунды—смеси олигомеров с отвердителями и другими добавками, полностью готовые к употреблению и обладающие при обычной температуре достаточной жизнестойкостью. Компаунды—жидкие или твердые легкоплавкие материалы—формируются в изделие, после чего при повышенной температуре проводится отверждение и образование пространственной структуры. [7]

Если изделия на основе термореактивных смол получают методом горячего прессования, то композиция, содержащая кроме смолы еще рубленое стекловолокно или какой-либо порошкообразный наполнитель и другие добавки, готовят заранее, и она поступает потребителю в виде гранул или порошка, называемых прессовочным материалом (иногда — пресспорошком).

Технологические свойства как термореактивных, так и термопластичных полимеров характеризуются текучестью (способностью к вязкому течению), усадкой (уменьшением линейных раз­меров изделий по отношению к размерам формующего инструмента), таблетируемостыо (пресс-порошков). [5]

Выше было отмечено, что олигомеры, расплавы и растворы термопластичных полимеров являются вязкотекучими, так называемыми неньютоновскими жидкостями. Их вязкость зависит не только от природы вещества и температуры, как в ньютоновских жидкостях, но и от других факторов, например толщины слоя. Это—проявление эффекта вязкопластичности, который приводит, например, к тому, что краска, нанесенная на поверхность, стекает не в тонком слое, а в более толстом. Другое проявление необычных свойств так называемых псевдопластичных жидкостей— уменьшение вязкости с увеличением скорости сдвига. Этот эффект характерен для растворов и расплавов большинства поли­меров и объясняется тем, что с увеличением скорости течения асимметричные частицы постепенно ориентируются, в результате вязкость убывает до тех пор, пока сохраняется возможность все более полной ориентации. Кривые, характеризующие зависимость вязкости г\ от скорости V, называются реологическими (реология—наука о течении в жидкостях под действием внешних сил). [13]

Необычные свойства смесей жидких смол с мелкодисперсными наполнителями, частицы которых имеют асимметричную форму (тальк, слюдяная мука, аэросил-коллоидный SiO2 ), проявляются в том, что в спокойном состоянии они обладают высокой вязко­стью, свойственной гелям, а при механическом воздействии (пере­мешивании или встряхивании) переходят в жидкое состояние. Смеси, обладающие этим свойством, называются тиксотропными. Тиксотропные компаунды нашли широкое применение для защиты радиодеталей наиболее простым методом — окунания. Вязкость компаунда снижают с помощью вибрации (нагрев не требуется). При извлечении детали из жидкой смеси с одновременным встряхиванием избыток ее стекает, а оставшаяся часть ее после извлечения вновь гелирует, образуя равномерное по толщине покрытие, не содержащее пузырей и вздутий, так как изделие и компаунд не нагреваются. Тиксотропные свойства некоторых полимерных композиций используют также при изготовлении специальных красок и клеев.

2. Полимерные композиционные материалы. Структура. Свойства. Технологии / М.Л. Кербер. – СПб.: Профессия, 2008. – 560 с.

3. Лебедева, Т.М. Экструзия полимерных пленок и листов: библиотечка переработчика пластмасс / Т.М. Лебедева. – СПб.: Профессия, 2009. – 216 с.

4. Зелке, С. Пластиковая упаковка : [пер. с англ.] / С. Зелке, Д. Кутлер, Р. Хернандес ; под ред. А.Л. Загорского, П.А. Дмитрикова. – СПб.: Профессия, 2011. – 560 с.

5. Йоханнабер, Ф. Литьевые машины / Ф. Йоханнабер. – СПб.: Профессия, 2010.– 427 с.

6. Росато, Д.В. Раздувное формование / Д.В. Росато. – СПБ.: Профессия, 2008. – 649 с.

7. Ложечко, Ю.П. Литье под давлением термопластов/ Ю.П. Ложечко. – СПб.: Профессия, 2010. – 219 с.

9. Шерышев, М.А. Пневмо-вакуумформование: библиотечка переработчика пластмасс / М.А. Шерышев. – СПб.: Профессия, 2010. – 192 с.

10. Журнал «Полимерные материалы» (2004-2014)

11. Основы технологии переработки пластмасс / под ред. В.Н. Кулезнева и В. К. Гусева. – М.: Мир, 2006. – 600 с.

13. Володин, В.П. Экструзия профильных изделий из термопластов / В.П. Володин. – СПб.: Профессия, 2005. – 480 с.

14. Производство изделий из полимерных материалов / В.К. Крыжановский. – СПб.: Профессия, 2004. – 460 с.

15. Основы технологии переработки пластмасс: учебник для вузов / С.В. Власов, Л.Б. Кандырин, В.Н. Кулезнев. – М.: Мир, 2006. – 600 с.

16. Раувендааль, К. Экструзия полимеров : [пер. с англ.] / К. Раувендааль ; под ред. А.Я. Малкина. – СПб.: Профессия, 2006. – 762 с.

17. Бортников, В.Г. Производство изделий из пластических масс. В 3 т. Т. 1. Теоретические основы проектирования изделий, дизайн и расчет на прочность / В.Г. Бортников. – Казань.: Дом печати, 2001. – 246 с.

Источник

Типы реологического поведения полимеров и их растворов

что такое реология полимеров. dark fb.4725bc4eebdb65ca23e89e212ea8a0ea. что такое реология полимеров фото. что такое реология полимеров-dark fb.4725bc4eebdb65ca23e89e212ea8a0ea. картинка что такое реология полимеров. картинка dark fb.4725bc4eebdb65ca23e89e212ea8a0ea. Реологияэто наука, изучающая деформацию и течение в материалах под воздействием внешних сил. что такое реология полимеров. dark vk.71a586ff1b2903f7f61b0a284beb079f. что такое реология полимеров фото. что такое реология полимеров-dark vk.71a586ff1b2903f7f61b0a284beb079f. картинка что такое реология полимеров. картинка dark vk.71a586ff1b2903f7f61b0a284beb079f. Реологияэто наука, изучающая деформацию и течение в материалах под воздействием внешних сил. что такое реология полимеров. dark twitter.51e15b08a51bdf794f88684782916cc0. что такое реология полимеров фото. что такое реология полимеров-dark twitter.51e15b08a51bdf794f88684782916cc0. картинка что такое реология полимеров. картинка dark twitter.51e15b08a51bdf794f88684782916cc0. Реологияэто наука, изучающая деформацию и течение в материалах под воздействием внешних сил. что такое реология полимеров. dark odnoklas.810a90026299a2be30475bf15c20af5b. что такое реология полимеров фото. что такое реология полимеров-dark odnoklas.810a90026299a2be30475bf15c20af5b. картинка что такое реология полимеров. картинка dark odnoklas.810a90026299a2be30475bf15c20af5b. Реологияэто наука, изучающая деформацию и течение в материалах под воздействием внешних сил.

что такое реология полимеров. caret left.c509a6ae019403bf80f96bff00cd87cd. что такое реология полимеров фото. что такое реология полимеров-caret left.c509a6ae019403bf80f96bff00cd87cd. картинка что такое реология полимеров. картинка caret left.c509a6ae019403bf80f96bff00cd87cd. Реологияэто наука, изучающая деформацию и течение в материалах под воздействием внешних сил.

что такое реология полимеров. caret right.6696d877b5de329b9afe170140b9f935. что такое реология полимеров фото. что такое реология полимеров-caret right.6696d877b5de329b9afe170140b9f935. картинка что такое реология полимеров. картинка caret right.6696d877b5de329b9afe170140b9f935. Реологияэто наука, изучающая деформацию и течение в материалах под воздействием внешних сил.

Реология полимеров

Совершено, очевидно, что большие обратимые деформации полимеров (т.е. способность проявлять высокоэластичность) не всегда являются достоинством для конструкционных материалов, а в тех случаях, когда полимерному материалу необходимо придать определенную форму. Заданная форма изделия наилучшим образом сохранится тогда, когда деформация расплава (или раствора) полимера истинно необратима, т.е. является деформацией вязкого течения. Поэтому практически все методы переработки полимеров в изделия (начиная от автопокрышек и кончая волокнами и пленками) основаны на переводе полимера в вязкотекучее состояние и придании ему формы именно в том состоянии, когда вся деформация полимера или ее большая часть является необратимой.

Отрасль науки, изучающая течение жидкостей, в которых наряду с вязкостью существует и обратимая деформация, носит название реологии от греческого слова «рео», что значит «течение», «течь».

Если при деформировании полимера преобладает необратимая деформация, то значит, полимер находится в вязкотекучем состоянии. Если полимер без разложения (термодеструкции) нельзя перевести в вязкотекучее состояние, то для переработки его предварительно растворяют, а затем, после придания формы, удаляют растворитель. Так перерабатывают полимеры, служащие как лаковые и защитные покрытия; очень часто к этому методу прибегают при получении волокон и пленок.

Реологическое поведение полимеров и их растворов определяется не только температурой, но и природой полимера, его молекулярной массой и молекулярно-массовым распределением (ММР), а также напряжением и скоростью сдвига, при которых осуществляется течение раствора или расплава. Поэтому нельзя характеризовать реологические свойства полимера по одной величине, скажем по величине вязкости. Охарактеризовать реологическое поведение полимера можно лишь установив зависимость вязкости от напряжения или от скорости сдвига и получив при этом кривые течения.

С этой точки зрения наиболее простым является случай, когда напряжение сдвига в полимере пропорционально скорости сдвига (кривая 1, рис. 34). С ростом напряжения сдвига пропорционально увеличивается скорость сдвига:

что такое реология полимеров. image195. что такое реология полимеров фото. что такое реология полимеров-image195. картинка что такое реология полимеров. картинка image195. Реологияэто наука, изучающая деформацию и течение в материалах под воздействием внешних сил. что такое реология полимеров. image197. что такое реология полимеров фото. что такое реология полимеров-image197. картинка что такое реология полимеров. картинка image197. Реологияэто наука, изучающая деформацию и течение в материалах под воздействием внешних сил.
Рис.34 Различные типы кривых течения (реологических кривых): зависимость скорости сдвига v от напряжения сдвига τ: 1 – для идеальной ньютоновской жидкости; 2 – для псевдопластической жидкости; 3 – для идеально пластичного тела; 4 – для неидеально пластичного тела; θ3, θ4 – пределы сдвига соответственно идеально и неидеально пластичного тела.Рис.35 Схема деформации сдвига жидкости между плоскопараллельными пластинами.

Такой тип кривой течения характерен для полимеров с узким молекулярно-массовым распределением и при переработке полимеров встречается сравнительно редко.

Обычно с ростом напряжения сдвига скорость течения растет быстрее, чем это следует из закона Ньютона (кривая 2, рис. 34). Полимеры, поведение которых в процессе течения описывается этой кривой, называются псевдопластичными жидкостями. Нетрудно сообразить, что ускорение течения, показанное кривой 2, обусловлено такими изменениями структуры полимера в процессе течения, которые приводят к падению вязкости. Чем больше напряжение сдвига, тем меньше вязкость (кривая 2, рис.35). Падение вязкости с ростом напряжения сдвига называют аномалией вязкости, а величину вязкости, зависящую от напряжения сдвига,- эффективной вязкостью.

что такое реология полимеров. 640 1. что такое реология полимеров фото. что такое реология полимеров-640 1. картинка что такое реология полимеров. картинка 640 1. Реологияэто наука, изучающая деформацию и течение в материалах под воздействием внешних сил.

Мы видим, что для большинства полимеров (растворов или расплавов) величина вязкости не может дать представления о реологических свойствах; в этих случаях необходимо получить полную кривую течения, т.е. зависимость вязкости (или скорости сдвига) от напряжения сдвига.

что такое реология полимеров. image199. что такое реология полимеров фото. что такое реология полимеров-image199. картинка что такое реология полимеров. картинка image199. Реологияэто наука, изучающая деформацию и течение в материалах под воздействием внешних сил.
Рис.35 Различные типы зависимости вязкости от напряжения сдвига полимеров, кривые течения которых приведены на рис. 1 – ньютоновская жидкость; 2 – псевдопластичная жидкость; 3 – идеальное пластичное тело; 4 – реальное (неидеальное) пластичное тело.

При введении наполнителя (особенно волокнистого) в полимеры частицы наполнителя образуют цепочечные структуры, соединяющиеся в пространственный каркас, обладающий значительной упругостью. При наложении напряжения сдвига такие системы сначала не текут, т. е. напряжение сдвига растет, а скорость течения остается нулевой, как это показано на рис. 34, кривые 3 и 4. Возникает некоторое предельное напряжение сдвига, после которого система течет либо как ньютоновская, либо как неньютоновская жидкость (соответственно кривые 3 и 4). Полимеры, течение в которых начинается при любом напряжении сдвига, называют вязкими; полимеры обладающие, предельным напряжением сдвига, ниже которого течение не возникает, называют пластичными.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *