что такое положительные числа в математике
Положительные числа
Положительные числа — это числа со знаком «+» перед ними. Знак «+» обычно не пишется (если перед числом не написан знак, то, по умолчанию, это число со знаком «+»).
— положительные числа. Перед этими числами не записан знак, значит, по умолчанию, перед ними стоит знак «плюс» (это сокращенная форма записи
Таким образом, +12=12, то есть +12 и 12 — это одно и то же число, только по-разному обозначенное.
Любое положительное число больше нуля.
0\]» title=»Rendered by QuickLaTeX.com»/>
означает, что число a — положительное.
Все натуральные числа являются положительными.
На координатной прямой все положительные числа расположены правее нуля.
Любое положительное число на координатной прямой лежит правее любого отрицательного числа.
Число нуль не является ни положительным, ни отрицательным. Оно отделяет положительные числа от отрицательных.
Положительные числа
Всего получено оценок: 286.
Всего получено оценок: 286.
Положительные числа – это самое простое множество чисел в математике. Именно с ними ученики начинаю работать, с ними сравнивают все следующие множества и именно они лежат в основе всей науки. Поэтому вспомним, что такое положительное число и разберем все, связанные с ним сложности.
Что такое положительное число?
Положительным числом называют число, состоящее в множестве положительных чисел. Это единственное математическое определение. Следует просто понять, что есть огромное множество математических множеств с числами и положительные числа лишь одни из них, самые простые в обучении.
Математические множества и подмножества часто изображают в виде кругов Эйлера.
Отдельно отметим так же, что к положительным числам относят дроби: обыкновенные и десятичные, рациональные и иррациональные числа – любое число, кроме 0, отрицательных чисел и комплексных чисел является положительным.
Так же отметим, что признака положительного числа не существует. Положительные числа это просто числа без знака минус в записи и не ноль.
Положительное число на числовой прямой
Особое значение в изучении математики стоит придавать числовой прямой. Так, положительные числа на числовой прямой находятся правее нуля.
Любое положительное число больше любого отрицательного и нуля, что хорошо видно на числовой прямой.
Иногда, если становиться неясно, какое из положительных чисел больше, то стоит нанести их на числовую прямую. Тогда можно наглядно увидеть, что число, которое находится правее – больше.
Действия с положительными числами
Вспомним, что с положительными числами возможны любые действия:
Но при этом в действии наряду с положительным числом может быть отрицательное. Тогда стоит вспомнить правило знаков, применимое для умножения и вычитания положительных и отрицательных чисел:
Использование этих правил позволит избежать ошибок при работе с положительными и отрицательными числами.
Что мы узнали?
Мы вспомнили, что такое положительное число. Сказали, какие числа не являются положительными. Рассказали о правиле знаков.
Положительное число
Отрицательное число — элемент множества отрицательных чисел, которое (вместе с нулём) появилось в математике при расширении множества натуральных чисел. Цель расширения: обеспечить выполнение операции вычитания для любых чисел. В результате расширения получается множество (кольцо) целых чисел, состоящее из положительных (натуральных) чисел, отрицательных чисел и нуля.
Все отрицательные числа, и только они, меньше, чем нуль. На числовой оси отрицательные числа располагаются слева от нуля. Для них, как и для положительных чисел, определено отношение порядка, позволяющее сравнивать одно целое число с другим.
Содержание
Свойства отрицательных чисел
Отрицательные числа подчиняются практически тем же правилам, что и натуральные, но имеют некоторые особенности.
Исторический очерк
Древний Египет, Вавилон и Древняя Греция не использовали отрицательных чисел, а если получались отрицательные корни уравнений (при вычитании), они отвергались как невозможные.
Впервые отрицательные числа были частично узаконены в Китае, а затем (примерно с VII века) и в Индии, где трактовались как долги (недостача), или признавались как промежуточный этап, полезный для вычисления окончательного, положительного результата. Правда, умножение и деление для отрицательных чисел тогда ещё не были определены.
Диофант в III веке уже знал правило знаков и умел умножать отрицательные числа. Однако и он рассматривал их лишь как временные значения.
В XVII веке, с появлением аналитической геометрии, отрицательные числа получили наглядное геометрическое представление на числовой оси. С этого момента наступает их полное равноправие. Тем не менее теория отрицательных чисел долго находилась в стадии становления. Оживлённо обсуждалась, например, странная пропорция 1:(-1) = (-1):1 — в ней первый член слева больше второго, а справа — наоборот, и получается, что большее равно меньшему («парадокс Арно»). Непонятно было также, какой смысл имеет умножение отрицательных чисел, и почему произведение отрицательных положительно; на эту тему проходили жаркие дискуссии.
Полная и вполне строгая теория отрицательных чисел была создана только в XIX веке (Уильям Гамильтон и Герман Грассман).
Положительные и отрицательные числа: определение, примеры
В этом материале мы объясним, что такое положительные и отрицательные числа. После того, как будут сформулированы определения, мы покажем на примерах, что это такое, и раскроем основной смысл этих понятий.
Что такое положительные и отрицательные числа
Для того чтобы объяснить основные определения, нам понадобится координатная прямая. Она будет расположена горизонтально и направлено слева направо: так будет удобнее для понимания.
Положительные числа – это те числа, которые соответствуют точкам в той части координатной прямой, которая расположена справа от начала отсчета.
Отрицательные числа – это те числа, которые соотносятся с точками в части координатной прямой, расположенной с левой стороны от начала отсчета (нуля).
Нуль, от которого выбираем направления, сам по себе не относится ни к отрицательным, ни к положительным числам.
Из данных выше определений следует, что положительные и отрицательные числа образуют некие множества, противоположные друг другу (положительные противопоставляются отрицательным, и наоборот). Ранее мы об этом уже упоминали в рамках статьи о противоположных числах.
Мы всегда записываем отрицательные числа с минусом.
В литературе также можно встретить определения положительных и отрицательных чисел, данные на основе наличия у них того или иного знака.
Положительное число – это число, имеющее знак плюс, а отрицательное – имеющее знак минус.
Положительные числа – это все числа, значение которых больше нуля. Отрицательные числа – это все числа, меньшие нуля.
Выходит, что нуль является своеобразным разделителем: он отделяет отрицательные числа от положительных.
Основной смысл положительных и отрицательных чисел
Мы уже дали основные определения, но для того, чтобы делать верные подсчеты, необходимо понять сам смысл положительности или отрицательности числа. Попробуем помочь вам это сделать.
Какие числа называются целыми
Определение целых чисел
Что важно знать о целых числах:
Целые числа на числовой оси выглядят так:
На координатной прямой начало отсчета всегда начинается с точки 0. Слева находятся все отрицательные целые числа, справа — положительные. Каждой точке соответствует единственное целое число.
В любую точку прямой, координатой которой является целое число, можно попасть, если отложить от начала координат данное количество единичных отрезков.
Натуральные числа — это целые, положительные числа, которые мы используем для подсчета. Вот они: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 + ∞.
Целые числа — это расширенное множество натуральных чисел, которое можно получить, если добавить к ним нуль и отрицательные числа. Множество целых чисел обозначают Z.
Выглядит эти ребята вот так:
Последовательность целых чисел можно записать так:
Свойства целых чисел
Таблица содержит основные свойства сложения и умножения для любых целых a, b и c: