что такое прямая линия в геометрии
Прямая, их виды и свойства
Прямая, их виды и свойства.
Прямая линия в евклидовой геометрии – это примитивный объект бесконечной длины, не имеющий кривизны и ширины и, который равномерно лежит на точках, составляющих его.
Прямая (понятие, определение):
Прямая линия в евклидовой геометрии – это примитивный объект бесконечной длины, не имеющий кривизны и ширины и, который равномерно лежит на точках, составляющих его.
Когда говорят о прямой линии, последнее слово в словосочетании принято опускать.
При изображении прямой линии на плоскости, видно только ее часть, подразумевается, что она продолжается в обе стороны бесконечно.
Прямую обозначают одной маленькой буквой латинского алфавита или двумя большими буквами, обозначающими точки на прямой.
Рис. 2. Обозначение прямой
Виды прямых линий:
Параллельные прямые – прямые, которые не имеют общих точек и не пересекаются между собой;
Рис. 3. Параллельные прямые
Пересекающиеся прямые – прямые, которые имеют одну общую точку;
Рис. 4. Пересекающиеся прямые
Рис. 5. Перпендикулярные прямые
Касательная – прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка.
Виды прямых, взаимодействующих с фигурами:
Прямая Симсона – прямая, проходящая через основания перпендикуляров на стороны треугольника из точки на его описанной окружности.
Прямая Гаусса – прямая, соединяющая середины диагоналей четырёхугольника.
Свойства прямой в евклидовой геометрии:
1. Через одну точку можно провести бесконечное множество прямых.
2. Через произвольные две точки можно провести единственную прямую.
3. Две прямые, лежащие на одной плоскости, или пересекаются друг с другом в одной точке, или являются параллельными.
4. Есть точки, лежащие на прямой, и не лежащие на ней.
5. Из трёх разных точек, лежащих на одной прямой, только одна может лежать между двумя другими точками.
Примечание: © Фото https://www.pexels.com, https://pixabay.com
Мировая экономика
Справочники
Востребованные технологии
Поиск технологий
О чём данный сайт?
Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.
Он включает в себя:
– экономику Второй индустриализации России,
– теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России,
– организационный механизм осуществления Второй индустриализации России,
– справочник прорывных технологий.
Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!
Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.
О Второй индустриализации
Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.
Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.
Вторая индустриализация России есть совокупность научно-технических и иных инновационных идей, проектов и разработок, имеющих возможность быть широко реализованными в практике хозяйственной деятельности в короткие сроки (3-5 лет), которые обеспечат качественно новое прогрессивное развитие общества в предстоящие 50-75 лет.
Та из стран, которая первой осуществит этот комплексный прорыв – Россия, станет лидером в мировом сообществе и останется недосягаемой для других стран на века.
Плоскость, прямая линия, луч
Плоскость в математике можно сравнить с другими плоскостями, которые окружают нас в повседневной жизни: школьная доска, лист бумаги, экран планшета или смартфона и т.д. На них мы можем легко обозначить точки и линии, которые мы изучали на предыдущем уроке. На школьной доске мы это делаем мелом или фломастером, на листе бумаги можем нарисовать их ручкой, карандашом, фломастером; когда мы прокручиваем окно сайта или приложения на смартфоне, мы проводим на экране пальцем линию, когда переходим по ссылкам – ставим на его плоскости точку.
Но эти примеры плоскостей из жизни имеют свои размеры и границы, они конечные, их можно измерять.
Плоскость – это воображаемая абсолютно ровная и неизменяемая поверхность, которая не имеет толщины, но обладает бесконечными длиной и шириной.
Плоскость нельзя измерять, потому что она бесконечная.
Плоскость нельзя согнуть, в каком бы положении она ни находилась.
Все объекты и фигуры, которые изучаются в курсе математики 5 класса, находятся на плоскости.
Прямая линия
Прямая линия – абсолютно ровная линия, которая длится бесконечно в обе стороны, и на всем ее протяжении не изгибается и не преломляется.
Обозначение прямой
Например, на рисунке 1 обозначены такие прямые:
Рис. 1 Обозначение прямой линии
Рис. 2 Обозначение прямой с несколькими точками
Некоторые свойства прямой
Две точки, лежащие на одной прямой, создают отрезок этой прямой.
Через две любые точки на плоскости можно провести единственную прямую.
Рис. 3 Отрезок на прямой
Две разные прямые могут пересекаться или не пересекаться.
Две прямые пересекаются в том случае, если у них есть общая точка.
Рис. 5 Пересечение прямых
Более подробно об этих и других свойствах прямой написано в уроке геометрии 7 класса.
Луч – это часть прямой, которая начинается в определенной точке и длится бесконечно в одну сторону.
Рис. 6 Деление прямой линии точкой
У луча есть начало, но нет конца. От прямой луч отличается тем, что луч бесконечно продолжается только в одну сторону.
Свое название этот математический объект получил по аналогии с лучом света, который имеет начало (источник света), но определенного конца у него нет.
Обозначение луча
Луч, как и прямую, обозначают двумя способами.
Рис. 7 Обозначение луча
На рисунке 2 приведены примеры обозначения луча:
Луч имеет второе название – полупрямая.
Рис. 8 Дополнительные друг другу и совпадающие лучи
На рисунке 8 видно, что:
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 4.6 / 5. Количество оценок: 20
Прямая линия. Понятие прямой, ее свойства.
Наглядно прямую линию может продемонстрировать туго натянутый шнур, кромка стола, край листа бумаги, место, соединения двух стен комнаты, луч света. При начертании прямых линий на практике применяют линейку.
Прямой линии присущи такие характерные особенности:
1.У прямой линии нет ни начала ни конца, то есть она бесконечна. Существует возможность начертить только ее часть.
2.Через две произвольные точки можно провести прямую линию, и притом только одну.
3. Через произвольную точку можно провести не ограниченное количество прямых на плоскости.
4.Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или они параллельны.
Для обозначения прямой линии используют или одну малую букву латинского алфавита, или две большие буквы, написанные в двух различных местах этой прямой.
Если на прямой линии указать точку, то в результате получим два луча:
Лучом называют часть прямой линии, ограниченную с одной стороны. Для обозначения луча применяют или одну малую букву латинского алфавита, или две большие буквы, из которых одна обозначается в начале луча.
Часть прямой, ограниченная с обеих сторон, именуют ее отрезком. Отрезок, как и прямая линия, обозначается или одной буквой, или двумя. В последнем случае эти буквы указывают концы отрезка.
Линию, сформированную несколькими отрезками, не лежащими на одной прямой, принято называть ломаной. Когда концы ломаной совпадают, то такая ломаная именуется замкнутой.
Прямая линия
Прямая линия — это линия, не имеющая неровностей, скруглений и углов. Прямая линия бесконечна, она не имеет ни начала, ни конца. В геометрии прямая линия называется просто прямой.
Для изображения прямой на бумаге используется линейка. Чтобы начертить прямую, надо провести черту вдоль края линейки:
Так как прямая бесконечна, то какой бы длины не была проведена черта, она будет изображать только часть прямой.
Обозначение прямой
Прямая обозначается одной маленькой латинской буквой, например прямая a, или двумя большими латинскими буквами, поставленными при любых двух точках, лежащих на этой прямой, например прямая AB:
Обратите внимание, что точки на прямой можно обозначать короткими чёрточками.
Свойства прямой
1. Через любые две точки можно провести только одну прямую линию.
Это основное свойство прямой. Оно часто используется на практике, для прокладывания прямых линий с помощью двух каких-либо объектов.
2. Если две любые точки прямой лежат на плоскости, то все точки этой прямой лежат на той же плоскости.
3. Через одну точку можно провести бесконечно много прямых.
4. Есть точки лежащие на прямой и не лежащие на ней.
Точки N и M лежат на прямой a. Точка L не лежит на прямой a.
5. Из трёх разных точек, лежащих на одной прямой, только одна может лежать между двумя другими точками.
На рисунке изображена прямая с тремя точками A, B и C, лежащими на ней. Про эти точки можно сказать:
точка B лежит между точками A и C, точка B разделяет точки A и C
Также можно сказать:
точки B и C лежат по одну сторону от точки A, они не разделяются точкой A
6. Две прямые, лежащие на одной плоскости, или пересекаются друг с другом в одной точке, или являются параллельными.
Прямая
Прямая − одно из фундаментальных понятий евклидовой геометрии.
Прямая не может быть определена в терминах ранее определенных объектов.
Прамая бесконечна, она не имеет ни начала ни конца.
Обозначение прямой
Прямая обычно обозначается маленькой латинской буквой. Прямую можно обозначить также через две разные точки на этой прямой (Рис.1):
Свойства прямой в эвклидовом пространстве
1. Через любую точку можно провести бесконечно много прямых.
2. Через любые несовпадающие точки можно провести только одну прямую.
3. Две несовпадающие прямые на плоскости или пересекаются, или параллельны.
4. Из трех разных точек, лежащих на данной прямой, только одна может лежать между двумя другими точками.
На Рис.2 точка B лежит между точками A и C.
Можно сказать также:
5. Есть точки, лежащие на прямой и не лежащие на ней.
На Рис.3 точки A и B лежат на прямой a, а точка C не лежит на прямой a. Можно сказать также, что точки A и B принадлежат прямой a, а точка C не принадлежит прямой a. Или же прямая a проходит через точки A и B и не проходит через точку C.
Для записи принадлежности точки к прямой используют символ ∈. Запись \( \small A∈ a\) обозначает, что точка A принадлежит прямой a. Чтобы указать, что точка не принадлежит к прямой используют символ \( \small ∉. \) Запись \( \small C∉ a\) обозначает, что точка C не принадлежит прямой a.
6. В трехмерном пространстве прямые или пересекаются, или параллельные, или скрещиваются.
7. Если две любые точки прямой лежат на плоскости, то все точки этой прямой лежат на этой плоскости.