что такое пульсар быстро вращающаяся нейтронная звезда
Нейтронная звезда
Или их еще называют пульсарами, магнетарами, радиопульсарами, рентгеновскими пульсарами
Нейтронная звезда — очень быстро вращающееся тело, оставшееся после взрыва сверхновой звезды. При диаметре 20 километров это тело имеет массу сравнимую с солнечной, один грамм нейтронной звезды весил бы в земных условиях более 500 миллионов тонн! Такая огромная плотность возникает от вдавливания электронов в ядра, от чего они объединяются с протонами и образуют нейтроны. По сути, нейтронные звезды по свойствам, включая плотность и состав, очень похожи на атомные ядра. Но есть существенная разница: в ядрах нуклоны притягивает сильное взаимодействие, а в звездах – сила гравитации.
Что из себя представляет
Состав нейтронных звёзд
Состав этих объектов (по понятным причинам) изучен пока только в теории и математических расчетах. Однако, известно уже многое. Как и следует из названия, состоят они преимущественно из плотно упакованных нейтронов.
Атмосфера нейтронной звезды имеет толщину всего несколько сантиметров, но в ней сосредоточено все её тепловое излучение. За атмосферой находится кора, состоящая из плотно упакованных ионов и электронов. В середине находится ядро, состоящее из нейтронов. Ближе к центру достигается максимальная плотность вещества, которая в 15 раз больше ядерной. Нейтронные звезды — самые плотные объекты во вселенной. Если попытаться и далее увеличивать плотность вещества произойдет коллапс в черную дыру, или образуется кварковая звезда.
Магнитное поле
Типы нейтронных звезд
Пульсары
Это обобщающее название для всех нейтронных звезд. Пульсары имеют четко определенный период вращения, который не меняется очень долгое время. Благодаря этому свойству их прозвали «маяками вселенной»
Частицы узким потоком на очень высоких скоростях вылетают через полюса, становясь источником радиоизлучения. Из-за несовпадения осей вращения, направление потока постоянно меняется, создавая эффект маяка. И, как у каждого маяка, у пульсаров своя частота сигнала, по которой его можно идентифицировать.
Практически все обнаруженные нейтронные звёзды существуют в двойных рентгеновских системах или в качестве одиночных пульсаров.
Магнетары
При рождении очень быстро крутящейся нейтронной звезды, общие вращение и конвекция создают громадное магнитное поле. Это происходит за счёт процесса «активного динамо». Это поле превышает величины полей обычных пульсаров в десятки тысяч раз. Действие динамо заканчивается через 10 – 20 секунд, и происходит охлаждение атмосферы звезды, но магнитное поле успевает возникнуть заново за этот срок. Оно неустойчиво, и быстрая смена его структуры порождает выброс гигантского количества энергии. Получается, что магнитное поле звезды разрывает её саму. Кандидатов на роль магнетаров в нашей галактике насчитывается около десятка. Появление его возможно из звезды, превосходящей минимум в 8 раз массу нашего Солнца. Размеры же их порядка 15 км в диаметре, при массе около одной солнечной. Но достаточного подтверждения существования магнетаров пока не получено.
Рентгеновские пульсары.
Они считаются другой фазой жизни магнетара и излучают исключительно в рентгеновском диапазоне. Излучение возникает в результате взрывов, имеющих определённый период.
Некоторые нейтронные звёзды появляются в двойных системах или же приобретают компаньона, захватив его в свое гравитационное поле. Такой компаньон будет отдавать своё вещество агрессивной соседке. Если компаньон нейтронной звезды по массе не меньше Солнца, то возможны интересные явления – барстеры. Это рентгеновские вспышки, продолжительностью в секунды или минуты. Но они способны усилить светимость звезды до 100 тыс. солнечных. Перенесённые с компаньона водород и гелий наслаиваются на поверхности барстера. Когда слой становится очень плотным и горячим, запускается термоядерная реакция. Мощность такого взрыва невероятна: на каждом квадратном сантиметре звезды выделяется мощь, эквивалентная взрыву всего земного ядерного потенциала.
При наличии компаньона-гиганта, вещество теряется им в виде звёздного ветра, а нейтронная звезда втягивает его своей гравитацией. Частицы летят по силовым линиям по направлению к магнитным полюсам. При несовпадении магнитной оси и оси вращения, яркость звезды будет переменной. Получается рентгеновский пульсар.
Миллисекундные пульсары.
Они тоже связаны с двойными системами и обладают самыми короткими периодами (меньше 30 миллисекунд). Вопреки ожиданиям, они оказываются не самыми молодыми, а достаточно старыми. Старая и медленная нейтронная звезда поглощает материю компаньона-гиганта. Падая на поверхность захватчика, материя придаёт ей вращательную энергию, и вращение звезды усиливается. Постепенно компаньон превратится в белого карлика, потеряв в массе.
Экзопланеты у нейтронных звезд
Первую экзопланету открыли при исследовании радиопульсара. Так как нейтронные звезды очень стабильны, возможно очень точно отслеживать находящиеся рядом планеты с массами, намного меньшими массы Юпитера.
Очень легко отыскалась планетная система у пульсара PSR 1257+12, удалённого от Солнца на 1000 световых лет. Рядом со звездой три планеты, имеющие массы 0,2, 4,3 и 3,6 масс Земли с периодами обращений в 25, 67 и 98 суток. Позже нашлась ещё одна планета с массой Сатурна и периодом обращения 170 лет. Также известен пульсар с планетой немного массивнее Юпитера.
На самом деле парадоксально, что возле пульсара существуют планеты. Нейтронная звезда рождается в результате взрыва сверхновой, и та теряет основную часть своей массы. Оставшаяся часть уже не обладает достаточной гравитацией для удержания спутников. Вероятно, найденные планеты образовались уже после катаклизма.
Исследования
Число известных нейтронных звёзд около 1200. Из них 1000 считаются радиопульсарами, а остальные определены как рентгеновские источники. Изучать эти объекты невозможно, послав к ним какой-либо аппарат. В кораблях «Пионер» были отправлены послания разумным существам. И местоположение нашей Солнечной системы указано именно с ориентацией на ближайшие к Земле пульсары. От Солнца линиями показаны направления на эти пульсары и расстояния до них. А прерывистость линии обозначает период их обращения.
Ближайший к нам нейтронный сосед расположен в 450 световых годах. Это двойная система – нейтронная звезда и белый карлик, период её пульсации 5,75 миллисекунды.
Вряд ли возможно оказаться рядом с нейтронной звездой и остаться в живых. Можно только фантазировать на эту тему. Да и как представить выходящие за границы разума величины температуры, магнитного поля и давления? Но пульсары ещё помогут нам в освоении межзвёздного пространства. Любое, даже самое дальнее галактическое путешествие, окажется не гибельным, если будут работать стабильные маяки, видимые во всех уголках Вселенной.
Пульсары и нейтронные звезды
Объекты глубокого космоса > Пульсары и нейтронные звезды
Пульсары представляют собою сферические компактные объекты, размеры которых не выходят за границу большого города. Удивительно то, что при таком объеме они по массивности превосходят солнечную. Их используют для исследования экстремальных состояний материи, обнаружения планет за пределами нашей системы и измерения космических дистанций. Кроме того, они помогли найти гравитационные волны, указывающие на энергетические события, вроде столкновений сверхмассивных черных дыр. Впервые обнаружены в 1967 году.
Что такое пульсар?
В центре галактики М82 можно увидеть пульсар (розовый)
Если высматривать на небе пульсар, то кажется обычной мерцающей звездой, следующей по определенному ритму. На самом деле, их свет не мерцает и не пульсирует, и они не выступают звездами.
Пульсар вырабатывает два стойких узких световых луча в противоположных направлениях. Эффект мерцания создается из-за того, что они вращаются (принцип маяка). В этот момент луч попадает на Землю, а затем снова поворачивается. Почему это происходит? Дело в том, что световой луч пульсара обычно не совмещается с его осью вращения.
Если мигание создается вращением, то скорость импульсов отображает ту, с которой вращается пульсар. Всего было найдено 2000 пульсаров, большая часть их которых делает один оборот в секунду. Но есть примерно 200 объектов, умудряющихся за то же время совершать по сотне оборотов. Наиболее быстрые называют миллисекундными, потому что их количество оборотов за секунду приравнивается к 700.
Число найденных пульсаров
Диаметр пульсаров во Вселенной достигает 20-24 км, а по массе вдвое больше солнечной. Чтобы вы понимали, кусочек такого объекта размером с сахарный куб будет весить 1 миллиард тонн. То есть, у вас в руке помещается нечто весом с Эверест! Правда есть еще более плотный объект – черная дыра. Наиболее массивная достигает 2.04 солнечной массы.
Пульсары обладают сильным магнитным полем, которое от 100 миллионов до 1 квадриллиона раз сильнее земного. Чтобы нейтронная звезда начала излучать свет подобный пульсару, она должна обладать правильным соотношением напряженности магнитного поля и частоты вращения. Случается так, что луч радиоволн может не пройти через поле зрения наземного телескопа и остаться невидимым.
Почему пульсары вращаются?
Медлительность для пульсара – одно вращение в секунду. Наиболее быстрые разгоняются до сотен оборотов в секунду и называются миллисекундными. Процесс вращения происходит, потому что звезды, из которых они образовались, также вращались. Но, чтобы добраться до такой скорости, нужен дополнительный источник.
Исследователи полагают, что миллисекундные пульсары сформировались при помощи воровства энергии у соседа. Можно заметить наличие чужого вещества, которое увеличивает скорость вращения. И это не очень хорошо для пострадавшего компаньона, который однажды может полностью поглотиться пульсаром. Такие системы называют черными вдовами (в честь опасного вида паука).
Художественная интерпретация связи между пульсаром и его спутником
Пульсары способны излучать свет в нескольких длинах волн (от радио до гамма-лучей). Но как они это делают? Ученые пока не могут найти точного ответа. Полагают, что за каждую длину волн отвечает отдельный механизм. Маякоподобные лучи состоят из радиоволн. Они отличаются яркостью и узостью и напоминают когерентный свет, где частицы формируют сфокусированный луч.
Чем быстрее вращение, тем слабее магнитное поле. Но скорости вращения достаточно, чтобы они излучали такие же яркие лучи, как и медленные.
Здесь отображены линии магнитного поля, вращающиеся вокруг пульсара. Фиолетовое свечение – гамма-лучи
Во время вращения, магнитное поле создает электрическое, которое способно привести заряженные частицы в подвижное состояние (электрический ток). Участок над поверхностью, где доминирует магнитное поле, называют магнитосферой. Здесь заряженные частицы ускоряются до невероятно высоких скоростей из-за сильного электрического поля. При каждом ускорении они излучают свет. Он отображается в оптическом и рентгеновском диапазоне.
А что с гамма-лучами? Исследования говорят о том, что их источник нужно искать в другом месте возле пульсара. И они будут напоминать веер.
Поиск пульсаров
Главным методом для поиска пульсаров в космосе остаются радиотелескопы. Они небольшие и слабые по сравнению с другими объектами, поэтому приходится сканировать все небо и постепенно в объектив попадают эти объекты. Большая часть была найдена при помощи Обсерватории Паркса в Австралии. Много новых данных можно будет получить с Антенной решетки в квадрантный километр (SKA), стартующий в 2018 году.
В 2008 году запустили телескоп GLAST, который нашел 2050 гамма-излучающих пульсаров, среди которых 93 были миллисекундными. Этот телескоп невероятно полезен, так как сканирует все небо, в то время как другие выделяют лишь небольшие участки вдоль плоскости Млечного Пути.
Небесная карта, отображающая гамма-пульсары, найденные телескопом GLAST
Поиск различных длин волн может сталкиваться с проблемами. Дело в том, что радиоволны невероятно мощные, но могут просто не попадать в объектив телескопа. А вот гамма-излучения распространяются по больше части неба, но уступают по яркости.
Сейчас ученые знают о существовании 2300 пульсаров, найденных по радиоволнам и 160 через гамма-лучи. Есть также 240 миллисекундных пульсаров, из которых 60 производят гамма-излучение.
Использование пульсаров
Пульсары – не просто удивительные космические объекты, но и полезные инструменты. Испускаемый свет может многое поведать о внутренних процессах. То есть, исследователи способны разобраться в физике нейтронных звезд. В этих объектах настолько высокое давление, что поведение материи отличается от привычного. Странное наполнение нейтронных звезд называют «ядерной пастой».
Пульсары приносят много пользы благодаря точности импульсов. Ученые знают конкретные объекты и воспринимают их как космические часы. Именно так начали появляться догадки о наличии других планет. Фактически, первая найденная экзопланета вращалась вокруг пульсара.
Не забывайте, что пульсары во время «мигания» продолжают двигаться, а значит, можно с их помощью измерять космические дистанции. Они также участвовали в проверке теории относительности Эйнштейна, вроде моментов с силой тяжести. Но регулярность пульсации может нарушаться гравитационными волнами. Это заметили в феврале 2016 года.
Снимок пульсара PSR B0531+21, сделанный рентгеновской обсерваторией Чандра. В центре вы видите белый пульсар и струи выбрасывающегося материала
Кладбища пульсаров
Постепенно все пульсары замедляются. Излучение питается от магнитного поля, создаваемого вращением. В итоге, он также теряет свою мощность и прекращает посылать лучи. Ученые вывели специальную черту, где еще можно обнаружить гамма-лучи перед радиоволнами. Как только пульсар опускается ниже, его списывают в кладбище пульсаров.
Если пульсар сформировался из остатков сверхновой, то обладает огромным энергетическим запасом и быстрой скоростью вращения. Среди примеров можно вспомнить молодой объект PSR B0531+21. В такой фазе он может пробыть несколько сотен тысяч лет, после чего начнет терять скорость. Пульсары среднего возраста составляют большую часть населения и производят только радиоволны.
Однако, пульсар может продлить себе жизнь, если рядом есть спутник. Тогда он будет вытягивать его материал и увеличивать скорость вращения. Такие изменения могут произойти в любое время, поэтому пульсар способен возрождаться. Подобный контакт называют маломассивной рентгеновской двойной системой. Наиболее старые пульсары – миллисекундные. Некоторые достигают возраста в миллиарды лет.
Нейтронные звезды
Нейтронные звезды – довольно загадочные объекты, превышающие солнечную массу в 1.4 раза. Они рождаются после взрыва более крупных звезд. Давайте узнаем эти формирования поближе.
Когда взрывается звезда, массивнее Солнца в 4-8 раз, остается ядро с большой плотностью, продолжающее разрушаться. Гравитация так сильно давит на материал, что заставляет протоны и электроны сливаться, чтобы предстать в виде нейтронов. Так и рождается нейтронная звезда высокой плотности.
Нейтронные звезды появляются после смерти гигантов в виде сверхновых
Эти массивные объекты способны достигать в диаметре всего 20 км. Чтобы вы осознали плотность, всего одна ложечка материала нейтронной звезды будет весить миллиард тонн. Гравитация на таком объекте в 2 миллиарда раз сильнее земной, а мощности хватает для гравитационного линзирования, позволяющего ученым рассмотреть заднюю часть звезды.
Внутреннее строение пульсара
Толчок от взрыва оставляет импульс, который заставляет нейтронную звезду вращаться, достигая нескольких оборотов в секунду. Хотя они могут разгоняться до 43000 раз в минуту.
Когда нейтронная звезда выступает частью двойной системы, где взорвалась сверхновая, картина выглядит еще более впечатляющей. Если вторая звезда уступала по массивности Солнцу, то тянет массу компаньона в «лепесток Роша». Это шарообразное облако материла, совершающее обороты вокруг нейтронной звезды. Если же спутник был больше солнечной массы в 10 раз, то передача массы также настраивается, но не такая устойчивая. Материал течет вдоль магнитных полюсов, нагревается и создаются рентгеновские пульсации.
К 2010 году было найдено 1800 пульсаров при помощи радиообнаружения и 70 через гамма-лучи. У некоторых экземпляров даже замечали планеты.
Типы нейтронных звезд
У некоторых представителей нейтронных звезд струи материала текут практически со скоростью света. Когда они пролетают мимо нас, то вспыхивают как свет маяка. Из-за этого их прозвали пульсарами.
Когда рентгеновские пульсары отбирают материал у более массивных соседей, то он контактирует с магнитным полем и создает мощные лучи, наблюдаемые в радио, рентгеновском, гамма и оптическом спектре. Так как источник располагается в компаньоне, то их именуют пульсарами с аккрецией.
Строение магнитного поля нейтронной звезды
Вращающиеся пульсары в небе подчиняются вращению звезд, потому что высокоэнергетические электроны взаимодействуют с магнитным полем пульсара над полюсами. Так как вещество внутри магнитосферы пульсара ускоряется, это заставляет его вырабатывать гамма-лучи. Отдача энергии замедляет вращение.
Магнитные поля магнетар в 1000 раз сильнее, чем у нейтронных звезд. Из-за чего заставляют вращаться звезду намного дольше.
uCrazy.ru
Навигация
ЛУЧШЕЕ ЗА НЕДЕЛЮ
ОПРОС
СЕЙЧАС НА САЙТЕ
КАЛЕНДАРЬ
Пн | Вт | Ср | Чт | Пт | Сб | Вс |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 |