что такое отношение на множестве
Отношения. Часть II
Формальная теория моделирования использует алгебраические отношения, включая их в сигнатуры моделей алгебраических структур, которыми описывает реальные физические, технические объекты и процессы их функционирования. Эта публикация является продолжением предшествующей, прочтение которой желательно, так как многие понятия и термины, используемые здесь, описываются там.
Предлагается изложение не в традиционном (стрелочном) стиле, а так, как мне самому пришлось всю эту кухню представлять и осваивать и по учебникам/пособиям, и по журнальным статьям. Особенно полезной вещью считаю созданный мной каталог, он позволяет выделить практически любое пространство и представить его элементы в удобном виде: матрицей, графом и др. Сразу видишь с чем имеешь дело и свойства (они уже выписаны) проверять часто не требуется.
Понятие отношения
Думаю, что термин отношение знаком каждому читателю, но просьба дать определение поставит большинство в тупик. Причин для этого много. Они чаще всего в преподавателях, которые, если и использовали отношения в процессе преподавания, внимания на этом термине не заостряли, запоминающихся примеров не приводили. Некоторые комментаторы статьи отнесли замечания на свой счет и насыпали минусов. Но шила в мешке не утаишь. Серьезных публикаций как не было, так и нет. Задайте себе вопрос, работали ли Вы с каким-либо пространством отношений? И честно себе ответьте. Что об этом пространстве можете миру поведать, для начала хотя-бы перечислить его элементы и указать свойства. Даже на СУБД Вы смотрите глазами их создателей, а они ведь тоже не все видят, или не все показывают, как, например, в микросхемах.
Здесь сделаю небольшой повтор. Начинать следует с абстрактного множества А =
А×А=<(a1, a1),(a1, а2),(a1, a3),(a2, а1),(a2, a2),(a2, a3),(a3, a1),(a3, a2),(a3, a3)>.
Получили 9 упорядоченных пар элементов из А×А, в паре первый элемент из первого сомножителя, второй — из второго. Теперь попробуем получить все подмножества из декартова квадрата А×А. Подмножества будут содержать разное количество пар: одну, две, три и так до всех 9 пар, включаем в этот список и пустое множество ∅. Сколько же получилось подмножеств? Много, а именно 2 9 = 512 элементов.
Отношения можно задавать в разном представлении:
Пространства бинарных отношений
Пространством бинарных отношений с множеством-носителем называется произвольное подмножество множества бинарных отношений заданных на. Рассмотрим основные пространства для отношений предпочтений (рис. 2.15).
Рисунок 2.15 Схема пространств бинарных отношений
Выявленные связи между пространствами используются для переноса задач принятия решений (ЗПР) из одних пространств в другие, где они могут быть решены более простым путем, а затем полученное решение возвращают в исходное пространство, где была сформулирована ЗПР.
Эти отношения представлены диаграммой на рис. 2.14. Пространства бинарных отношений (типы отношений) представлены рис. 2.15.
Отношения эквивалентности
Определение. Бинарное отношение σ ⊆ А×А, обладающее тремя свойствами рефлексивности, симметричности, транзитивности, называется, бинарным отношением эквивалентности (БОЭ). Обозначается отношение эквивалентности σ(х, у), (х, у)∊σ, хσу, х≈у. Удобно использовать матричное (табличное) представление отношения. Ниже на рис 2.24 приведено как раз матричное представление. Над множеством из 4-х элементов существует 15 БОЭ, которые все изображены.
Представление и анализ структуры отношений эквивалентности (n = 4)
Эквивалентность из бинарных отношений, пожалуй, самое распространенное БО. Редкая наука обходится без этого понятия, но даже тогда, когда эквивалентности используются в изложении каких-либо вопросов, бывает трудно понять, что в виду имел автор. Даже при корректном определении и перечислении свойств, присущих этому бинарному отношению – трудности восприятия остаются.
Начнем с примера об эквивалентностях, который иллюстрирует ограниченность их количества.
Пример 1. Пусть имеется три кубика. Составим список свойств, которыми наделены кубики и практическое использование которых (свойств кубиков) делает их как бы взаимозаменяемыми. Кубикам присвоим номера, а их свойства представим таблицей 1.
По каждому из свойств возникает БОЭ и классы эквивалентности. Продолжая список свойств, мы новых отношений эквивалентности не получим. Будут только повторы уже построенных, но для других признаков. Покажем связь БОЭ с множествами.
Рассмотрим множество из трех элементов А = <1,2,3>и получим для него все возможные разбиения на все части. ①1|2|3; ②12|3; ③13|2; ④ 1|23; ⑤123. Последнее разбиения на одну часть. Номера разбиений и БО в кружках.
Определение. Разбиением множества А называют семейство Аi, i = 1(1)I, непустых попарно непересекающихся подмножеств из А, объединение которых образует все исходное множество А=UАi, Аi∩Аj =∅, ∀ i ≠ j. Под-множества Аi называют классами эквивалентности разбиения исходного множества.
Это все разбиения множества (5 штук). Анализ БО показывает, что различных отношений эквивалентности тоже только 5 штук. Случайно ли это совпадение? Мы можем каждому разбиению сопоставить матрицу из девяти ячеек (3×3 = 9), в каждой из которых либо размещается упорядоченная пара элементов из множества А, либо ячейка остается пустой, если для соответствующей пары нет объекта. Строки и столбцы матрицы размечаются элементами множества А, а пересечению строка – столбец соответствует упорядоченная пара (i, j). В ячейку матрицы вписывается не пара, а просто единица или нуль, впрочем, нуль часто не пишут совсем.
Нет, совпадение не случайное. Оказывается, каждому разбиению множества взаимно однозначно соответствует БОЭ, при этом мощность множества может быть любой |A| = n.
Это отношение едва ли не самое частое по использованию в научном обороте, но совокупность свойств, реализуемых в этом отношении, сильно ограничивает его распространенность.
Так среди всех абстрактных бинарных отношений над множеством из трех элементов (всего их 2 9 = 512 отношений) только пять являются эквивалентностями — носителями требуемых свойств, менее одного процента.
Для |A| = 4 отношений существует 2 16 = 65536, но эквивалентностей лишь 15 штук. Это весьма редкий тип отношений. С другой стороны, отношения эквивалентности широко распространены в прикладных задачах. Везде, где имеются и рассматриваются множества самых различных объектов и различные разбиения таких множеств (не чисел) на части возникают отношения эквивалентности. Их можно назвать математическими (алгебраическими) моделями таких разбиений, классифицирующими множества объектов по различным признакам.
Решетка Р(4): все разбиения множества А =
Минимальному разбиению соответствует отношение эквивалентности П15, которое называется равенством или единичным отношением. В каждом классе эквивалентности — единственный элемент. Разбиению множества А, включающему лишь само множество А, соответствует отношение эквивалентности, содержащее все элементы декартова квадрата А×А.
Ближайший тип к отношениям эквивалентности – отношения толерантности. Множество отношений толерантности содержит в себе все отношения эквивалентности. Для носителя А из трех элементов толерантностей 8. Все они обладают свойствами рефлексивности и симметричности.
При выполнении свойства транзитивности пять из восьми толерантностей преобразует в эквивалентности (рис. 2.24 и 2.25).
Определение. Совокупность классов [a]σ эквивалентности элементов множества А называется фактор-множеством (обозначается А/σ) множества А по эквивалентности σ.
Определение. Естественным (каноническим) отображением f: A→ А/σ называется такое отображение f, при котором f(а) = [a]σ.
Отношения толерантности и их анализ
Об этих БО ранее уже упоминалось, а здесь рассмотрим их подробнее. Всем известны понятия сходство, похожесть, одинаковость, неразличимость, взаимозаменяемость объектов. Они кажутся близкими по содержанию, но при этом не одно и то же. Когда для объектов указано только сходство, то невозможно разбить их на четкие классы так, что внутри класса объекты похожи, а между объектами разных классов сходства нет. В случае сходства возникает размытая ситуация без четких границ. С другой стороны, накапливание несущественных различий у сходных объектов может привести к совершенно непохожим объектам.
В предыдущей части мы обсудили содержательный смысл отношения одинаковости (эквивалентности) объектов. Не менее важной является ситуация, когда приходится устанавливать сходство объектов.
Пусть изучается форма геометрических тел. Если одинаковость формы объектов, например, кубиков, означает их полную взаимозаменяемость в определенной ситуации обучения, то сходство – это частичная взаимозаменяемость, (когда среди кубиков встречаются очень похожие на них параллелепипеды) т. е. возможность взаимной замены с некоторыми (допустимыми в данной ситуации) потерями.
Наибольшая мера для сходства – неразличимость, а вовсе не одинаковость, как может показаться на первый взгляд. Одинаковость – свойство качественно иное. Одинаковость можно рассматривать только как частный случай неразличимости и сходства.
Все дело в том, что неразличимые объекты (так же, как и сходные, похожие) не удается разбить на классы так, чтобы в каждом классе элементы не различались, а элементы разных классов заведомо различались.
В самом деле, будем рассматривать множество точек (х, у) на плоскости. Пусть величина d имеет значение меньшее порога разрешимости глаза, т. е. d – такое расстояние, при котором две точки, находящиеся на этом расстоянии, сливаются в одну, т.е. визуально неразличимы (при выбранном удалении плоскости от наблюдателя). Рассмотрим теперь n точек, лежащих на одной прямой и отстоящих (каждая от соседних) на расстоянии d. Каждая пара
соседних точек неразличима, но, если n достаточно велико, первая и последняя точки будут отстоять друг от друга на большое расстояние и заведомо будут различимы.
Традиционный подход к изучению сходства или неразличимости состоит в том, чтобы сначала определить меру сходства, а затем исследовать взаимное расположение сходных объектов. Английский математик Зиман, изучая модели зрительного аппарата, предложил аксиоматическое определение сходства. Тем самым свойства сходства стало возможным изучать независимо от того, как конкретно оно задано в той или иной ситуации: расстоянием между объектами, совпадением каких-то признаков или субъективным мнением наблюдателя.
Введем экспликацию понятия сходства или неразличимости.
Определение. Отношение Т на множестве M называется отношением толерантности или толерантностью, если оно рефлексивно и симметрично.
Корректность такого определения видна из того, что объект заведомо неразличим сам с собой и, конечно, похож на себя (это задает рефлексивность отношения). Порядок рассмотрения двух объектов не влияет на окончательный вывод об их сходстве или несходстве (симметричность).
Из примера со зрительной неразличимостью точек плоскости видим, что транзитивность толерантности выполняется не для всех пар объектов.
Ясно также, что поскольку одинаковость есть частный случай сходства, то эквивалентность должна быть частным случаем толерантности. Сравнивая определения эквивалентности и толерантности, убеждаемся, что так оно и есть. Философский принцип: «частное богаче общего» наглядно подтверждается. Дополнительное свойство – транзитивности делает часть отношений толерантности эквивалентностями. Двое близнецов бывают настолько одинаковыми, что без риска могут сдавать экзамены друг за друга. Однако если два студента только похожи, то такая проделка, хотя и осуществима, но рискованна.
Каждый элемент множества несет определенную информацию о похожих на него элементах. Но не всю информацию, как в случае одинаковых элементов. Здесь возможны разные степени информации, которую один элемент содержит относительно другого.
Рассмотрим примеры, где толерантность задается разными способами.
Пример 2. Множество M состоит из четырехбуквенных русских слов — нарицательных существительных в именительном падеже. Будем называть такие слова сходными, если они отличаются не более чем на одну букву. Известная задача «Превращение мухи в слона» в точных терминах формулируется так. Найти последовательность слов, начинающуюся словом «муха» и кончающуюся словом «слон», любые два соседних слова в которой сходны в смысле только что данного определения. Решение этой задачи:
муха — мура — тура — тара — кара — каре — кафе — кафр — каюр — каюк — крюк — крок — срок — сток — стон — слон.
Толерантность подмножеств (граней) означает наличие у них общих вершин.
Определение. Множество M с заданным на нем отношением толерантности τ называется пространством толерантности. Таким образом, пространство толерантности есть пара (M, τ).
Пример 4. Пространство толерантности Sp допускает обобщение на бесконечный случай. Пусть H — произвольное множество. Если SH – совокупность всех непустых подмножеств множества H, то отношение толерантности Т на SH задается условием: X Т Y, если X∩Y ≠ ∅. Симметричность и рефлексивность этого отношения очевидны. Пространство SH обозначается и называется «универсальным» пространством толерантности.
Пример 6. Рассмотрим пространство толерантности, компоненты которого принимают любые действительные значения.
В частности, это множество всех точек x = (a1, a2) декартовой плоскости. Толерантность двух точек означает совпадение у них хотя бы одной координаты. Значит, две толерантные точки находятся либо на общей вертикали, либо на общей горизонтали.
Отношения частичного порядка и их анализ
Упорядоченные множества – это множества с введенным на нем отношением порядка. Определение. Множество А и бинарное отношение порядка R на нем (≤) называется частично упорядоченным, если для отношения выполнены (как и в БОЭ) три условия (одно условие другое):
Элемент х∊А ЧУМ А покрывает элемент у∊А, если х > y и не существует z∊А такого, что х > z > y. Пара элементов х, у∊А называется сравнимой, если х ≥ у или х ≤ у.
Если в ЧУМ А всякая пара его элементов является сравнимой, то А называют линейно упорядоченным множеством или цепью.
Если же некоторое ЧУМ В состоит лишь из несравнимых друг с другом элементов, то множество В называют антицепью. Цепь в ЧУМ А называется насыщенной, если она не может быть вложена ни в какую другую цепь, отличную от себя.
Аналогично определяется насыщенная антицепь. Максимальной цепью (антицепью) называется цепь (антицепь), содержащая максимальное количество элементов.
Элемент m ЧУМ А называется минимальным, если в А нет элемента х∊А, отличного от m и такого, что х≤m. Элемент M ЧУМ А называется максимальным, если в А нет элемента х «большего», чем M, отличного от M и такого, что х ≥ M.
Элемент у∊А ЧУМ А называется наибольшим, если ∀ х∊ А х ≤ у. Элемент у∊ А ЧУМ А называется наименьшим, если ∀ х∊А х ≥ у. Для наибольшего и наименьшего элементов принято использовать обозначения 1 и 0 соответственно. Их называют универсальными границами. Всякое ЧУМ А имеет не более одного наименьшего и не более одного наибольшего элементов. В ЧУМ А допустимо несколько минимальных и несколько максимальных элементов
Изображать конечное ЧУМ А удобно диаграммой Хассе, которая представляет собой ориентированный граф, его вершины распределены по уровням диаграммы и соответствуют элементам из А, а каждая дуга направляется вниз и рисуется тогда и только тогда, когда элемент х∊А покрывает элемент у∊А.
Транзитивные дуги не изображаются. Уровни диаграммы Хассе содержат элементы одинакового ранга, т.е. связанные с минимальными элементами ЧУМ путями равной длины (по числу дуг).
Пусть В непустое подмножество ЧУМ А, тогда элемент х∊А называется точной верхней гранью (обозначается supAB) множества В, если х ≥ у для всех у∊В и, если из истинности соотношения z ≥ у для всех у∊В вытекает, что z ≥ х.
Точной нижней гранью (обозначается infAB) множества В называется элемент х∊А, если х ≤ у для всех у∊В и, если из условия z ≤ у для всех у∊ В вытекает, что z ≤ х.
Пример 7. Заданы два конечных числовых множества
А = <0,1,2,…,21>и B = <6,7,10,11>.
ЧУМ (А, ≤) представлено рис. 2.26.
Совокупность В Δ всех верхних граней для В называется верхним конусом для множества В. Совокупность В ∇ всех нижних граней для В называется нижним конусом для В.
Всякое подмножество ЧУМ также является ЧУМ относительно наследованного порядка. Если в множестве существуют наибольший и/или наименьший элементы, то они являются максимальным (минимальным соответственно). Обратное неверно. Булеан обладает единственным наименьшим (Ø) и единственным наибольшим элементами.
В приведенном множестве наименьший элемент нуль (0) и он совпадает с единственным минимальным элементом, а наибольшего элемента не существует. Максимальными элементами являются <19, 20, 21>. Точная верхняя грань для B = <6,7,10,11>есть элемент 21 (это наименьший элемент в верхнем конусе).
Общая ситуация. Пусть задано множество, мощность которого*******. Из всех бинарных отношений, возможных на этом множестве, выделим бинарные отношения предпочтения и связанные с ними отношения строгих частичных порядков.
Частичные порядки отличаются от строгих частичных порядков только тем, что содержат в своем составе дополнительные элементы (в матричном представлении – диагональные) (аi, ai ) = 1, i = 1(1)n, а число тех и других порядков в полном множестве отношений одинаково. До настоящего времени не найдены зависимости (формула, алгоритм), которые позволяли бы подсчитывать и перечислять при любом n число частичных порядков.
Разными авторами непосредственным подсчетом определены и опубликованы следующие результаты (табл. 2.12).
Вычислительные эксперименты автора позволили получить не только число, но и вид (представление) частичных порядков при разных мощностях множителя-носителя отношений. Принтер задыхался печатая такие огромные списки, но не только красота требует жертв, наука тоже не отказывается от них.
В таблице 2.12 показаны: n = |A| – мощность множества-носителя; вторая строка – количество всех бинарных отношений на множестве А; и далее
|Ин(n)| – количество классов неизоморфных отношений;
|Г(n)| – количество отношений частичного порядка;
|Гн(n)| – количество классов неизоморфны отношений частичного порядка;
|Гл(n)| = n! – количество отношений линейного порядка.
Как видим, в таблице для небольших n, например, Г(n=4) имеется всего 219, приводятся данные, значения которых с увеличением n очень быстро растут, что существенно усложняет их количественный (и качественный) непосредственный анализ даже с помощью ЭВМ.
Таблица ниже иллюстрирует возможность порождения Г(n=4) всех частичных порядков из пересечения каждого с каждым линейных частичных порядков. Но в этой ситуации возникают избыточные (повторяющиеся), которые при малых n можно отсечь вручную (пересчитать). Получаются 300 матриц, но ЧУМ среди них лишь 219. Общие формулы так и не были получены. На мировом уровне ситуация аналогичная, хотя мне не довелось видеть публикаций о перечислениях ЧУМ западных авторов. Наши алгоритмы вполне оригинальны и пионерские.
Приведу возможную схему решения задачи перечисления элементов пространства частичных порядков (n=4).
Множество строгих частичных порядков при лексикографическом упорядочении линейных порядков (n=4) порождается при их взаимном пересечении.
Несколько важных определений математики, для встречающихся часто в текстах понятий.
Определение. Замкнутый интервал – это множество вида Если множества X и Y совпадают, X = Y, то говорят не о соответствии, а об отношении между элементами множества X. Бинарные соответствия между X и X называют бинарными отношениями на множестве X. Например, если X – множество людей, то соответствия «Человек х – друг человека у», «х живет в одном доме с у», «Человек х – отец человека у» являются отношениями между людьми. Отношение на множестве X задано, если указано множество Г, являющееся подмножеством декартова произведения Х×Х. Отношения, как и соответствия, принято обозначать буквами R, S, T, Q и др. и писать xRy, xSy и т. д. Множество X называют областью задания отношения R, а множество Г – графиком отношения R. Рассмотрим, например, на множестве Х= <1; 2; 3; 4>отношение «х>у». График этого отношения – множество Г=<(2; 1); (3; 1); (3; 2); (4; 1); (4; 2); (4; 3)>, состоящее из всех тех пар (х; у), х€Х, у€Х, для которых х>у. Способы задания отношения: 1. Перечисление упорядочных пар или графиком Г, 2. Словесным описанием, 3. Ориентированным графом, 4. Графиком в ПДСК (только для числовых множеств), 5. Таблицей (например, график дежурства – задает соответствие между учениками и днями недели), 6. Аналитически или формулой (например, у=х+5). Чтобы наглядно представить отношение R в множестве X, изобразим точками элементы этого множества, а затем проведем стрелки от х к у для всех пар точек (х; у) таких, что xRy. Полученный чертеж называют графом отношения R, а точки, изображающие элементы множества X, вершинами графа Построим, например, граф отношения R: «х≤у», заданного на множестве Х= < 1/2; 3/5;4>. Для этого рисуем диаграмму множества X, изобразив элементы этого множества точками. Затем проводим стрелки от х к у для всех пар (x; у) таких, что х меньше или равент у. Получаем граф отношения «х≤у», заданного на множестве Х= <1>. Каждое из этих чисел равно самому себе, поэтому для каждой точки х, изображающей элемент множества X, рисуем стрелку, начало и конец которой совпадают с х. Стрелку на графе, у которой начало и конец совпадают, называют петлей. Следовательно, граф отношения R в каждой вершине имеет петли. Пусть на множестве X задано некоторое отношение R 1. Отношение R называется рефлексивным, если для любого х из множества X истинно xRx. Другими словами, отношение R на множестве X рефлексивно, если каждый элемент х £ X находится в отношении R с самим собой. 2. Отношение R называется антирефлексивным, если ни один элемент х из множества X не находится в отношении R с самим собой. Например, отношение «Прямая х перпендикулярна прямой у» на множестве прямых плоскости антирефлексивно, так как ни одна прямая не перпендикулярна самой себе. Существуют отношения, не являющиеся ни рефлексивными, ни антирефлексивными. Примером такого отношения может служить отношение «Точка х симметрична точке у относительно прямой l», заданное на множестве точек плоскости. Действительно, все точки прямой l симметричны самим себе, а точки, не лежащие на прямой l, себе не симметричны. 3. Отношение R называется симметричным, если для любых элементов х и у из множества X из xRy следует yRx. Так, симметрично отношение параллельности на множестве прямых плоскости: если прямая х параллельна прямой у, то и прямая у параллельна прямой х. 4. Отношение R называется асимметричным если ни для каких элементов х и у из множества X не может случиться, что одновременно и xRy, и yRx. Примером асимметричного отношения является отношение Свойства рефлексивности, симметричности и транзитивности наглядно иллюстрируются при изображении отношений графами. Если отношение R в множестве X рефлексивно, то граф этого отношения в каждой вершине имеет петлю. Если отношение R симметрично, то граф вместе с каждой стрелкой, идущей из точки х в точку у, должен содержать стрелку, соединяющую те же точки, но идущую в обратном направлении. Граф транзитивного отношения вместе со стрелками, идущими от х к у и от у к z, должен содержать и стрелку, идущую от х к z. Отношение эквивалентности. Связь отношения эквивалентности с разбиением множества на классы (классификацией). Множество X всех студентов пединститута можно разбить на подмножества, состоящие из студентов, обучающихся на одном и том же курсе. Если обучение длится четыре года, то получаем четыре подмножества: студентов первого курса, студентов второго курса, студентов третьего курса и студентов четвертого курса. Никакие два из этих множеств не имеют общих элементов (студент не может сразу учиться и на втором, и на третьем курсе), а объединением этих множеств является множество X всех студентов. Говорят, что X разбито на четыре попарно непересекающихся подмножества Х1 Х2, Х3, Х4. То же множество X можно разбить на непересекающиеся подмножества и другими способами, например, на юношей и девушек, по возрасту, на комсомольцев и не комсомольцев и т. д. Вообще, можно говорить о разбиении данного множества на попарно непересекающиеся подмножества или классы тогда, когда одновременно выполняются следующие условия: 1. Все подмножества, образующие разбиение, непусты. 2. Любые два таких подмножества не пересекаются. 3. Объединение всех подмножеств есть данное множество. Так, множество натуральных чисел можно разбить на три подмножества – множество простых чисел, множество составных чисел и множество, состоящее из единицы. Это же множество можно разбить и на два класса – класс четных и класс нечетных натуральных чисел. Разбиение множества на попарно-непересекающиеся подмножества лежит в основе всевозможных классификаций. Понятие «класс» и его синонимы «тип», «семейство», «род», «вид», «сорт» широко применяются во всех областях человеческой деятельности. Так, в биологии все живые организмы распределяют на типы, в сельском хозяйстве сортируют по размеру или весу фрукты, слова в словарях разбивают на подмножества, располагая их в алфавитном порядке, и т. д. Разбиение множества на попарно-непересекающиеся подмножества часто производят по некоторому свойству, которое может принимать различные значения. Например, можно производить разбиение на классы по цвету, объединяя в один класс предметы одного и того же цвета. При этом красные предметы попадут в один класс зеленые – в другой, черные – в третий и т. д. Можно сказать, что разбиение производится на основе отношения «х имеет тот же цвет, что и у». Точно так же разбиение студентов по курсам производится на основе отношения «х учится на том же курсе, что и у». Но не всякое отношение R между элементами множества дает возможность разбить это множество на классы. Нельзя, например, разбить на попарно-непересекающиеся подмножества множество студентов некоторого института при помощи отношения «Студент х знаком со студентом у». Действительно, если х знаком с у, то х и у окажутся в одном подмножестве. Если у знаком с г, то z должен находиться в одном подмножестве с у и, следовательно, с х. Но может случиться, что х не знаком с z. Тогда окажется, что в одном подмножестве есть люди, которые друг с другом не знакомы, а этого не должно быть при разбиении множества по указанному отношению. С другой стороны, такие отношения, как «быть однокурсником» в множестве студентов некоторого института, «родиться в одном и том же году» в множестве людей, «иметь один и тот же остаток при делении на данное число» в множестве натуральных чисел, дают возможность разбить множество, в котором они рассматриваются, на классы. Далее мы рассмотрим, какими должны быть свойства отношения, чтобы с его помощью можно было разбить множество на классы. Если отношение R в множестве X обладает свойствами рефлексивности, симметричности и транзитивности, то его называют отношением эквивалентности. Выше представлен граф отношения эквивалентности. Примерами отношений эквивалентности являются отношения, рассмотренные нами раньше: «быть однокурсником» (на множестве студентов некоторого института), «иметь один и тот же корень» (на множестве слов) и др. С каждым таким отношением связано разбиение множества на непересекающиеся подмножества. И это не случайно. Имеет место следующая теорема Для того чтобы отношение R позволяло разбить множество X на классы, необходимо и достаточно, чтобы R было отношением эквивалентности. Рассмотрим несколько примеров отношений эквивалентности. 1. Отношение «Выражения х и у имеют одинаковые числовые значения» на множестве числовых выражений является отношением эквивалентности, поскольку оно а) рефлексивно: значение выражения х совпадает со значением выражения х; б) симметрично: если значение выражения х совпадает со значением выражения у, то и значение выражения у совпадает со значением выражения х; в) транзитивно: если значение выражения х совпадает со значением выражения у, а значение выражения у совпадает со значением выражения z, то значение выражения х совпадает со значением выражения z. Множество всех числовых выражений разбивается этим отношением на классы, в каждом из которых находятся выражения, значения которых попарно совпадают. Так, выражения 5+3, 23, 2+2+2+2 находятся в одном классе (их значения равны восьми), а выражения 7–3,22, 16 : 4 – в другом (их значения равны четырем). 2. Во множестве прямых на плоскости отношение параллельности является отношением эквивалентности. Прямые х и у, лежащие в одной плоскости, параллельны, если они либо не пересекаются, либо совпадают. Поэтому отношение параллельности а) рефлексивно: х\\х для любой прямой х; б) симметрично: если х\\у, то у\\х; в) транзитивно: если х\\у и y\\z, то x\\z. Отношением параллельности множество всех прямых плоскости разбивается на классы, состоящие из параллельных друг другу прямых. Такие классы называют пучками параллельных прямых. В начальном курсе математики также встречаются отношения эквивалентности, например отношение «Выражения х и у имеют одинаковые числовые значения» в множестве числовых выражений. Выражения, принадлежащие одному и тому же классу эквивалентности, называют равными. Отношением порядка называют антисимметричное и транзитивное отношение. Если отношению порядка присуще еще свойство рефлексивности, то порядок нестрогий. Если ему присуще свойство антирефлексивности, то порядок строгий. Свойством транзитивности и асимметричности и антирефлексивности обладают многие отношения, например, отношение «больше» на множестве натуральных чисел или отношение «выше» на множестве людей, сравниваемых по росту. Это отношения строгого порядка. Об отношениях «следует за», «больше», «выше» также говорят, что они являются отношениями строгого порядка. Выясним особенности графа отношения строгого порядка. Отметим, что граф отношения строгого порядка не имеет петель, нет обратных стрелок. Если из х идет стрелка в у, а из у – в z, то из х идет стрелка в z. Наряду с отношением «х y») в математике рассматривают отношения «х≤y» («х≥у»), представляющие собой объединение отношений «х y» и «х=y»). Говорят, что «х≤у» является отношением нестрогого порядка. К нестрогому порядку также принадлежат, например, такие отношения: «не выше» (на множестве людей, сравниваемых по росту); «не больше» (на множестве действительных чисел); «быть делителем» (на множестве натуральных чисел). Если на множестве рассмотреть отношение нестрогого порядка , то граф этого отношения в каждой вершине будет иметь петли ( в остальном он похож на предыдущий граф). Множество X, на котором задано отношение порядка R (строгого или нестрогого), называется частично упорядоченным множеством. Часто говорят также, что в этом случае множество X упорядочено отношением R. Примером такого множества является множество натуральных чисел по отношению меньше или больше.Лекция 2. Отношения на множестве, их свойства.
Так, рефлексивно отношение конгруэнтности на множестве геометрических фигур, поскольку каждая фигура конгруэнтна самой себе.