что такое растровая точка
Растрирование
Процессы, описанные в этой статье, являются базовыми для понимания основ офсетной полиграфии. Тот, кто сможет понять основы растрирования, сможет разобраться с любой, самой трудной полиграфической задачей.
Часто приходится встречать такой вопрос: «Три слова в полиграфии«. Мой ответ такой: растрирование; CMYK; ротация. Вот об одном таком слове и пойдёт речь в данной статье.
Казалось бы, про растрирование написано много, зачем ещё одна статья? Действительно мне пришлось перелопатить немало материала, прежде чем достигнуть существующего уровня понимания вопроса. Буду откровенен, последнюю точку в вопросе растрирования мне помогла поставить работа над полиграфическим словарём. Я разбирался с терминологией вокруг растрирования и обратился к первоисточнику, а именно, к англоязычной википедии. И с помощью неё, разобравшись с терминологией, мне стало понятно насколько в нашей литературе всё запутано.
Действительно растрирование стало грандиозной вехой в полиграфии и дало лёгкий способ переноса на печать тоновых изображений. Как же до появления растра печатались изображения? Методом штрихового рисунка. На рис. 1 изображена старая литография, сделанная мастером по технологии штрихового рисунка. В принципе технология штрихового рисунка позволяла получать достаточно сложные тоновые изображения, однако, была трудозатратна и требовала большого мастерства. Даже с помощью современных программных средств нет технологий получения штрихового рисунка из тонового изображения. А с появлением фотографии количество тоновых изображений начало стремительно возрастать. Вот тут и возникла реальная потребность в появлении растра.
Статья в полной мере описывает особенности палитры CMYK, её отличия от иных палитр. Особое внимание уделено практической стороне работы палитры CMYK в полиграфическом производстве. Рассказывается о таких явлениях как точка белого, плотность красок максимальная сумма красок и мн. др…
В этой статье будет рассмотрен один из видов полиграфических растров – регулярный растр. Для упрощения понимания вопроса рассмотрим процесс растрирования черно-белоготонового изображения. Под растрированием (halftoning или screenning) будем понимать процесс преобразования тонового изображения в изображение, содержащее полиграфический растр (halftone screen), назовём его растрированным изображением, тем более другого термина нет.
Постановка задачи
Какую задачу предстояло решить изобретателю растра? Исходный материал – тоновое ч/б изображение. Конечная цель – bitmap изображение.
На этом этапе следует ввести понятие bitmap. В современном понимании bitmap это цветовая палитра на информацию о цвете в которой выделен всего один bit информации. Поэтому цвет в bitmap изображении может быть только чёрным или белым, а если более точно, может быть, а может не быть (to be, or not to be). И именно bitmap технология лежит в основе современных печатных форм. Иными словами, на печатную форму нанесено bitmap изображение. Поэтому задачу можно сформулировать следующим образом: как тоновое ч/б изображение, содержащее 256 оттенков серого*¹, отобразить в палитре bitmap. Такая формулировка задачи приобретает достаточно простой математический смысл. Если имеются точки тонового изображения со значениями в диапазоне от 0 до 255, то для отображения их в цветовой модели bitmap потребуется матрица разрядностью 16×16 пикселей. Под пикселем будем понимать наименьшую (элементарную) точку, которую можно воспроизвести на печатном оттиске. А физический размер этой точки будет тесно связан с понятием разрешения фотовыводного устройства. Но об этом позже. Таким образом, цветовая точка тонового изображения будет «зажигать» в матрице соответствующее количество пикселей (см. рис. 2). Например, всем известная шахматная доска представляет собой матрицу разрядностью 8×8, передающую тоновую точку с 50% (32 из диапазона 0–63) интенсивностью цвета*².
Цветовая матрица в полиграфии называется (halftone cell) или растровая ячейка, а заполнение её пикселями происходит не хаотично, а по строгим правилам. Вообще правила всего два: в случае нормального распределения пикселей по растровой ячейке получаем стохастический растр или стохастику; в случае концентрации пикселей в одном месте получаем регулярный растр. Площадь (поле) концентрации пикселей в растровой ячейке называется (halftone dot) – растровое пятно (см. рис. 3). Почему растровое пятно, а не растровая точка? Потому что термин растровая точка занят. О ней (растровой точке) будет сказано ниже. Для предотвращения муара в полиграфии растровую ячейку поворачивают на некоторый угол – угол поворота растра. Такая растровая ячейка или их совокупность (для палитры CMYK) называется (halftone screen) – растровой точкой. В полноцветной полиграфии растровая точка образует характерный рисунок, поэтому её иногда называют растровой розеткой. Форма растрового пятнаможет быть различной, например, квадрат, круг или эллипс. Оптимальной считается эллиптическая форма растрового пятна (в литературе растровая точка).
Понятие линиатуры
Сколько необходимо иметь растровых точек на единицу поверхности для получения качественного печатного оттиска?
Экспериментальным путём установлено, что на высококачественных бумагах не возможно устойчиво отпечатать более 175–200 растровых точек на 1 дюйм длины. Это и есть понятие линиатуры. Иными словами, линиатура это частота (количество) растровых точек на дюйм поверхности. Во всех направлениях линиатура одинакова. Измеряется линиатура в lpi (line per inch), что переводят как количество линий на дюйм. Но под линиями следует понимать именно растровые точки. Не сложно вычислить физический размер растровой точки при линиатуре 200 lpi. Имеем 200 точек/дюйм, применим операцию (1/х) и получим размер одной растровой точки1/200 = 0,005 (дюйма). Учитывая, что в одном дюйме 25,2 мм получаем размер растровой точки0,126 (мм).
ПЕЧАТНЫЕ ФОРМЫ
Читайте статью об изготовлении печатных форм из печатных пластин. Из статьи, вы узнаете: чем отличаются печатные пластины от печатных форм; что такое комплект форм и каков его размер; а также подробно познакомитесь с технологий изготовления печатных форм по технологии CtP…
Связь линиатуры и разрешения
Теперь мы вплотную подошли к понятию разрешения. Разрешение связывает, до сих пор абстрактное, понятие пикселя с занимаемой им площадью на реальном физическом носителе. В нашем случае носителем является печатная форма. В предыдущем параграфе мы выяснили размер растровой точки, необходимый для высококачественной печати. Также нам известно, чторастровая точка состоит из растровой ячейки разрядностью 16×16 пикселей. Делим имеющиеся показатели на 16 и получаем физический размер одного пикселя ≅ 0,0003 (дюйма) или ≅ 0,0079 (мм). Сколько же таких пикселей размещается на одном дюйме печатной формы, снова применим операцию (1/х) и получим необходимое разрешение фотовыводящего устройства – 3200 ppi (pixel per inch). Что и требовалось доказать.
Зависимость линиатуры от печатной машины и типа бумаги приведена в таблице.
Вид печати | Бумага | total ink Fogra % | WB Fogra | Линиатура, lpi |
---|---|---|---|---|
Листовая | мелованная глянцевая плотностью свыше 130 г/м² | 330 | 39 | 175 |
немелованная | 300 | 39, 47 | 133 | |
мелованная матовая | 150 | |||
мелованная глянцевая до 130 г/м² (включительно) | 175 | |||
Рулонная | мелованная матовая, мелованная глянцевая | 41, 45 | 150 | |
SC суперкаландр | 270 | 40 | 133 | |
газетная | 260 Heatset*¹ | 42 | 120 | |
200–240 max Coldset |
*¹ – Газетная печать Coldset означает без сушки, Heatset – с сушкой. Журнальные машины печатают только с сушкой.
Важные интуиции, вытекающие из выше изложенного
Если тоновое изображение является штриховым рисунком или bitmap изображением, то при растрировании оно не меняется. Фактически при растрировании bitmap изображения его разрешениебудет преобразовано к разрешению фотовывода. Следовательно, для получения максимального качества bitmap изображения необходимо делать его с разрешением близким к разрешениюфотовывода. На практике достаточно разрешенияbitmap изображения в 1200 ppi, т.к. дальнейшее увеличение разрешения не заметно глазу. На рис. 4 приведены фрагменты bitmap изображений сделанные при различных разрешениях.
Аналогичного качества можно достигнуть и при использовании векторных изображений (но только при условии их окрашивания в плашечный цвет), т.к. векторы масштабируются без потери качества.
Что произойдёт, если мы окрасим векторное изображение не в плашечный цвет, а, например, в 60% Black? В этом случае от разрешения фотовывода в 3200 ppi мы перейдём к линиатуре 200 lpi. Иными словами, разрешение выводящегося изображения уменьшится в 16 раз (рис. 5). При этом возникает эффект «пилы». Поэтому не рекомендую задавать шрифтам не плашечные цвета при линиатуре печати ниже 175 lpi. При линиатуре 150 lpi и ниже сильно заметной становится «пила».
АВТОМАТИЗИРОВАННАЯ ВЁРСТКА
Готовится к запуску онлайн сервис по автоматизированной вёрстке товарных каталогов. Сервис позволяет существенно сократить труд верстальщика и приобщить к работе компетентных людей в области товароведения, т.е. продакт-менеджеров. О том: подходит ли данный сервис вашему производству? Как это работает? Каков экономический эффект от внедрения данного продукта? и о многом другом Вы сможете прочитать в разделе, посвящённом сервису автоматизированной вёрстки товарных каталогов…
Полиграфический дуализм
Какое разрешение необходимо задавать изображению перед отправкой его на фотовывод? Из логики следует, чторазрешение изображения должно соответствовать линиатуре печати. Почему тогда рекомендуют делать разрешение чуть выше, чем линиатура печати, примерно в 1,5–2 раза? В этом есть смысл, если чёрный выступает в качестве контура. Иными словами, если чёрный специально обработан. В результате обработки он должен приобрести свойства bitmap изображения. Как этого можно достичь? Путём шарпенса чёрного. В результате шарпенса контуры изображения уконтращиваются и появляются малые участки где чёрный достигает 100%-интенсивности. Это и придаёт ему свойства bitmap изображения. Этот эффект я назвал полиграфическим дуализмом. На рис. 6 приведены примеры исходного изображения и после правильного шарпенса.
IQprint.ru — полиграфические услуги.
Растрирование. Полиграфический растр.
Растрирование — преобразование непрерывных полутоновых и штриховых изображений в микроштриховые с помощью полиграфического растра (в репродукционных фотоаппаратах и контактнокопировальных станках) или с использованием аппаратных и программных средств. В современном полиграфическом производстве за процесс растрирования отвечают специальные растровые процессоры — RIP.
Существуют две методики растрирования и соответственно два способа передачи полутонов на неполутоновых устройствах:
Рассмотрим оба метода формирования рисунка подробнее.
В первом случае, фактически, меняется частота появления растровых точек на бумаге, в зависимости от насыщенности изображения. Поэтому этот метод растрирования называется частотно — модулированным (ЧМ — растрирование, англ. FM-screening). Растровые точки, при формировании рисунка этим методом, наносятся хаотично и не упорядочено одна относительно другой (поэтому растры этого типа иногда называют нерегулярными или стохастическими).
У таких растров всего один непосредственный параметр — размер отдельно взятой точки, который определяется настройками драйвера печати и характеристиками устройства вывода — размером микропятна печатающего устройства. Минимальные значения этого параметра ограничены объемом капли, создаваемой печатающей готовкой, который на практике у современных моделей принтеров обычно колеблется от двух до нескольких десятков пиколитров. По сути, устанавливая в диалоговом окне параметры принтера, печатающего этим растром, мы устанавливаем разрешение, или максимальную плотность нанесения точек на единицу длины печати. Понятно, что чем мельче размер отдельно взятой капли, и чем выше разрешение, тем меньше будет заметна дискретность готового отпечатанного изображения.
Наиболее типичный и распространенный пример устройства, в котором используется нерегулярный стохастический FM — растр — это струйный принтер. С физической точки зрения сформировать такой растр достаточно просто: печатающая головка принтера просто наносит чернила на запечатываемый материал в виде множества мелких капелек более или менее одинакового размера (повторяемость размера капли определяется уже не настройками печати, а классом точности печатающего узла принтера). Изменяется только интенсивность падения капель красителя на запечатываемый материал, что и определяет относительную плотность запечатываемости каждого участка. Таким образом, сформулируем краткое определение: ЧМ — растрирование (FM — screening) — это метод получения полутонов в печатаемом изображении с использованием растровых точек одинакового размера с переменным их числом на единицу площади запечатываемой поверхности.
Во втором случае, метод, повсеместно используемый в печати, — это так называемое амплитудно- модулированное растрирование, или AM — растрирование (AM — screening). Краткое описание этого метода растрирования таково: это метод получения полутонов с использованием растровых точек переменного размера, с неизменным их числом на единицу площади запечатываемой поверхности. В AM — растрах
используется несколько другой подход к формированию рисунка, в отличие от предыдущего рассмотренного нами метода. В зависимости от того, насколько светлым или темным является определенный участок изображения, его печать на бумаге происходит в виде растровых точек разного размера. В светлых участках точки достаточно малы и малозаметны. В полутоновой части они занимают примерно половину запечатываемой площади рисунка и формируют характерную «шахматку» (хотя это зависит от формы растровой точки), а в теневых участках точки становятся настолько велики, что занимают почти всю площадь запечатываемого материала, при этом промежутки между растровыми точками становятся практически не видны. Значение площади, занимаемое растровой точкой в изображении, принято называть растровой плотностью, и выражать в процентах. Например, растровая плотность в 50% подразумевает, что растровая точка занимает половину площади запечатываемого материала.
Некоторые тонкости AM — растрирования
При использовании AM — растров, актуален не только вопрос о размерах, но и о форме растровой точки, в отличие от предыдущего метода растрирования, где форма точки отсутствовала как таковая. Вместо нее на запечатываемом материале после печати появлялась достаточно малая капелька тонера, краски или чернил принтера, а размер точки, по сути, определялся настройками драйвера принтера (на аппаратном уровне — объемом микрокапли используемого принтера). Дело в том, что от того, каким AM — растром будет напечатан макет, а также от формы растровой точки, во многом зависит визуальное восприятие изображения наблюдателем. Форма растровой точки (Raster dot shape) строго определена и чаще всего зависит от конкретной модели печатающего устройства, либо от программных настроек драйвера, если он позволяет выбирать форму растра среди нескольких альтернативных вариантов. К наиболее часто используемым формам растровых точек можно отнести эллиптическую, ромбовидную, квадратную и круглую точки.
Более «жирные» растровые точки, будучи напечатанными в соседних ячейках растровой сетки, оставляют между собой мало белого пространства. Это создает иллюзию темного оттенка цвета. Наоборот, небольшие точки, напечатанные с тем же интервалом, оставляют белой большую часть бумаги в пространстве между ними. Это вызывает ощущение светлого оттенка.
Поскольку в пределах растровой точки можно различным образом задействовать отдельные пикселы (субэлементы) для получения полутонов, форма растровой точки была стандартизирована.
Форма растровой точки — преимущественная форма растровой точки, получаемая при растрировании с применением периодической структуры.
Примечание. В настоящее время в основном используют формы точки, которые получили названия: квадратная, круглая, эллиптическая, цепеобразная (разновидность эллиптической), эвклидова (с постепенным переходом по градационной шкале от круглой точки к квадратной и затем к круглому просвету), линейчатая и геометрическая (разновидность линейчатой).
Линейную последовательность из растровых элементов называют линией. Таким образом линиатура растра есть не что иное, как число растровых точек, из которых формируется изображение на единицу его длины. Линиатура растра жестко связана с разрешением фотовыводного устройства. Линиатура растра = разрешение фотовыводного устройства/16. Если фотоформа будет выводиться с разрешением 2400 dpi, то ее линиатура составляет 150 линий на дюйм.
Линиатура относится только к регулярным амплитудно-модулированным растрам. Для обозначения термина «линиатура» используется аббревиатура — Ipi, расшифровывающаяся как lines per inch (число линий на дюйм). Чем выше частота укладки линий на единицу длины изображения, тем меньше заметна дискретность изображения, обусловленная его растровой структурой. Наиболее типичные значения линиатуры печати — 60, 85, 100, 120, 133, 150, 175, 200 lpi и так далее. Человек, обладающий среднестатической остротой зрения, как правило, не замечает растра в изображениях, отпечатанных с линиатурой более 133 lpi, при просмотре изображений с расстояния в 25-35 сантиметров.
Большинство газетных иллюстраций печатается растром в 75 lpi, журнальных — 133-150 lpi, а иллюстрации в хороших альбомах могут иметь линиатуру до 175 lpi. От линиатуры растра также зависит видимое качество иллюстраций. Чем выше линиатура, тем менее заметны образующие растр точки и тем ближе отпечаток к фотографическому оригиналу.
Введение в настольную полиграфию: часть 2
Два абсолютно одинаковых изображения, отпечатанные на различных принтерах или при использовании различных запечатываемых материалов, могут довольно сильно отличаться друг от друга. В этой статье рассматриваются некоторые особенности печати на различных материалах, а также нюансы зрительного восприятия наших изображений.
Трудности печати на практике
В данной статье мы рассмотрим, что все-таки происходит в печати с нашим изображением, и какие причины могут вызывать дестабилизацию печатного процесса, а затем обсудим методы учета этих причин специалистом по допечатной подготовке.
Забегая вперед, добавлю, что добиться высокой степени повторяемости достаточно трудно, так как это задача не относится к разряду тривиальных задач в печатном деле. Однако, поскольку критерии качества постоянно растут, и заказчики полиграфической продукции становятся все более требовательными к полученным результатам, для удовлетворения всех их запросов становится просто необходимым создание и использование эффективной системы управления цветом. О некоторых аспектах этого непростого дела мы и поговорим.
Увеличение растровых точек в печати
Рисунок 2. фрагмент полноцветного изображения до и после растискивания
с различными значениями прироста растровой плотности
Так как растискивание порой становится серьезной проблемой печати, с которой необходимо бороться, все современные программы обработки графики обязательно имеют возможность визуально показывать пользователю, что же произойдет при воздействии на изображение установленного им уровня растискивания. Ну а уровень увеличения точек, в свою очередь, подбирается в зависимости от характеристик запечатываемого материала. Таким образом, дизайнер при подготовке файла к печати имеет возможность представлять и визуально отображать на экране то, что же все-таки он получит при печати ‘на выходе’, и, в случае необходимости, вносить в изображение нужные поправки.
Рисунок 3. Adobe Photoshop CMYK Setup и поле ввода
для установки значения dot gain
Степень белизны бумаги
Зрительное восприятие цвета: влияние освещения
‘…Однажды я сидел при ярком свете ламп и творил свой дизайн при помощи веера цветов Pantone. Ко мне сзади незаметно подошёл великий учитель и спросил:
— Как же ты можешь творить свой дизайн при таком свете ламп, ведь краски будут искажены?
И тогда я выключил свет, краски на мониторе стали более яркими. Учитель ушёл. Но, среди беспорядка, я не смог найти свой веер в темноте.
Учитель вернулся:
— Как же так учитель, я хотел сверить цвет и не мог найти даже сам веер с цветом?
— В этом и смысл.
И я задумался…’
Восприятие цвета зависит во многом от того, как и в каких условиях мы рассматриваем наше изображение. Любое устройство, излучающее свет, например, монитор формирует его при помощи светящихся люминофорных элементов. Вне зависимости от окружающего освещения, спектр, излучаемый ими, не будет подвержен изменениям. Конечно, в зависимости от окружающего освещения визуально изменится наше ощущение цвета на мониторе, но это произойдет по причине особенностей человеческого зрения и восприятия им цвета, а не из-за изменения реального цвета, излучаемого монитором.
Механизм формирования цвета на бумаге с физической точки зрения достаточно сложен. В целом он сводится к следующей схеме: падающий на отпечаток свет изначально формируется неким источником освещения. Часть света от источника, попадая на изображение, поглощается им, в зависимости от оптической плотности отдельных его точек, а оставшаяся часть света отражается. В результате цвет, который мы видим в нашем изображении, по сути, является результатом оптического субтрактивного цветового синтеза, и образуется путем вычитания из падающего света той его части, которую отразил оригинал.
Привязка файла к устройству воспроизведения
Любая цветокоррекция, изменение цветовых характеристик изображения обязательно затрагивает цифровые значения графических элементов вашего изображения. Однако, как уже было сказано выше, одно и то же изображение ‘по цифрам’ становится несколько иным, в зависимости от реальных условий печати и производства. Таким образом, цифровые значения уже нельзя рассматривать как некую величину, которая не будет изменяться при смене условий печати изображения.
И, в завершение статьи, хотелось бы добавить, что в ней, конечно, не были рассмотрены все вопросы, касающиеся формирования цвета на бумаге, и многое осталось ‘за кадром’. Например, мы не коснулись понятия серого баланса, методов конверсии графических данных при переходе из профиля в профиль (и не рассмотрели связанные с этим проблемы!). Однако, все это уже темы для новых, отдельных публикаций.