что такое реляционная база данных простыми словами
Реляционные базы данных для чайников
Как правило, любое веб приложение можно разделить на 2 основные части: фронт-энд, где отображается вся информация сайта, и бэк-энд, где данная информация формируется и размещается. В этой статье мы поговорим о том, что такое реляционные базы данных, и как их проектировать.
База данных хранит записи в специально организованном виде, чтобы информацию можно было легко найти и извлечь. Любая БД состоит из одной или нескольких таблиц. Электронная таблица состоит из строк и столбцов. Все строки имеют одинаковые столбцы, а каждый столбец содержит данные. В общем, для лучшего понимания, определимся, что таблицы в БД очень похожи на те, что вы видели в Excel-е.
Табличные данные могут быть вставлены, восстановлены, обновлены и удалены. Для пакета этих операций была создана специальная аббревиатура CRUD (Create-Read-Update-Delete).
Но всё это всего лишь слова. Для того чтобы действительно понять, что такое реляционные базы данных, вам нужно больше практиковаться. Давайте же начнём и посмотрим, с какими данными нам предстоит работать.
Шаг 1. Подготовка данных
Для того чтобы нам было с чем работать, я набрал в твиттере запрос “#databases” и сформировал таблицу из 10 записей:
Таблица 1
full_name | username | text | created_at | following_username |
---|---|---|---|---|
Boris Hadjur | _DreamLead | What do you think about #emailing #campaigns #traffic in #USA? Is it a good market nowadays? do you have #databases? | Tue, 12 Feb 2013 08:43:09 +0000 | Scootmedia, MetiersInternet |
Gunnar Svalander | GunnarSvalander | Bill Gates Talks Databases, Free Software on Reddit http://t.co/ShX4hZlA #billgates #databases | Tue, 12 Feb 2013 07:31:06 +0000 | klout, zillow |
GE Software | GEsoftware | RT @KirkDBorne: Readings in #Databases: excellent reading list, many categories: http://t.co/S6RBUNxq via @rxin Fascinating. | Tue, 12 Feb 2013 07:30:24 +0000 | DayJobDoc, byosko |
Adrian Burch | adrianburch | RT @tisakovich: @NimbusData at the @Barclays Big Data conference in San Francisco today, talking #virtualization, #databases, and #flash memory. | Tue, 12 Feb 2013 06:58:22 +0000 | CindyCrawford, Arjantim |
Andy Ryder | AndyRyder5 | http://t.co/D3KOJIvF article about Madden 2013 using AI to prodict the super bowl #databases #bus311 | Tue, 12 Feb 2013 05:29:41 +0000 | MichaelDell, Yahoo |
Andy Ryder | AndyRyder5 | http://t.co/rBhBXjma an article about privacy settings and facebook #databases #bus311 | Tue, 12 Feb 2013 05:24:17 +0000 | MichaelDell, Yahoo |
Brett Englebert | Brett_Englebert | #BUS311 University of Minnesota’s NCFPD is creating #databases to prevent “food fraud.” http://t.co/0LsAbKqJ | Tue, 12 Feb 2013 01:49:19 +0000 | RealSkipBayless, stephenasmith |
Brett Englebert | Brett_Englebert | #BUS311 companies might be protecting their production #databases, but what about their backup files? http://t.co/okJjV3Bm | Tue, 12 Feb 2013 01:31:52 +0000 | RealSkipBayless, stephenasmith |
Nimbus Data Systems | NimbusData | @NimbusData CEO @tisakovich @BarclaysOnline Big Data conference in San Francisco today, talking #virtualization, #databases,& #flash memory | Mon, 11 Feb 2013 23:15:05 +0000 | dellock6, rohitkilam |
SSWUG.ORG | SSWUGorg | Don’t forget to sign up for our FREE expo this Friday: #Databases, #BI, and #Sharepoint: What You Need to Know! http://t.co/Ijrqrz29 | Mon, 11 Feb 2013 22:15:37 +0000 | drsql, steam_games |
В первую очередь, давайте разберёмся с колонками:
Это реальные данные. Если хотите, вы можете их найти и обновить.
Хорошо. Теперь все наши данные находятся в одном месте. Даёт ли это нам возможность легко осуществить поиск по ним? Не совсем. Данная таблица далека от идеала. Во-первых, в некоторых столбцах у нас есть повторяющиеся записи: к примеру, в х “username” и “following_username”. Также колонка “following_username” нарушает правила реляционных моделей, т.к. её в ячейках присутствует более 1 значения (записи разделены запятыми).
К тому же у нас попадаются дубликаты и в строках.
Повторяющиеся данные действительно являются проблемой, т.к. они затрудняют процесс CRUD. К примеру, при поиске по данной таблице на обработку дубликатов будет уходить дополнительное время. К тому же, если пользователь обновит твитт, то нам нужно будет перезаписать все дубликаты.
Шаг 2. Избавляемся от дубликатов в столбцах
Поскольку @Brett_Englebert подписан на @RealSkipBayless, то в таблице “following” отобразим это следующим образом: имя @Brett_Englebert поместим в колонку “from_user”, а @RealSkipBayless в “to_user.” Давайте посмотрим, как будет выглядеть таблица “following” после разделения Таблицы 1:
Таблица 2. following
from_user | to_user |
---|---|
_DreamLead | Scootmedia |
_DreamLead | MetiersInternet |
GunnarSvalander | klout |
GunnarSvalander | zillow |
GEsoftware | DayJobDoc |
GEsoftware | byosko |
adrianburch | CindyCrawford |
adrianburch | Arjantim |
AndyRyder | MichaelDell |
AndyRyder | Yahoo |
Brett_Englebert | RealSkipBayless |
Brett_Englebert | stephenasmith |
NimbusData | dellock6 |
NimbusData | rohitkilam |
SSWUGorg | drsql |
SSWUGorg | steam_games |
Таблица 3. users
full_name | username | text | created_at |
---|---|---|---|
Boris Hadjur | _DreamLead | What do you think about #emailing #campaigns #traffic in #USA? Is it a good market nowadays? do you have #databases? | Tue, 12 Feb 2013 08:43:09 +0000 |
Gunnar Svalander | GunnarSvalander | Bill Gates Talks Databases, Free Software on Reddit http://t.co/ShX4hZlA #billgates #databases | Tue, 12 Feb 2013 07:31:06 +0000 |
GE Software | GEsoftware | RT @KirkDBorne: Readings in #Databases: excellent reading list, many categories: http://t.co/S6RBUNxq via @rxin Fascinating. | Tue, 12 Feb 2013 07:30:24 +0000 |
Adrian Burch | adrianburch | RT @tisakovich: @NimbusData at the @Barclays Big Data conference in San Francisco today, talking #virtualization, #databases, and #flash memory. | Tue, 12 Feb 2013 06:58:22 +0000 |
Andy Ryder | AndyRyder5 | http://t.co/D3KOJIvF article about Madden 2013 using AI to prodict the super bowl #databases #bus311 | Tue, 12 Feb 2013 05:29:41 +0000 |
Andy Ryder | AndyRyder5 | http://t.co/rBhBXjma an article about privacy settings and facebook #databases #bus311 | Tue, 12 Feb 2013 05:24:17 +0000 |
Brett Englebert | Brett_Englebert | #BUS311 University of Minnesota’s NCFPD is creating #databases to prevent “food fraud.” http://t.co/0LsAbKqJ | Tue, 12 Feb 2013 01:49:19 +0000 |
Brett Englebert | Brett_Englebert | #BUS311 companies might be protecting their production #databases, but what about their backup files? http://t.co/okJjV3Bm | Tue, 12 Feb 2013 01:31:52 +0000 |
Nimbus Data Systems | NimbusData | @NimbusData CEO @tisakovich @BarclaysOnline Big Data conference in San Francisco today, talking #virtualization, #databases,& #flash memory | Mon, 11 Feb 2013 23:15:05 +0000 |
SSWUG.ORG | SSWUGorg | Don’t forget to sign up for our FREE expo this Friday: #Databases, #BI, and #Sharepoint: What You Need to Know! http://t.co/Ijrqrz29 | Mon, 11 Feb 2013 22:15:37 +0000 |
Основатель теории реляционных баз данных, Эдгар Кодд, назвал бы этот процесс (удаления повторений из столбцов таблиц) приведением БД к первой нормальной форме.
Шаг 3. Удаление повторений из строк
Теперь мы займёмся устранением других проблем, а именно, избавимся от дубликатов в строках таблицы “users”. Поскольку пользователи @AndyRyder5 и @Brett_Englebert разместили по несколько твиттов, то их имена в таблице “users” (Таблица 3) дублируются в колонке full_name. Данная проблема также решается разделением таблицы “users”.
Поскольку текст твитта и время его создания являются уникальными данными, то их мы поместим в одну и ту же таблицу. Также нам нужно указать связь между твитами и пользователями. Для этого я создал специальный столбец username.
Таблица 4. tweets
username | text | created_at |
---|---|---|
_DreamLead | What do you think about #emailing #campaigns #traffic in #USA? Is it a good market nowadays? do you have #databases? | Tue, 12 Feb 2013 08:43:09 +0000 |
GunnarSvalander | Bill Gates Talks Databases, Free Software on Reddit http://t.co/ShX4hZlA #billgates #databases | Tue, 12 Feb 2013 07:31:06 +0000 |
GEsoftware | RT @KirkDBorne: Readings in #Databases: excellent reading list, many categories: http://t.co/S6RBUNxq via @rxin Fascinating. | Tue, 12 Feb 2013 07:30:24 +0000 |
adrianburch | RT @tisakovich: @NimbusData at the @Barclays Big Data conference in San Francisco today, talking #virtualization, #databases, and #flash memory. | Tue, 12 Feb 2013 06:58:22 +0000 |
AndyRyder5 | http://t.co/D3KOJIvF article about Madden 2013 using AI to prodict the super bowl #databases #bus311 | Tue, 12 Feb 2013 05:29:41 +0000 |
AndyRyder5 | http://t.co/rBhBXjma an article about privacy settings and facebook #databases #bus311 | Tue, 12 Feb 2013 05:24:17 +0000 |
Brett_Englebert | #BUS311 University of Minnesota’s NCFPD is creating #databases to prevent “food fraud.” http://t.co/0LsAbKqJ | Tue, 12 Feb 2013 01:49:19 +0000 |
Brett_Englebert | #BUS311 companies might be protecting their production #databases, but what about their backup files? http://t.co/okJjV3Bm | Tue, 12 Feb 2013 01:31:52 +0000 |
NimbusData | @NimbusData CEO @tisakovich @BarclaysOnline Big Data conference in San Francisco today, talking #virtualization, #databases,& #flash memory | Mon, 11 Feb 2013 23:15:05 +0000 |
SSWUGorg | Don’t forget to sign up for our FREE expo this Friday: #Databases, #BI, and #Sharepoint: What You Need to Know! http://t.co/Ijrqrz29 | Mon, 11 Feb 2013 22:15:37 +0000 |
Таблица 5. users
full_name | username |
---|---|
Boris Hadjur | _DreamLead |
Gunnar Svalander | GunnarSvalander |
GE Software | GEsoftware |
Adrian Burch | adrianburch |
Andy Ryder | AndyRyder5 |
Brett Englebert | Brett_Englebert |
Nimbus Data Systems | NimbusData |
SSWUG.ORG | SSWUGorg |
После разделения в таблице users (Таблица 5) у нас присутствуют уникальные (не повторяющиеся) строки.
Данный процесс удаления дубликатов из строк называется приведением ко второй нормальной форме.
Шаг 4. Объединяем таблицы на основе ключей
Итак, в результате наших действий, Таблица 1 была разбита на 3 части: following (Таблица 2), tweets (Таблица 4), users (Таблица 5). Все дубликаты устранены. Для того чтобы в дальнейшем мы могли с лёгкостью извлекать данные из этой структуры, независимые друг от друга таблицы мы должны связать специальными отношениями, которые будут давать нам информацию о том, какому пользователю принадлежит какой твит, и кто на кого подписан.
Для создания связей между записями нам необходимо ввести уникальный идентификатор, который называется первичный ключ.
Вообще говоря, в Таблице 4 и 5 мы уже это сделали. В таблице “users” первичным ключом является колонка “username”, потому что логин пользователя должен быть уникальным значением и не может повторяться. В таблице “tweets” мы используем данный ключ для обозначения связи между пользователем и твитом. Колонка “username” в таблице “tweets” называется внешним ключом.
Если вы когда-то работали с базами данных, то у вас может возникнуть вопрос: можем ли мы использовать колонку “username” в качестве первичного ключа?
С одной стороны, это может упростить процесс поиска, ведь мы не используем никаких числовых ID. С другой стороны, что если пользователь захочет поменять свой логин? Это может привести к огромному количеству проблем. Для того чтобы не попасть в подобную ситуацию, лучше воспользоваться числовыми ID. Всё зависит от вашей системы. Если вы предоставляете вашим пользователям возможность менять логины, то лучше в качестве первичного ключа использовать автоинкрементированное числовое поле ID. В противном случае, колонка “username” вполне подойдёт для этой роли. Я оставлю всё как есть.
Давайте посмотрим на таблицу tweets (Таблица 4). Первичный ключ должен быть уникальным для каждой строки. Какую колонку в данной таблице мы можем выбрать для этой роли? Колонка “created_at” не подойдёт, т.к. в принципе 2 разных пользователя могут в одно и то же время опубликовать запись. С колонкой “text” та же история: два разных пользователя могут создать твит с текстом “Hello World”. Колонка “username” в данной таблице является внешним ключом для обозначения связи между пользователем и твитом. Итак, поскольку все возможные варианты нам не подходят, то лучшим решением будет добавление колонки id, которая будет первичным ключом для данной таблицы.
Таблица 6. tweets с колонкой id
ID | username | text | created_at |
---|---|---|---|
1 | _DreamLead | What do you think about #emailing #campaigns #traffic in #USA? Is it a good market nowadays? do you have #databases? | Tue, 12 Feb 2013 08:43:09 +0000 |
2 | GunnarSvalander | Bill Gates Talks Databases, Free Software on Reddit http://t.co/ShX4hZlA #billgates #databases | Tue, 12 Feb 2013 07:31:06 +0000 |
3 | GEsoftware | RT @KirkDBorne: Readings in #Databases: excellent reading list, many categories: http://t.co/S6RBUNxq via @rxin Fascinating. | Tue, 12 Feb 2013 07:30:24 +0000 |
4 | adrianburch | RT @tisakovich: @NimbusData at the @Barclays Big Data conference in San Francisco today, talking #virtualization, #databases, and #flash memory. | Tue, 12 Feb 2013 06:58:22 +0000 |
5 | AndyRyder5 | http://t.co/D3KOJIvF article about Madden 2013 using AI to prodict the super bowl #databases #bus311 | Tue, 12 Feb 2013 05:29:41 +0000 |
6 | AndyRyder5 | http://t.co/rBhBXjma an article about privacy settings and facebook #databases #bus311 | Tue, 12 Feb 2013 05:24:17 +0000 |
7 | Brett_Englebert | #BUS311 University of Minnesota’s NCFPD is creating #databases to prevent “food fraud.” http://t.co/0LsAbKqJ | Tue, 12 Feb 2013 01:49:19 +0000 |
8 | Brett_Englebert | #BUS311 companies might be protecting their production #databases, but what about their backup files? http://t.co/okJjV3Bm | Tue, 12 Feb 2013 01:31:52 +0000 |
9 | NimbusData | @NimbusData CEO @tisakovich @BarclaysOnline Big Data conference in San Francisco today, talking #virtualization, #databases,& #flash memory | Mon, 11 Feb 2013 23:15:05 +0000 |
10 | SSWUGorg | Don’t forget to sign up for our FREE expo this Friday: #Databases, #BI, and #Sharepoint: What You Need to Know! http://t.co/Ijrqrz29 | Mon, 11 Feb 2013 22:15:37 +0000 |
С таблицей following можем сделать то же самое, т.к. ни одна существующая колонка не подойдёт на роль первичного ключа. Колонки “from_user” и “to_user” являются внешними ключами и обозначают связь между подписками пользователей.
Итак, к этому моменту мы уже много чего сделали. Избавились от дублирующей информации в колонках и строках и выбрали для наших таблиц подходящие колонки на роль первичных и внешних ключей для обозначения зависимостей между данными. Данный процесс называется нормализацией и предназначен для приведения ваших таблиц под реляционную модель. Благодаря нормализации мы можем более простым образом реализовывать операции CRUD.
Ниже вы можете увидеть схему наших таблиц и связей между ними:
Системы Управления Базами Данных
Теперь, когда у нас есть реляционная БД, каким образом мы можем её имплементировать? Для этого мы можем воспользоваться системами управления базами данных (СУБД). Существует целый набор подобных программ, как платных, так и бесплатных. Среди платных можно выделить Oracle Database, IBM DB2 и Microsoft SQL Server. Бесплатные: MySQL, SQLite и PostgreSQL.
SQLite чаще используется при разработке приложений для iOS и Android, где хранится различного рода конфиденциальная информация. Браузер Google Chrome использует SQLite для хранения истории просмотров, кукисов, изображений.
PostgreSQL используется реже. Для неё существует полезное расширение PostGIS, которое делает данную СУБД удобной для хранения геолокационных данных. К примеру сервис OpenStreetMap исользует PostgreSQL.
Язык структурированных запросов (SQL)
После того, как вы выбрали подходящую для вас СУБД и установили её, следующим шагом было бы создание таблиц и управление данными. Для этого мы можем воспользоваться специальным языком SQL.
Создание БД development:
Создание таблицы Users:
При создании полей нам необходимо указать тип хранимой информации и её размер. Колонки “full_name” и “username” будут типа VARCHAR, который предназначен для хранения строк символов. Размер 100 символов. Список всех типов вы можете найти тут.
Извлечение всех записей пользователя _DreamLead:
SQL очень похож на человеческий язык (английский). В каждом СУБД SQL обладает рядом собственных особенностей и различий, но в целом, все разновидности SQL похожи друг на друга.
В этом уроке мы разобрали процесс создания реляционной БД, взяли набор данных и распределили их по таблицам, согласно реляционной модели. Также мы быстро пробежались по существующим СУБД и языку SQL.
Данный урок подготовлен для вас командой сайта ruseller.com
Источник урока: http://net.tutsplus.com/tutorials/tools-and-tips/relational-databases-for-dummies/
Перевел: Станислав Протасевич
Урок создан: 16 Марта 2013
Просмотров: 92752
Правила перепечатки
5 последних уроков рубрики «Разное»
Как выбрать хороший хостинг для своего сайта?
Выбрать хороший хостинг для своего сайта достаточно сложная задача. Особенно сейчас, когда на рынке услуг хостинга действует несколько сотен игроков с очень привлекательными предложениями. Хорошим вариантом является лидер рейтинга Хостинг Ниндзя — Макхост.
Проект готов, Все проверено на локальном сервере OpenServer и можно переносить сайт на хостинг. Вот только какую компанию выбрать? Предлагаю рассмотреть хостинг fornex.com. Отличное место для твоего проекта с перспективами бурного роста.
Разработка веб-сайтов с помощью онлайн платформы Wrike
20 ресурсов для прототипирования
Подборка из нескольких десятков ресурсов для создания мокапов и прототипов.
Топ 10 бесплатных хостингов
Небольшая подборка провайдеров бесплатного хостинга с подробным описанием.
Что такое реляционная база данных простыми словами
По Вашему запросу ничего не найдено.
Рекомендуем сделать следующее:
Что такое реляционная база данных?
Реляционные базы данных представляют собой базы данных, которые используются для хранения и предоставления доступа к взаимосвязанным элементам информации. Реляционные базы данных основаны на реляционной модели — интуитивно понятном, наглядном табличном способе представления данных. Каждая строка, содержащая в таблице такой базы данных, представляет собой запись с уникальным идентификатором, который называют ключом. Столбцы таблицы имеют атрибуты данных, а каждая запись обычно содержит значение для каждого атрибута, что дает возможность легко устанавливать взаимосвязь между элементами данных.
Пример реляционной базы данных
В качестве примера рассмотрим две таблицы, которые небольшое предприятие использует для обработки заказов продукции. Первая таблица содержит информацию о заказчиках: каждая запись в ней включает в себя имя и адрес заказчика, платежные данные и информацию о доставке, номер телефона и т. д. Каждый элемент информации (атрибут) помещен в отдельный столбец базы данных, которому назначен уникальный идентификатор (ключ) для каждой строки. Во второй таблице—(с информацией о заказе) каждая—запись содержит идентификатор заказчика, совершившего заказ, название заказанного продукта, его количество, размер или цвет и т. д. Записи в этой таблице не содержат таких данных, как имя заказчика или его контактные данные.
У обеих таблиц есть только один общий элемент — идентификатор столбца (ключ). Благодаря наличию этого общего столбца реляционные базы данных могут устанавливать взаимосвязи между двумя таблицами. Когда приложение для обработки заказов передает заказ в базу данных, база данных обращается к таблице со сведениями о заказах, извлекает сведения о продукции и использует идентификатор заказчика из этой таблицы, чтобы найти сведения об оплате и доставке в таблице с информацией о нем. Затем на складе подбирают нужный продукт, заказчик своевременно получает свой заказ и производит оплату.
Структура реляционных баз данных
Реляционная модель подразумевает логическую структуру данных: таблицы, представления и индексы. Логическая структура отличается от физической структуры хранения. Такое разделение дает возможность администраторам управлять физической системой хранения, не меняя данных, содержащихся в логической структуре. Например, изменение имени файла базы данных не повлияет на хранящиеся в нем таблицы.
Разделение между физическим и логическим уровнем распространяется в том числе на операции, которые представляют собой четко определенные действия с данными и структурами базы данных. Логические операции дают возможность приложениям определять требования к необходимому содержанию, в то время как физические операции определяют способ доступа к данным и выполнения задачи.
Чтобы обеспечить точность и доступность данных, в реляционных базах должны соблюдаться определенные правила целостности. Например, в правилах целостности можно запретить использование дубликатов строк в таблицах, чтобы устранить вероятность попадания неправильной информации в базу данных.
Реляционная модель
В первых базах данных данные каждого приложения хранились в отдельной уникальной структуре. Если разработчик хотел создать приложение для использования таких данных, он должен был хорошо знать конкретную структуру, чтобы найти необходимые данные. Такой метод организации был неэффективен, сложен в обслуживании и затруднял оптимизацию эффективности приложений. Реляционная модель была разработана, чтобы устранить потребность в использовании разнообразных структур данных.
Она обеспечила стандартный способ представления данных и отправки запросов, которые могли быть использованы в любых приложениях. Разработчики уяснили, что таблицы являются ключевым преимуществом реляционных баз данных, так как обеспечивают интуитивно понятный, эффективный и гибкий способ хранения структурированной информации и получения к ней доступа.
Со временем, когда разработчики стали использовать язык структурированных запросов (SQL) для записи данных в базу и отправки запросов, стало очевидным и другое преимущество реляционной модели. Вот уже на протяжении многих лет SQL широко используется в качестве языка запросов в базах данных. Он основан на алгоритмах реляционной алгебры и четкой математической структуре, что обеспечивает простоту и эффективность при оптимизации любых запросов к базе данных. Для сравнения: при использовании других подходов приходится создавать отдельные, уникальные запросы.
Преимущества реляционных баз данных
Компании всех типов и размеров используют простую, но функциональную реляционную модель для обслуживания разнообразных информационных потребностей. Реляционные базы данных применяются для отслеживания товарных запасов, обработки торговых транзакций через Интернет, управления большими объемами критически важных данных заказчиков и т. д. Реляционные базы данных можно рекомендовать для обслуживания любых информационных потребностей, где элементы данных связаны между собой и необходимо обеспечивать безопасное и надежное управление ими на основе правил целостности.
Реляционные базы данных появились в 1970-х годах. На сегодняшний день преимущества реляционного подхода сделали его самой распространенной моделью для баз данных в мире.
Целостность данных
Реляционная модель наиболее эффективно поддерживает целостность данных во всех приложениях и копиях (экземплярах) базы данных. Например, когда заказчик кладет деньги на счет с помощью банкомата, а затем проверяет баланс на мобильном телефоне, он ожидает, что поступившие средства сразу же отобразятся на счете. Реляционные базы данных отлично подходят для обеспечения целостности данных в различных экземплярах базы в одно и то же время.
Другие типы баз данных не могут одновременно поддерживать целостность больших объемов данных. Некоторые современные типы баз данных, такие как NoSQL, обеспечивают только так называемую “окончательную целостность.” Это значит, что, когда выполняется масштабирование данных или несколько пользователей одновременно используют одни и те же данные, необходимо некоторое время на “внесение изменений”. В некоторых случаях окончательная целостность вполне приемлема (например, для обновления позиций в товарном каталоге), однако для критически важной операционной деятельности бизнеса (например, транзакций с использованием корзины) реляционные базы представляют собой фундаментальный стандарт.
Фиксация изменений и атомарность
В реляционных базах данных используются очень детальные и строгие бизнес-правила и политики в отношении фиксации изменений в базе данных (то есть сохранения изменений в данных на постоянной основе). Рассмотрим для примера складскую базу данных, в которой отслеживаются три запчасти, всегда использующиеся в комплекте. Когда одну из них извлекают из товарных запасов, две другие также должны извлекаться. Если одна из трех запчастей недоступна, две другие также не могут быть проданы отдельно, то есть, чтобы в базу данных можно было внести изменения, должны быть доступны все три запчасти. Реляционная база данных не разрешит сохранять изменения, если они не касаются всех трех запчастей. Эту особенность реляционных баз данных называют атомарностью или неразрывностью. Неразрывность необходима для сохранения точности данных в базе и обеспечения соответствия с правилами, нормативными положениями и бизнес-политиками.
Реляционные базы данных и ACID
Транзакции в реляционной базе данных имеют четыре важные характеристики: неразрывность (atomicity), целостность (consistency), изолированность (isolation) и неизменность (durability). Это сочетание получило название ACID.
Хранимые процедуры и реляционные базы данных
Доступ к данным включает в себя множество повторяющихся действий. Например, иногда для получения нужного результата простой запрос для получения информации из таблицы необходимо повторить сотню или тысячу раз. Для таких сценариев доступа к базе данных необходимо что-то вроде программного кода. Разработчикам каждый раз писать стандартный код доступа к данным для нового приложения было бы утомительно. К счастью, реляционные базы данных поддерживают хранимые процедуры, представляющие собой блоки кода, к которым можно получить доступ с помощью обычного вызова со стороны кода приложения. Например, одну и ту же хранимую процедуру можно использовать для последовательной маркировки записей в целях удобства пользователей для различных приложений. Хранимые процедуры также помогают разработчикам убедиться в правильной реализации определенных функций данных в приложении.
Блокировки базы данных и параллельный доступ
Когда несколько пользователей или приложений пытаются одновременно изменить одни и те же данные, это может вести к возникновению конфликта в базе. Блокировки и параллельный доступ снижают вероятность конфликтов и способствуют сохранению целостности данных.
Блокировка не разрешает другим пользователям и приложениям получать доступ к данным во время их обновления. В некоторых базах данных блокировка может применяться к целой таблице, что негативно отражается на эффективности приложения. В других типах баз данных, например реляционных базах Oracle, блокировка выполняется на уровне одной записи, оставляя другие записи в таблице доступными. Такой подход помогает сохранить эффективность приложения.
Инструмент параллельного доступа используется, когда несколько пользователей или приложений пытаются одновременно выполнить запросы к одной базе данных. Он обеспечивает доступ пользователей и приложений к базе данных в соответствии с политиками контроля.
Характеристики, на которые следует обратить внимание при выборе реляционной базы данных
Программное обеспечение, которое используется для сохранения, контроля и извлечения данных в базе, а также выполнения к ней запросов, называют системой управления реляционной базой данных (СУРБД). СУРБД обеспечивает интерфейс между пользователями и приложениями и базой данных, а также административные функции для управления хранением данных, их эффективностью и доступом к ним.
При выборе типа базы данных и продуктов на основе реляционных баз данных необходимо учитывать несколько факторов. Выбор СУРБД зависит от потребностей Вашей компании. Задайте себе следующие вопросы.
Реляционная база данных будущего: автономная база данных
На протяжении последних лет реляционные базы данных улучшали свою производительность, надежность и безопасность и становились проще в обслуживании. Однако их структура становилась все более сложной, и, как следствие, администрирование такой базы данных начало требовать немалых усилий. Вместо того, чтобы использовать свои навыки для разработки инновационных приложений, которые будут приносить прибыль компании, разработчики вынуждены посвящать львиную долю времени управлению базой данных для оптимизации ее эффективности.
Мы использовали автономные технологии, чтобы расширить возможности реляционной модели и создать реляционную базу данных нового типа. Самоуправляемая база данных (которую также называют автономной) сохраняет все преимущества и возможности реляционной модели и добавляет к ним средства на основе искусственного интеллекта, машинного обучения и автоматизации для мониторинга и оптимизации скорости выполнения запросов и управления. Например, чтобы улучшить скорость выполнения запросов, самоуправляемая база данных строит прогнозы и проверяет индексы, а затем применяет лучшие результаты на практике — и все это без участия администратора. Самоуправляемые базы данных постоянно вносят такие улучшения в собственную работу без человеческого вмешательства.
Автономные технологии дают возможность разработчикам больше не тратить время на рутинные задачи обслуживания. Например, больше не нужно заблаговременно определять требования к инфраструктуре. При использовании решения IaaS Вы арендуете ресурсы, например вычислительные мощности или хранилище, получаете доступ к нужным ресурсам по мере необходимости и платите только за те из них, которые использует Ваша компания. Разработчики могут создавать автономные реляционные базы данных всего за несколько шагов, ускоряя процесс разработки приложений.