что такое прямое горение

Горение

что такое прямое горение. 150px Streichholz. что такое прямое горение фото. что такое прямое горение-150px Streichholz. картинка что такое прямое горение. картинка 150px Streichholz. Горе́ние — сложный физико-химический процесс превращения компонентов горючей смеси в продукты сгорания с выделением теплового излучения, света и лучистой энергии. Описать природу горения можно как бурно идущее окисление.

что такое прямое горение. magnify clip. что такое прямое горение фото. что такое прямое горение-magnify clip. картинка что такое прямое горение. картинка magnify clip. Горе́ние — сложный физико-химический процесс превращения компонентов горючей смеси в продукты сгорания с выделением теплового излучения, света и лучистой энергии. Описать природу горения можно как бурно идущее окисление.

что такое прямое горение. 150px Flametest Na.swn. что такое прямое горение фото. что такое прямое горение-150px Flametest Na.swn. картинка что такое прямое горение. картинка 150px Flametest Na.swn. Горе́ние — сложный физико-химический процесс превращения компонентов горючей смеси в продукты сгорания с выделением теплового излучения, света и лучистой энергии. Описать природу горения можно как бурно идущее окисление.

что такое прямое горение. magnify clip. что такое прямое горение фото. что такое прямое горение-magnify clip. картинка что такое прямое горение. картинка magnify clip. Горе́ние — сложный физико-химический процесс превращения компонентов горючей смеси в продукты сгорания с выделением теплового излучения, света и лучистой энергии. Описать природу горения можно как бурно идущее окисление.

Горе́ние — сложный физико-химический процесс превращения компонентов горючей смеси в продукты сгорания с выделением теплового излучения, света и лучистой энергии. Описать природу горения можно как бурно идущее окисление.

Дозвуковое горение (дефлаграция) в отличие от взрыва и детонации протекает с низкими скоростями и не связано с образованием ударной волны. К дозвуковому горению относят нормальное ламинарное и турбулентное распространения пламени, к сверхзвуковому — детонацию.

Горение подразделяется на тепловое и цепное. В основе теплового горения лежит химическая реакция, способная протекать с прогрессирующим самоускорением вследствие накопления выделяющегося тепла. Цепное горение встречается в случаях некоторых газофазных реакций при низких давлениях.

Условия термического самоускорения могут быть обеспечены для всех реакций с достаточно большими тепловыми эффектами и энергиями активации.
Горение может начаться самопроизвольно в результате самовоспламенения либо быть инициированным зажиганием. При фиксированных внешних условиях непрерывное горение может протекать в стационарном режиме, когда основные характеристики процесса — скорость реакции, мощность тепловыделения, температура и состав продуктов — не изменяются во времени, либо в периодическом режиме, когда эти характеристики колеблются около своих средних значений. Вследствие сильной нелинейной зависимости скорости реакции от температуры, горение отличается высокой чувствительностью к внешним условиям. Это же свойство горения обусловливает существование нескольких стационарных режимов при одних и тех же условиях (гистерезисный эффект).

Содержание

Теория горения

При адиабатическом сжигании горючей смеси могут быть рассчитаны количество выделившегося при горении тепла, температура ТГ, которая была бы достигнута при полном сгорании (адиабатическая температура горения) и состав продуктов, если известны состав исходной смеси и термодинамические функции исходной смеси и продуктов. Если состав продуктов заранее известен, ТГ может быть рассчитана из условия равенства внутренней энергии системы при постоянном объёме или её энтальпии при постоянном давлении в исходном и конечном состояниях с помощью соотношения: ТГ = Т0 + Qr/C, где Т0 — начальная температура смеси, С — средняя в интервале температур от Т0 до ТГ удельная теплоёмкость исходной смеси (с учетом её изменения при возможных фазовых переходах), Qr — удельная теплота сгорания смеси при температуре ТГ. При относительном содержании а0 в смеси компонентов, полностью расходуемых в реакции, QГ = Q*а0 где Q — тепловой эффект реакции горения. Значение ТГ при постоянном объёме больше, чем при постоянном давлении, поскольку в последнем случае часть внутренней энергии системы расходуется на работу расширения. На практике условия адиабатичекого горения обеспечиваются в тех случаях, когда реакция успевает завершиться прежде, чем станет существенным теплообмен между реакционным объёмом и окружающей средой, например в камерах сгорания крупных реактивных двигателей, в больших реакторах, при быстро распространяющихся волнах горения.
Термодинамический расчёт даёт лишь частичную информацию о процессе — равновесный состав и температуру продуктов. Полное описание горения, включающее также определение скорости процесса и критических условий при наличии тепло- и массообмена с окружающей средой, можно провести только в рамках макрокинетического подхода, рассматривающего химическую реакцию во взаимосвязи с процессами переноса энергии и вещества.
В случае заранее перемешанной смеси горючего и окислителя реакция горения может происходить во всём пространстве, занятом горючей смесью (объёмное горение), или в сравнительно узком слое, разделяющем исходную смесь и продукты и распространяющемся по горючей смеси в виде так называемой волны горения. В неперемешанных системах возможно диффузионное горение, при котором реакция локализуется в относительно тонкой зоне, отделяющей горючее от окислителя, и определяется скоростью диффузии реагентов в эту зону.

Описание процессов горения

Важность процесса горения в технических устройствах способствовала созданию различных моделей, позволяющих с необходимой точностью его описывать. Так называемое нулевое приближение включает описание химических реакций, изменение температуры, давления и состава реагентов во времени без изменения их массы. Оно соответствует процессам происходящим в закрытом объёме, в который была помещена горючая смесь и нагрета выше температуры воспламенения. Одно-, двух- и трёхмерные модели уже включает в себя перемещение реагентов в пространстве. Количество измерений соответствует количеству пространственных координат в модели. Режим горения бывает как и газодинамическое течение: ламинарным или турбулентным. Одномерное описанное ламинарного горения позволяет получить аналитически важные выводы о фронте горения, которые затем используются в более сложных турбулентных моделях.

Объёмное горение

Объемное горение происходит, например, в теплоизолированном реакторе идеального перемешивания, в который поступает при температуре Т0 исходная смесь с относительным содержанием горючего а0; при другой температуре горения реактор покидает смесь с иным относительным содержанием горючего а. При полном расходе G через реактор условия баланса энтальпии смеси и содержания горючего при стационарном режиме горения могут быть записаны уравнениями:

где w(а, Т) — скорость реакции горения, V — объём реактора. Используя выражение для термодинамической температуры ТГ, можно из (1) получить:

и записать (2) в виде:

где qT = GC(T — Т0) — скорость отвода тепла из реактора с продуктами сгорания, q+T = Qw(a, Т)V — скорость выделения тепла при реакции. Для реакции n-ного порядка с энергией активации:

Диффузионное горение

Характеризуется раздельным подачей в зону горения горючего и окислителя. Перемешивание компонентов происходит в зоне горения. Пример: горение водорода и кислорода в ракетном двигателе, горение газа в бытовой газовой плите.

Горение предварительно смешанной среды

Как следует из названия, горение происходит в смеси, в которой одновременно присутствуют горючее и окислитель. Пример: горение в цилиндре двигателя внутреннего сгорания бензиново-воздушной смеси после инициализации процесса свечой зажигания.

Особенности горения в различных средах

что такое прямое горение. 40px Planned section.svg. что такое прямое горение фото. что такое прямое горение-40px Planned section.svg. картинка что такое прямое горение. картинка 40px Planned section.svg. Горе́ние — сложный физико-химический процесс превращения компонентов горючей смеси в продукты сгорания с выделением теплового излучения, света и лучистой энергии. Описать природу горения можно как бурно идущее окисление.

Беспламенное горение

В отличие от обычного горения, когда наблюдаются зоны окислительного пламени и восстановительного пламени, возможно создание условий для беспламенного горения. Примером может служить каталитическое окисление органических веществ на поверхности подходящего катализатора, например, окисление этанола на платиновой черни.

Твердофазное горение

Это автоволновые экзотермические процессы в смесях неорганических и органических порошков, не сопровождающиеся заметным газовыделением, и приводящие к получению исключительно конденсированных продуктов. В качестве промежуточных веществ, обеспечивающих массо-перенос, образуются газовые и жидкие фазы, не покидающие, однако, горящую систему. Известны примеры реагирующих порошков, в которых образование таких фаз не доказано (тантал-углерод).

Как синонимы используются тривиальные термины «безгазовое горение» и «твердопламенное горение».

Примером таких процессов служит СВС (самораспространяющийся высокотемпературный синтез) в неорганических и органических смесях.

Тление

Вид горения, при котором пламя не образуется, а зона горения медленно распространяется по материалу. Тление обычно наблюдается у пористых или волокнистых материалов с высоким содержанием воздуха или пропитанных окислителями.

что такое прямое горение. 48px No iwiki template.svg. что такое прямое горение фото. что такое прямое горение-48px No iwiki template.svg. картинка что такое прямое горение. картинка 48px No iwiki template.svg. Горе́ние — сложный физико-химический процесс превращения компонентов горючей смеси в продукты сгорания с выделением теплового излучения, света и лучистой энергии. Описать природу горения можно как бурно идущее окисление.

Автогенное горение

Самоподдерживающиеся горение. Термин используется в технологиях сжигания отходов. Возможность автогенного (самоподдерживающегося) горения отходов определяется предельным содержанием балластирующих компонентов: влаги и золы. На основе многолетних исследований шведский учёный Таннер предложил для определения границ автогенного горения использовать треугольник-схему с предельными значениями: горючих более 25 %, влаги менее 50 %, золы менее 60 %.

Источник

Лекция «Общие понятия о горении и пожаровзрывоопасных свойствах веществ и материалов, пожарной опасности зданий»

СОДЕРЖАНИЕ

ВНИМАНИЕ! При изучение данной темы следует учитывать, что деятельность по обеспечению пожарной безопасности детально регламентируется действующим законодательством, которое в рамках проводимых реформ активно изменяется, поэтому рекомендуется положения нормативных правовых актов и нормативных документов в области пожарной безопасности уточнять в актуальных редакциях.

1. ГОРЕНИЕ ВЕЩЕСТВ И МАТЕРИАЛОВ. ПОЖАР И ЕГО РАЗВИТИЕ

1.1. ОСНОВНЫЕ ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

ПОЖАР – неконтролируемое горение, приводящее к ущербу.

ГОРЮЧЕСТЬ – способность веществ и материалов к развитию горения.

Все вещества и материалы обладают определенной горючестью, т.е. способностью к развитию горения.

ГОРЕНИЕ – экзотермическая реакция окисления вещества, сопровождающаяся по крайней мере одним из трех факторов: пламенем, свечением, выделением дыма.

Из данного определения вытекает, что горение – это любая реакция окисления вещества, приводящая к выделению тепла. При этом реакция должна сопровождаться пламенем, свечением или дымом.

ПЛАМЕННОЕ ГОРЕНИЕ – горение веществ и материалов, сопровождающееся пламенем.

ТЛЕНИЕ – беспламенное горение материала.

ДЫМ – аэрозоль, образуемый жидкими и (или) твердыми продуктами неполного сгорания материалов.

ВОЗГОРАЕМОСТЬ – способность веществ и материалов к возгоранию.

ВОЗГОРАНИЕ – начало горения под воздействием источника зажигания.

То есть, начало выделения тепла в результате реакции окисления, сопровож­дающееся свечением, пламенем или дымом.

САМОВОЗГОРАНИЕ – возгорание в результате самоинициируемых экзо­термических процессов.

Самовозгорание сопровождается пламенем, свечением или дымом.

ВОСПЛАМЕНЯЕМОСТЬ – способность веществ и материалов к воспламенению.

ВОСПЛАМЕНЕНИЕ – начало пламенного горения под воздействием источника зажигания.

В отличие от возгорания, воспламенение сопровождается только пламенным горением.

САМОВОСПЛАМЕНЕНИЕ – самовозгорание, сопровождающееся пламенем.

Самовоспламенение сопровождается только пламенем, в отличие от само­возгорания.

ОПАСНЫЙ ФАКТОР ПОЖАРА – фактор пожара, воздействие которого на людей и (или) материальные ценности может привести к ущербу.

Опасными факторами, воздействующими на людей и материальные ости, являются:

— повышенная температура окружающей среды;

— токсичные продукты горения и термического разложения;

— пониженная концентрация кислорода.

Предельные значения опасных факторов пожара:

Температура среды – 70 °С

Тепловое излучение – 500 Вт/м 2

Содержание оксида углерода – 0,1% (об.)

Содержание диоксида углерода – 6% (об.)

Снижение видимости менее 20 м

Содержание кислорода менее 17% (об.)

К вторичным проявлениям опасных факторов пожара, воздействуют на людей и материальные ценности, относятся:

— осколки, части разрушающихся аппаратов, агрегатов, установок, конструкций;

— радиоактивные и токсичные вещества и материалы, вышедшие из разрушенных: аппаратов и установок;

— электрический ток, возникший в результате выноса высокого напряжения токопроводящие части конструкций, аппаратов, агрегатов;

— опасные факторы взрыва по ГОСТ 12.1.010, происшедшего вследствие пожара.

1.2 ОБЩИЕ СВЕДЕНИЯ О ГОРЕНИИ

1.2.1 ДИФФУЗИОННОЕ И КИНЕТИЧЕСКОЕ ГОРЕНИЕ

Все горючие (сгораемые) вещества содержат углерод и водород, – основные компоненты газовоздушной смеси, участвующие в реакции горения. Температура воспламенения горючих веществ и материалов различна и не превышает для большинства 300°С.

Физико-химические основы горения заключаются в термическом разложении вещества или материала до углеводородных паров и газов, кото­рые под воздействием высоких температур вступают в химическое воздействие с окислителем (кислородом воздуха), превращаясь в процессе сгорания в углекислый газ (двуокись углерода), угарный газ (окись углерода), сажу (углерод) и воду, и при этом выделяется тепло и световое излучение.

Воспламенение представляет собой процесс распространение пламе­ни по газопаровоздушной смеси. При скорости истечения горючих паров и газов с поверхности вещества равной скорости распространения пламени по ним наблюдается устойчивое пламенное горение. Если же скорость пламени больше скорости истечения паров и газов, то происходит выгорание газопаровоздушной смеси и самозатухание пламени, т.е. вспышка.

B зависимости от скорости истечения газов и скорости распространения пламени по ним можно наблюдать:

— горение на поверхности материала, когда скорость выделения горючей смеси с поверхности материала равна скорости распространения огня по ней;

— горение с отрывом от поверхности материала, когда скорость выделения горючей смеси больше скорости распространения пламени по ней.

Горение газопаровоздушной смеси подразделяется на диффузионное или кинетическое. Основным отличием является содержание или отсутствие окислителя (кислорода воздуха) непосредственно в горючей паровоздушной смеси.

Кинетическое горение представляет собой горение предварительно перемешанных горючих газов и окислителя (кислорода воздуха). На пожарах этот вид горения встречается крайне редко. Однако он часто встречается в технологических процессах: в газовой сварке, резке и т.п.

При диффузионном горении окислитель поступает в зону горения извне. Поступает он, как правило, снизу пламени вследствие разрежения, которое создается у его основания. В верхней части пламени, выделяющее в процессе горения тепло, создает давление. Основная реакция горения окисления происходит на границе пламени, поскольку истекающие с поверхности вещества газовые смеси препятствуют проникновению окислителя вглубь пламени (вытесняют воздух). Большая часть горючей смеси в центре пламени, не вступившая в реакцию окисления с кислородом, предает собой продукты неполного горения (СО, СН4, углерод и пр.).

Диффузионное горение, в свою очередь, бывает ламинарным и турбулентным (неравномерным во времени и пространстве). Ламинарное горение характерно при равенстве скоростей истечения горючей смеси с поверхности материала и скорости распространения пламени по ней. Турбулентное горение наступает, когда скорость выхода горючей смеси значительно превышает скорость распространения пламени. В этом случае граница пламени становится неустойчивой вследствие большой диффузии воздуха в зону горения. Неустойчивость вначале возникает вершины пламени, а затем перемещается к основанию. Такое горение встречается на пожарах при объемном его развитии.

Горение веществ и материалов возможно только при определенном качестве кислорода в воздухе. Содержание кислорода, при котором исключается возможность горения различных веществ и материалов, устанавливается опытным путем. Так, для картона и хлопка самозатухание наступает при 14% (об.) кислорода, а полиэфирной ваты – при 16% (об.)

Исключение окислителя (кислорода воздуха) является одной из мер пожарной профилактики. Поэтому хранение легковоспламеняющихся и горючих жидкостей, карбида кальция, щелочных металлов, фосфора должно осуществляться в плотно закрытой таре.

1.2.2 ИСТОЧНИКИ ЗАЖИГАНИЯ

Необходимым условием воспламенения горючей смеси являются источники зажигания. Источники зажигания подразделяются на открытый огонь, тепло нагревательных элементов и приборов, электрическую энергию, энергию механических искр, разрядов статического электричества и молнии, энергию процессов саморазогревания веществ и материалов (самовозгорание) и т.п. Выявлению имеющихся на производстве источников зажигания должно быть уделено особое внимание.

Характерные параметры источников зажигания принимаются по:

Температура канала молнии – 30000°С при силе тока 200000 А и времени действия около 100 мкс. Энергия искрового разряда вторичного воздействия молнии превышает 250 мДж и достаточна для воспламенения горючих материалов с минимальной энергией зажигания до 0,25 Дж. Энергия искровых разрядов при заносе высокого потенциала в здание по металлическим коммуникациям достигает значений 100 Дж и более, что достаточно для воспламенения всех горючих материалов.

Поливинилхлоридная изоляция электрического кабеля (провода) воспла­меняется при кратности тока короткого замыкания более 2,5.

Температура сварочных частиц и никелевых частиц ламп накаливания достигает 2100°С. Температура капель при резке металла 1500°С. Температура дуга при сварке и резке достигает 4000°С.

Зона разлета частиц при коротком замыкании при высоте расположения провода 10 м колеблется от 5 (вероятность попадания 92%) до 9 (вероятность попадания 6%) м; при расположении провода на высоте 3 м – от 4 (96%) до 8 м (1%); при расположении на высоте 1 м – от 3 (99%) до 6 м (6%).

Искры статического электричества, образующегося при работе людей с движущимися диэлектрическими материалами, достигают величин от 2,5 до 7,5 мДж.

Температура пламени (тления) и время горения (тления), «С (мин), некоторых малокалорийных источников тепла: тлеющая папироса – 320-410 (2-2,5); тлеющая сигарета – 420-460 (26-30); горящая спичка – 620-640 (0,33).

Для искр печных труб, котельных, труб паровозов и тепловозов, а также других машин, костров установлено, что искра диаметром 2 мм пожароопасна, если имеет температуру около 1000°С, диаметром 3 мм – 800°С, диаметром 5 мм – 600°С.

1.2.3 САМОВОЗГОРАНИЕ

Самовозгорание присуще многим горючим веществам и материалам. Это отличительная особенность данной группы материалов.

Самовозгорание бывает следующих видов: тепловое, химическое, микробиологическое.

Тепловое самовозгорание выражается в аккумуляции материалом тепла, в процессе которого происходит самонагревание материала. Температура самонагревания вещества или материала является показателем его пожарной опасности. Для большинства горючих материалов этот показатель лежит в пределах от 80 до 150°С: бумага – 100°С; войлок строительный – 80°С; дерматин – 40°С; древесина: сосновая – 80, дубовая – 100, еловая – 120°С; хлопок-сырец — 60°С.

Продолжительное тление до начала пламенного горения является отличительной характеристикой процессов теплового самовозгорания. Данные процессы обнаруживаются по длительному и устойчивому запаху тлеющего материала.

Микробиологическое самовозгорание связано с выделением тепловой энергии микроорганизмами в процессе жизнедеятельности в питательной для них среде (сено, торф, древесные опилки и т.п.).

На практике чаще всего проявляются комбинированные процессы самовозгорания: тепловые и химические.

2. ПОКАЗАТЕЛИ ПОЖАРОВЗРЫВООПАСНОСТИ

Изучение пожаровзрывоопасных свойств веществ и материалов, обращающихся в процессе производства, является одной из основных задач пожарной профилактики, направленной на исключение горючей среды из системы пожара.

В соответствии с ГОСТ 12.1.044 по агрегатному состоянию вещества и материалы подразделяются на:

ГАЗЫ – вещества, давление насыщенных паров которых при температуре 25°С и давлении 101,3 кПа (1 атм) превышает 101,3 кПа (1 атм).

ЖИДКОСТИ – то же, но давлении меньше 101,3 кПа (1 атм). К жидкос­тям относят также твердые плавящиеся вещества, температура плавления или ка-плепадения которых меньше 50°С.

ТВЕРДЫЕ – индивидуальные вещества и их смеси с температурой плавления или каплепадения выше 50°С (например, вазилин — 54°С), а также вещества, не имеющие температуру плавления (например, древесина, ткани и т.п.).

ПЫЛИ – диспергированные (измельченные) твердые вещества и материалы с размером частиц менее 850 мкм (0,85 мм).

Номенклатура показателей и их применяемость для характеристики пожаровзрывоопасности веществ и материалов приведены в табл.1.

Значения данных показателей должны включаться в стандарты и технические условия на вещества, а также указываться в паспортах изделий.

Источник

ГОРЕНИЕ

ГОРЕНИЕ — совокупность одновременно протекающих физических процессов (плавление, испарение, ионизация) и химических реакций окисления горючего вещества и материала, сопровождающееся, как правило, световым и тепловым излучением и выделением дыма (см. ДЫМ ) [1].

ГОРЕНИЕ — сложный физико-химический процесс взаимодействия горючего вещества и окислителя, характеризующийся самоускоряющимися превращениями исходных компонентов реакционноспособной смеси в продукты горения и сопровождающийся выделением большого количества тепла, дыма и света. Выделение тепла происходит непосредственно в зоне химической реакции превращения исходных компонентов горючей смеси в продукты горения [2].

что такое прямое горение. %D0%B3%D0%BE%D1%80%D0%B5%D0%BD%D0%B8%D0%B5. что такое прямое горение фото. что такое прямое горение-%D0%B3%D0%BE%D1%80%D0%B5%D0%BD%D0%B8%D0%B5. картинка что такое прямое горение. картинка %D0%B3%D0%BE%D1%80%D0%B5%D0%BD%D0%B8%D0%B5. Горе́ние — сложный физико-химический процесс превращения компонентов горючей смеси в продукты сгорания с выделением теплового излучения, света и лучистой энергии. Описать природу горения можно как бурно идущее окисление.

Зона протекания химической реакции обычно локализована в сравнительно небольшой части пространства. Она может быть неподвижна, а может перемещаться в пространстве в зависимости от условий протекания процесса горения.

Горение происходит в два этапа:

1. Создание молекулярного контакта между молекулами горючего и окислителя (физический процесс).

2. Взаимодействие молекул с образованием продуктов реакции (химический процесс).

При этом второй этап наступает только при выполнении некоторых дополнительных условий. Молекулы должны находиться в особом энергетически или химически возбужденном состоянии и определенном количественном соотношении.

Горение является неравновесным процессом. При горении обязательно возникают неоднородности в составе молекул, их концентрации, неравномерности поля температур и скоростей потоков. В основе процесса горения лежат химические реакции окисления, то есть соединения исходных горючих веществ с кислородом.

При горении на пожарах (см. ПОЖАР) в качестве окислителя чаще всего выступает кислород воздуха, окружающий зону протекания химических реакций. В этом случае интенсивность горения определяется не скоростью протекания самих химических реакций, а скоростью поступления кислорода из окружающего пространства в зону горения, то есть непосредственно в зону протекания химических реакций.

Скорость протекания химических реакций горения значительно превосходит скорость таких физических процессов, как диффузия недостающих компонентов в зону реакции и передача тепла из зоны горения горючим веществам для подготовки их к химическому взаимодействию. Эти два процесса — диффузия и теплопередача — являются лимитирующими. Они определяют суммарную скорость горения, а, следовательно, и интенсивность процесса тепловыделения и образования продуктов горения. Поэтому считают, что процессы горения на пожаре развиваются в чисто диффузионной области и рассматривать их следует лишь с физической стороны.

ГЕТЕРОГЕННОЕ ГОРЕНИЕгорение материалов в конденсированном (твердом или жидком) состоянии, когда реакции, определяющие развитие процесса горения, протекают в газовой фазе, а горючие компоненты поступают в эту фазу в результате испарения и разложения веществ и материалов.

ДИФФУЗИОННОЕ ГОРЕНИЕ — горение неперемешанных газо-, паровоздушных смесей с воздухом. Оно свойственно конденсированным горючим веществам — жидкостям и твердым материалам. Для диффузионного горения характерно наличие светящегося пламени. В зависимости от диаметра трубопровода, а также давления, при котором происходит истечение газов, диффузионное горение может быть ламинарным и турбулентным.

ЛАМИНАРНОЕ ГОРЕНИЕ — вид горения, характеризуемый газодинамически невозмущенным фронтом пламени, а также скоростью распространения пламени, не превышающей нескольких метров в секунду. Ламинарное горение зависит от теплообмена и других макрокинетических факторов. Процесс ламинарного горения заключается в передаче в свежую горючую смесь тепла и активных частиц, обеспечивающих распространение пламени. Скорость распространения пламени относительно свежей смеси, измеренная по нормали к фронту, называется нормальной скоростью распространения пламени [3].

ТУРБУЛЕНТНОЕ ГОРЕНИЕ — горение в турбулентных потоках смеси горючего с воздухом (кислородом), характеризующееся неупорядоченным, пульсирующим движением малых объемов таких смесей. Смешение компонентов при турбулентном горении происходит более интенсивно, чем при ламинарном горении, вследствие чего скорость турбулентного горения превышает скорость ламинарного горения.

Турбулентное горение, то есть горение смеси, течение которой является турбулентным, — это наиболее часто встречающийся в практических устройствах режим горения и одновременно наиболее сложный для изучения.

Турбулентное горение может быть вызвано автотурбулизацией пламени, заключающейся в том, что искривления фронта пламени самопроизвольно возрастают, плоская зона нормального горения перестает существовать, уступая место турбулентному пламени.

Различают турбулентнодиффузионное горение и турбулентное горение однородной горючей смеси. Первое — реализуется при сжигании предварительно не перемешанных газов в турбулентном потоке и широко используется в различных технически устройствах (промышленных печах, горелках, камерах сгорания газотурбинных двигателей и т. д.). Второе — реализуется при сжигании предварительно перемешанных газов или газовзвесей (смесей горючей пыли с газообразным окислителем) в турбулентном потоке и встречается в ряде технических устройств (двигателях внутреннего сгорания, форсажных камерах газотурбинных двигателей и т. д.) [4].

ВРЕМЯ ГОРЕНИЯ — длительность протекания процесса горения с момента зажигания горючего вещества (материала) до окончания пламенного горения или тления. Время горения регистрируется при испытаниях электрических изделий на пожарную опасность, служит в качестве показателя при определении предела огнестойкости строительных конструкций, а также критерием оценки допустимости изготовления различных изделий и их эксплуатации [5].

ВРЕМЯ ВЫГОРАНИЯ — время, в течение которого прекращается горение вещества (материала) в заданных условиях. Время выгорания зависит от:

— физико-химических свойств (теплоты сгорания, давления насыщенных паров, агрегатного состояния и пр.) вещества (материала) и его горючести;

— вида горения (гомогенного или гетерогенного) и скорости распространения пламени [5].

1. И.Н. Зверев, Н. Н. Смирнов. Газодинамика горения. — М.: Изд-во Моск. ун-та., 1987. — С. 165. — 307 с.

2. Теория горения и взрыва: конспект лекций / сост. П.П. Воднев.Ульяновск: УВАУ ГА(И), 2010.180 с.

3. Теория горения и взрыва / Под ред. Ю.В. Фролова. М., 1981 г.

4. Баратов А.Н. ГорениеПожарВзрывБезопасность.М., 2003 г.

5. Кузнецов В.Р, Сабельников В.А. Турбулентность и горение.М., 1986 г.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *