что такое парабола и гипербола в алгебре
Что такое парабола и гипербола в алгебре
Модуль разности расстояний от любой точки гиперболы до ее фокусов является постоянной величиной:
\(\left| <
где \(
Уравнения асимптот гиперболы
\(y = \pm \large\frac\normalsize x\)
Соотношение между полуосями гиперболы и фокусным расстоянием
\(
где \(c\) − половина фокусного расстояния, \(a\) − действительная полуось гиперболы, \(b\) − мнимая полуось.
Уравнение правой ветви гиперболы в параметрической форме
\( \left\ < \begin
где \(a\), \(b\) − полуоси гиперболы, \(t\) − параметр.
Координаты фокуса
\(F \left( <\large\frac
<2>\normalsize, 0> \right)\)
Координаты вершины
\(M \left( <0,0>\right)\)
Уравнение параболы, ось симметрии которой параллельна оси \(Oy\)
\(A
или в эквивалентной форме
\(y = a
Уравнение директрисы
\(y =
<2>\normalsize\),
где \(p\) − параметр параболы.
Координаты фокуса
\(F\left( <
<2>\normalsize> \right)\)
Уравнение параболы с вершиной в начале координат и осью симметрии, параллельной оси \(Oy\)
\(y = a
Координаты вершины
\(M \left( <0,0>\right)\)
Высшая математика. Шпаргалка
Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету и успешно их сдать.
Оглавление
Приведённый ознакомительный фрагмент книги Высшая математика. Шпаргалка предоставлен нашим книжным партнёром — компанией ЛитРес.
4. Порядок алгебраических линий. Окружность. Эллипс. Гипербола. Парабола
Линия L, представленная в декартовой системе уравнением n–степени называется алгебраической линией n–порядка.
Чтобы уравнение Ах 2 + Вх + Ау 2 + Су + D = 0 описывало окружность, необходимо, чтобы оно не содержало члена с произведением ху, чтобы коэффициенты при х 2 и у 2 были равны, чтобы В 2 + С 2 — 4АD > 0 (при невыполнении данного неравенства уравнение не представляет никакой линии).
Эллипс — сжатая окружность (рис. 3).
Прямая АА1 называется осью сжатия, отрезок АА1 = 2а — большой осью эллипса, отрезок ВВ1 = 2b — малой осью эллипса (a > b) точка О — центром эллипса, точки А, А1, В, В1 — вершинами эллипса. Отношение k = b / a коэффициент сжатия величина α = 1 — k = (a — b) / a — сжатие эллипса. Эллипс обладает симметрией относительно большой и малой осей и относительно своего центра.
Каноническое уравнение эллипса: x 2 / a 2 + y 2 / b 2 = 1.
Другое определение эллипса: эллипс есть геометрическое место точек (М), сумма расстояний которых до двух данных точек F, F1 имеет одно и то же значение 2а (F1M + FM = 2a) (рис. 4).
Гипербола — это геометрическое место точек, разность расстояний которых до двух данных точек F, F1 имеет одно и то же абсолютное значение (рис. 5). F1M — FM = 2a. Точки F, F1 называются фокусами гиперболы, расстояние FF1 = 2c — фокусным расстоянием. Справедливо: c > a.
Каноническое уравнение гиперболы: х 2 / а 2 + у 2 / (а 2 — с 2 ) = 1. Асимптоты гиперболы заданы уравнениями у = bx / a и y = — bx / a (b 2 = c 2 — a 2 ).
Парабола — это геометрическое место точек равноудаленных от данной точки F (фокуса параболы) и данной прямой PQ (директрисы параболы). Расстояние от фокуса до директрисы FC называется параметром параболы и обозначается р. Вершина параболы — точка О. Каноническое уравнение параболы: у 2 = 2рх.