Что такое фосфолипаза а2
Клиническое значение липид-ассоциированной фосфолипазы A2
Институт клинической кардиологии им. А.Л. Мясникова ФГБУ Российский кардиологический научно-производственный комплекс Минздрава РФ, 121552 Москва, ул. 3-я Черепковская, 15а
Воспаление играет важную роль в происхождении и прогрессировании атеросклероза. Липид-ассоциированная фосфолипаза А2 (Лп-ФЛА2) рассматривается как маркер воспаления артерий и предиктор сосудистых осложнений. Лп-ФЛА2 является ферментом, который секретируется лейкоцитами и связывается с циркулирующими липопротеинами и макрофагами атеросклеротических бляшек. Лп-ФЛА2 гидролизует фосфолипиды окисленных липопротеинов низкой плотности, образуя такие медиаторы воспаления, как лизофосфатидилхолин и окисленные свободные жирные кислоты, которые играют важную роль в развитии атеросклероза, инфаркта миокарда и ишемического инсульта. В последние годы появились сообщения о перспективах использования дарапладиба — селективного ингибитора фосфолипазы А2 для лечения больных ишемической болезнью сердца. Однако необходимо подтверждение имеющихся данных результатами крупных длительных рандомизированных исследований, которые проводятся в настоящее время.
Несмотря на значительные успехи в профилактике и лечении атеросклероза с помощью статинов, антитромбоцитарных препаратов и ингибиторов ангиотензинпревращающего фермента (АПФ), сердечно-сосудистая заболеваемость и смертность остаются высокими, что обусловливает необходимость поиска новых методов борьбы с этим заболеванием.
Одним из ключевых факторов в развитии атеросклероза является хроническое системное воспаление с локальными специфическими проявлениями в интиме сосудов. Воспаление играет важную роль в происхождении и прогрессировании стабильной атеросклеротической бляшки (АСБ), эволюции ее в ранимую, нестабильную АСБ [1—3]. На протяжении последних 25 лет интенсивно изучается диагностическое и прогностическое значение биомаркеров воспаления. Наряду с такими маркерами, как высокочувствительный С-реактивный белок (вч-СРБ), интерлейкин-6, миелопероксидаза, большой интерес вызывает другой активный участник воспалительного процесса — липид-ассоциированная фосфолипаза А2 (Лп-ФЛА2), относящаяся к суперсемейству ферментов, которые осуществляют гидролиз фосфолипидов. Этот фермент был открыт вследствие своей способности катализировать гидролиз фактора активации тромбоцитов (ФАТ) [4], поэтому он во многих работах до сих пор именуется также как ФАТ-ацетилгидролаза (EC 3.1.1.47).
Характеристика Лп-ФЛА2
Лп-ФЛА2 представляет собой белок молекулярной массой 45 кДа, состоящий из 441 аминокислоты [5, 6]. Основная часть Лп-ФЛА2, циркулирующей в плазме крови (70—80%), связана с липопротеинами низкой плотности (ЛНП). Оставшиеся 20—30% этого фермента связаны с липопротеинами высокой плотности (ЛВП), липопротеином(а) [Лп(а)] и некоторыми липопротеинами очень низкой плотности [7—12]. Внутри частиц ЛНП фермент Лп-ФЛА2 связан преимущественно с мелкими, плотными, высоко атерогенными частицами [13, 14]. Распределение Лп-ФЛА2 между ЛНП и ЛВП изменяется при различных типах дислипидемий [15, 16], а также при повышении уровня Лп(а) более 30 мг/дл [17]. Лп-ФЛА2 особенно богато представлена в атерогенных частицах Лп(а), которые являются главными носителями окисленных фосфолипидов плазмы крови. Имеются доказательства того, что провоспалительные окисленные фосфолипиды захватываются преимущественно атерогенными частицами Лп(а) [7, 10, 15]. Этот фермент может мигрировать в кровотоке между частицами ЛНП и ЛВП [5, 16]. Более того, уровень Лп-ФЛА2 обратно коррелирует с уровнем ЛВП [17—20].
Основными источниками Лп-ФЛА2 служат воспалительные клетки — моноциты, макрофаги, Т-лимфоциты, тучные клетки, а также мегакариоциты, тромбоциты и купферовские клетки печени [21]. Концентрация Лп-ФЛА2 в крови имеет низкую биологическую вариабельность (5,8%), высокую сосудистую специфичность и стабильность при ишемических состояниях [14, 22—25].
В норме активность Лп-ФЛА2 достоверно ниже на 10—20% у женщин, чем у мужчин [26, 27], что может обусловливать более низкий риск развития сердечно-сосудистых осложнений (ССО) у женщин или быть связано с влиянием эстрогенов. Так, согласно данным S. Miyaura и соавт. [28], наблюдаются обратные соотношения уровней Лп-ФЛА2 и эстрогенов в крови у женщин. С увеличением возраста отмечается тенденция к увеличению концентрации Лп-ФЛА2 в крови [26].
Активность Лп-ФЛА2 достоверно снижается под влиянием таких модифицирумых факторов, как прекращение курения, нормализация индекса массы тела [29, 30]. K. Mansikkaniemi и соавт. [31] изучали влияние регулярных физических тренировок на факторы риска (ФР) развития ишемической болезни сердца (ИБС) у 2264 здоровых лиц в возрасте 24—39 лет. Авторы показали положительное влияние физической активности на классические ФР и такие маркеры воспаления, как С-реактивный белок (СРБ) и Лп-ФЛА2.
В отличие от СРБ, индивидуальный уровень Лп-ФЛА2 не подвержен влиянию инфекций или воспаления, так как этот фермент не относится к белкам острой фазы [32, 33]. Количество Лп-ФЛА2 в крови оценивается по массе или ферментативной активности. Концентрация в крови Лп-ФЛА2 >235 нг/мл у здоровых лиц и >225 нг/мл у больных с клиническими проявлениями атеросклероза рассматривается многими исследователями как маркер высокого риска развития сосудистых осложнений, в частности инфаркта миокарда (ИМ) и инсульта [34]. Между концентрацией и активностью Лп-ФЛА2 существует умеренная корреляция (r=0,57; p
Проатерогенная биологическая активность ЛП-ФЛА2
Этот фермент накапливается в АСБ, где катализирует гидролиз фосфолипидов окисленных ЛНП, в результате чего образуются такие медиаторы воспаления и атерогенеза, как лизофосфатидилхолин и окисленные свободны.
Липопротеин-ассоциированная фосфолипаза А2 как независимый маркер риска сердечно-сосудистых заболеваний
Сердечно-сосудистые заболевания (ССЗ) являются основной причиной смерти в мире. По оценкам экспертов, ССЗ уносят жизнь 17,9 миллиона человек ежегодно, что составляет примерно 31% всех смертей в мире, из которых 85% связаны с ишемической болезнью сердца (ИБС), включая инфаркт миокарда и инсульт. Из-за их широкой распространенности и высокой смертности ССЗ стали основной проблемой общественного здравоохранения.
Хотя традиционные факторы риска для этих патологических состояний, к которым относятся гипертензия, сахарный диабет, табакокурение и гиперхолестеринемия, позволили создать модель для прогнозирования риска, до 20% пациентов с ИБС не имеют этих факторов, а 40% имеют только один. Более того, в 35% случаев у больных с ИБС, которые умерли, уровень холестерина липопротеинов низкой плотности (ЛПНП) был в пределах нормальных значений. Такая стратегия с использованием модели для прогнозирования риска ССЗ является экономически неэффективной и обладает ограниченной прогностической ценностью. Дальнейшие исследования, направленные на улучшение стратификации риска при ССЗ, привели к созданию и внедрению в практическую медицину новых биомаркеров, среди которых высокочувствительный С‑реактивный белок (hs-CRP), мозговой натрийуретический пептид (NT‑proBNP) и липопротеин-ассоциированная фосфолипаза А2 (Lр-PLA2). В клинических исследованиях было показано, что активность и масса Lp-PLA2 в плазме тесно связаны с атерогенными липидами и сосудистым риском, что послужило основанием для применения данного фермента в качестве биомаркера сердечно-сосудистых заболеваний, а ингибирование его активности может представлять привлекательную терапевтическую стратегию.
Биохимические свойства и механизм действия Lp-PLA2
Связь липопротеин-ассоциированной фосфолипазы А2 с риском ССЗ
Интерес к Lp-PLA2 как биомаркеру ССЗ возник после публикации отчета WOSCOPS (West of Scotland Coronary Prevention Study), в котором была показана положительная связь между увеличением концентрации Lp-PLA2 в крови и риском коронарных событий. Один из важных выводов WOSCOPS заключался в том, что в отличие от таких воспалительных биомаркеров, как h-CRP, количество лейкоцитов и фибриногена, только ассоциация Lp-PLA2 с риском коронарных событий не зависела от действия других факторов. Это было подтверждено в других исследованиях, включая MONICA (Monitoring of trends and determinants in сardiovascular disease), Rotterdam Study, Rancho Bernardo и Bruneck. В метаанализе Collaboration такая связь была изучена в 32 проспективных исследованиях, которые включали 79 000 участников (35 945 субъектов, не имеющих в анамнезе сосудистых заболеваний в начале исследования, 32 453 пациента со стабильной ИБС и 10 638 пациентов с диагнозом «острый коронарный синдром»). При анализе учитывалась корректировка по возрасту, полу и факторам липидного и нелипидного риска. У здоровых людей не обнаружена связь между активностью Lp-PLA2 и коронарными заболеваниями сердца или ишемическим инсультом.
В многочисленных публикациях приводятся данные эпидемиологических исследований, наглядно подтверждающие наличие связи между уровнем Lp-PLA2 и риском возникновения ССЗ. Исследования, в которых оценивалась роль Lp-PLA2 как фактора, влияющего на стратификацию риска ССЗ, представлены в таблице.
В настоящее время определение Lp-PLA2 включено в американские и европейские протоколы оценки сердечно-сосудистого риска для пациентов: ACCF/AHA Guideline for Assessment of Cardiovascular Risk in Asymptomatic Adults (2010), AHA/ASA Guidelines for the Primary Prevention of Stroke (2011), AACE Guidelines for Management of Dyslipidemia and Prevention of Atherosclerosis (2012), European Guidelines on CVD Prevention in Clinical Practice – European Society of Cardiology (2012).
Методы определения Lp-PLA2
Для определения Lp-PLA2 используются два метода – определение концентрации фермента (по массе) и его ферментативной активности. Необходимо отметить, что еще в 2005 г., после многолетних проспективных исследований, тест для измерения массы Lp-PLA2 был официально одобрен FDA (Food and Drug Administration, USA) для оценки риска ССЗ и ишемического инсульта.
Измерение Lp-PLA2 (по массе)
Для определения Lp-PLA2 по массе используется коммерческий набор PLAC ® Mass Test (diaDexus Inc., South San Francisco, CA). В 2016 г. компания Diazyme Laboratories приобрела все активы diaDexus Inc., поэтому наборы PLAC ® для пользователей сейчас предлагает Diazyme Laboratories Inc., Poway, California, USA.
Тест основан на принципе иммуноферментного анализа (ELISA, сэндвич-метод) с использованием двух специфических моноклональных антител. Плазму добавляют в лунки микропланшета с анти-Lp-PLA2 моноклональными антителами (2С10) и инкубируют в течение 10 мин при комнатной температуре. Затем добавляют вторые моноклональные антитела (4В4), меченные ферментом пероксидазой хрена, и инкубируют в течение 180 мин. Лунки промывают и добавляют субстрат тетраметилбензидин. После 20 мин инкубации
измеряют поглощение при 450 нм, которое прямо пропорционально концентрации Lp-PLA2 в плазме. Концентрация Lp-PLA2 выражается в единицах нг/мл (область измерения 1,2-2000 нг/мл).
Измерение Lp-PLA2 (активность)
Набор PLAC ® Тest Activity (Diazyme Laboratories Inc.) основан на определении ферментативной активности Lp-PLA2 в сыворотке или плазме. При определении активности Lp-PLA2 происходит гидролиз субстрата 1-миристоил‑2-(4-нитрофенил-сукцинила) фосфатидилхолина в положении sn‑2 с образованием окрашенного продукта реакции 4-нитрофенола. Скорость образования 4-нитрофенола измеряется спектрофотометрически, а активность Lp-PLA2 рассчитывается по скорости изменения абсорбции. Активность фермента выражается в единицах нмоль/мин/мл (область измерения 10-382 нмоль/мин/мл).
Важно заметить, что измерения Lp-PLA2 по массе и активности представляют частично потенциально разные физиологически значимые виды Lp-PLA2. Метод определения Lp-PLA2 по массе заключается в том, что эпитопы фермента подвергаются воздействию антител в присутствии интактных липопротеинов, тогда как при анализе активности Lp-PLA2 это осуществляется после деструкции липопротеинов детергентом. Поэтому определение Lp-PLA2 по массе представляет собой «экспозиционную» Lp-PLA2, а Lp-PLA2 активность – это общие Lp-PLA2 в плазме.
Хотя в клинических исследованиях было показано, что с риском ССЗ связаны оба параметра, характеризующие Lp-PLA2 (масса и ферментативная активность), в настоящее время только тест для определения Lp-PLA2 (масса) разрешен для клинического применения. Этому тесту присвоен также знак CE, подтверждающий соответствие стандартам качества и безопасности Европейского союза.
Референсные значения Lp-PLA2
Повышение концентрации Lp-PLA2 имеет клинический пограничный уровень – 200 нг/мл, выше которого риски резко возрастают (рис. 2).
Во многих клинических лабораториях рекомендуются следующие референсные уровни Lp-PLA2:
Клиническое использование Lp-PLA2: экспертные рекомендации
Для улучшения прогнозирования риска развития ССЗ следует измерять уровень Lp-PLA2 и использовать полученные данные в дополнение к традиционным факторам риска. Измерение уровня Lp-PLA2 рекомендуется проводить у пациентов с умеренным риском (предположительно здоровые лица с двумя или более традиционными факторами риска, что по Фрамингемской шкале 10-летнего риска соответствует 10-20%), а также у пациентов с высоким риском (установленный диагноз ИБС или с факторами риска, равнозначными ИБС), нуждающихся в более радикальной коррекции стиля жизни и липид-модифицирующей терапии. Клиническим порогом, который дает право на переклассификацию риска, является значение Lp-PLA2 ≥200 нг/мл. Эта величина получена на основе обзора исследований, в которых был показан заметный рост риска наступления сердечно-сосудистых событий у пациентов с превышением данного порога. Таким образом, лица из группы умеренного риска, у которых были определены значения Lp-PLA2 ≥200 нг/мл, реклассифицируются и получают статус пациентов с высоким риском развития ИБС, а пациенты с ИБС или факторами риска, равнозначными ИБС, и повышенным уровнем Lp-PLA2 переводятся в группу очень высокого риска (рис. 3).
Выводы
ССЗ являются одной из основных причин заболеваемости и смертности в мире. Частота ССЗ в значительной степени может быть уменьшена или сведена к минимуму, если на ранней стадии выявлены факторы риска. Одним из высокоспецифических биомаркеров является липопротеин-ассоциированная фосфолипаза А2, которая считается самостоятельным фактором риска ССЗ.
Преимущества и отличия Lp-PLA2 по сравнению с другими тестами:
Список литературы находится в редакции.
Медична газета «Здоров’я України 21 сторіччя» № 21 (466), листопад 2019 р.
СТАТТІ ЗА ТЕМОЮ Діагностика
У рамках науково-практичної конференції до Всесвітнього дня безпеки пацієнта «Безпека пацієнта, безпека медицини» виступив генеральний директор медичної лабораторії ДІЛА Олексій Бабич. Тема його доповіді надто важлива для медичної спільноти – «Солідарна відповідальність: держава, лікар, лабораторія і пацієнт», що має на меті забезпечення високого рівня діагностики та лікування.
У рамках міжнародної школи онкогематології з професором Іриною Крячок 1 липня відбувся майстер-клас, присвячений важливим питанням діагностики та 2-ї лінії лікування множинної мієломи. Серед експертів заходу була провідний фахівець з імунодіагностики онкогематологічних захворювань Медичної лабораторії «Діла» Валерія Валеріївна Конашенкова. Вона розповіла про роль імунофенотипування методом проточної цитометрії у діагностиці та моніторингу множинної мієломи.
Спірометрія – сучасний метод дослідження стану легень, який використовують при порушеннях функції зовнішнього дихання і хронічному кашлі. Цей вид діагностики безболісний, високоінформативний, проводиться в кабінеті лікаря і дозволяє підібрати ефективну терапію при бронхіальній астмі, запаленні та емфіземі легень, плевриті, хронічному бронхіті. Метод включає ряд тестів із подальшою розшифровкою за допомогою спеціального приладу – спірографа. Обстеження проводиться за призначенням алерголога, терапевта, педіатра, кардіолога, пульмонолога, а також під час профілактичних оглядів.
Перекисное окисление липидов и активность липопротеин-ассоциированной фосфолипазы А2 в сыворотке крови у больных неалкогольной жировой болезнью печени
Опубликовано в журнале:
« Поликлиника » 4/2015 Л.А. Звенигородская, Т.В. Нилова, А.В. Петраков, МКНЦ (ЦНИИГ), Москва
Ключевые слова: неалкогольная жировая болезнь печени, малоновый диальдегид фосфолипаза А2,оксид азота, эндотоксин.
Цель настоящего исследования – определить уровень малонового диальдегида (МДА) у больных НАЖБП в сыворотке крови и его связь с повреждением мембран гепатоцитов в зависимости от морфологической картины заболевания. Выявить взаимосвязь перекисного и фосфолипазного механизма повреждения мембран гепатоцитов с другими маркерами воспаления эндотоксином и оксидом азота.
Материалы и методы исследования
Содержание ФЛА2 определяли иммуноферментным методом с помощью диагностических наборов PLAC TEST Elisa Kit(CША). Метод позволяет провести измерение белка секретируемой ФЛА2 при использовании высокоспецифичных моноклональных антител. ПОЛ определяли по содержанию МДА с тиобарбитуровой кислотой. [1] Для определения эндотоксина применяли хромогенный метод по конечной точке с использованием ЛАЛ теста (Limulus amebocyte lysate, США). Уровень метаболитов оксида азота определяли скрининг-методом в биологических жидкостях как маркер дисфункции эндотелия с хлоридом ванадия (Германия). [11] Статистическую обработку данных провели с использованием программ «Биостат» и Статистика.
Введение
Свободнорадикальные реакции ПОЛ протекают во всех клетках и тканях живых организмов, в основном в биомембранах, и представляют собой каскад окислительных реакций деградации ненасыщенных жирных кислот, входящих в состав фосфолипидов. В клетках здорового организма уровень ПОЛ является жизненно важным звеном в регуляции проницаемости и транспорта веществ через мембраны, в синтезе простагландинов, метаболизме стероидных гормонов и других клеточных механизмах. [3]
Окислительные реакции с участием свободных радикалов рассматриваются в настоящее время как необходимый процесс в регуляции клеточного метаболизма. Особо важное значение ПОЛ для организма заключается в обновлении мембран клеток. При нарушении структуры и функции клеточной мембраны изменяется концентрация ионов по обе стороны мембраны, повреждаются функции сигнальных и транспортных систем. Это приводит к развитию инсулинорезистентности.
Полиненасыщенные жирные кислоты (ПНЖК) являются субстратами для синтеза простагландинов. Избыток кальция активирует фосфолипазу А2, что отражается на структуре фосфолипидов, в митохондриях уменьшается содержание фосфатидилхолина и фосфатидилэтаноламина. При активации фосфолипаз из фосфолипидов высвобождаются ПНЖК и легко окисляются.
Окисление ПНЖК с образованием эндоперекисей может происходить в процессе ПОЛ, которое необходимо для синтеза лейкотриенов, регуляции липидного состава мембран, метаболизма катехоламинов и фагоцитоза. Стационарный уровень протекания ПОЛ регулируется антиоксидантной системой, которая ограничивает образование липидных радикалов.
Супероксиддисмутаза, каталаза и глутатионзависимые ферменты сохраняют клетки от окислительного стресса. Активность ферментов антиоксидантной защиты снижалась при воспалении, а активация фосфолипазы увеличивалась. [5] Ингибировать глутатионзависимые ферменты могут продукты фосфолипазного гидролиза – свободные жирные кислоты. Важную роль в антиоксидантной защите организма играют пептиды, в состав которых входят SH-содержащие аминокислоты: цистеин, цистин и метионин. Особое место занимает глутатион, образованный аминокислотами цистеином, глицином и глутаминовой кислотой. SH-содержащие соединения защищают клетки от повреждающего действия свободных радикалов. Дефицит холина и метионина способствует угнетению фермента cтеаторил-коэнзим А-десатураза-1 (SСД-1), которая катализирует десатурацию пальмитиновой и стеариновой кислот, регулирует запасы ТГ в клетке и проявляет защитное действие на клетки печени. Низкая активность SСД-1 усугубляет тяжесть течения стеатогепатита. [19]
В качестве основных механизмов перехода от стеатоза к стеатогепатиту рассматривают ускоренный липолиз, аккумуляцию липидов в гепатоцитах, оксидативный стресс с формированием избытка свободных радикалов, повреждение ДНК и некроз гепатоцитов.
При стеатогепатите морфологические изменения характеризуются формированием гигантских митохондрий, что ведет к апоптозу клеток. Воспалительная реакция представлена внутридольковыми инфильтратами на фоне жировой дистрофии гепатоцитов. Также наблюдаются жировые кисты, «пустые» ядра гепатоцитов, липогранулемы. [2]
Воспалительная реакция начинается с эндотелия. При воспалении, гипоксии, эндотоксиновой агрессии происходит нарушение функции эндотелия. Макрофаги под действием эндотоксина выделяют оксид азота, который легко проникает в клетки и взаимодействует с ферментами и белками. Оксид азота ингибирует калий-натрий-АТФ-азу, тем самым снижается чувствительность к инсулину, ингибируются митохондриальные ферменты, цитохром-Р-450, который метаболизирует жирные кислоты и холестерин, происходит накопление СЖК в клетках печени. В условиях гипергликемии усиливаются процессы ПОЛ, что может индуцировать апоптоз, за счет активации ядерного фактора транскрипции, повышающего экспрессию индуцибельной синтазы оксида азота. [8,20]
Влияние ЛПС и других медиаторов воспаления на функцию печени вызывает экспрессию синтеза фосфолипазы А2 и усиление жировой инфильтрации печени. Усиление гепатоцитами и клетками эндотелия синтеза ФЛА2 формирует воспалительный процесс.
Липопротеин-ассоциированная фосфолипаза А2 (ФЛА2) гидролизует фосфолипиды в ЛПВП и ЛПНП в кровотоке. В результате гидролиза образуется лизо-фосфатидилхолин (лизо-ФХ) – активный провоспа-лительный липид, который стимулирует образование активных форм кислорода нейтрофилами, клетками эндотелия и макрофагами в интиме артерий. Лизо-ФХ также изменяет активность синтазы оксида азота и количество синтезируемого NO.
Лизо-ФХ играет ключевую роль в атерогенезе, являясь цитотоксичным к клеткам сосудов, резко изменяет текучесть мембран, способствует высвобождению медиаторов воспаления, также изменяет активность синтазы оксида азота и количество синтезируемого NO.
Происходит нарушение эндотелий зависимой ва-зодилатации за счет снижения биодоступности оксида азота для гладкомышечных клеток артериол. [14] Липо-литический фермент ФЛА2 проявляет свою активность в клетках печени. Особое значение имеет фосфолипаз-ная активность митохондрий, которая играет ведущую роль в развитии некротических изменений в клетке.
Результаты исследования и их обсуждение
Верхней границей физиологического уровня принято считать 200 нг/мл. У больных НАЖБП в стадии стеатогепатита (НАСГ) содержание ФЛА2 у 33 больных (40%) было повышено в 3,8 раза (медиана 199,7–528,2 нг/мл) и составило 493,6±81,93 нг/мл. У 22 больных из них высокий риск сердечно-сосудистых осложнений (медиана 324,3–764,4), в среднем 488,9±25,86 нг/мл. ФЛА, мг/мл
Рис. 1а. Содержание ФЛА у больных НАЖБП
Рис. 1б. Корреляционное соотношение ФЛА2 с ЛПНП
При попадании в кровоток ФЛА2 связывается и транспортируется с ЛПНП, отмечена тесная корреляционная связь ФЛА2 с ЛПНП (r=0,957). Р2 у 47 больных (60%) в среднем 129,7±6,22 нг/ мл. Активность фермента в плазме и тканях регулируется индукцией цитокинов и бактериальных токсинов и коррелирует со степенью развития патологических процессов при различных заболеваниях.
У 65 больных НАЖБП в стадии НАСГ было определено в сыворотке крови содержание МДА и ФЛА2. Содержание МДА у этих больных было увеличено в 2 раза и составило в среднем 18,81 ±1,24 мкмоль/л, в контроле 9,94±1,62 мкмоль/л. МДА мкмоль/л
Рис. 2а. Перекисное окисление липидов (ПОЛ).
Содержание малонового диальдегида (МДА) у больных НАЖБП
Рис. 2б. Корреляция ФЛА2-МДА
Отмечен высокий уровень ФЛА2 (640 нг/мл) и МДА (15,98 мкмоль/л) у 26 больных НАСГ и низкий уровень ФЛА2 при нормальном содержании МДА у остальных больных НАЖБП. и МДА находятся в отрицательной корреляционной зависимости, коэффициент корреляции –0,578.
Рис. 3а. Содержание ФЛА2 в сыворотке крови у больных НАЖБП
Рис. 3б. Содержание МДА в сыворотке крови у больных НАЖБП
Рис. 3в. Корреляционное соотношение между ФЛА2 и МДА
При чрезмерном накоплении липидов в гепатоцитах усиливаются процессы ПОЛ, что ведет к некрозу гепатоцитов, нарушению функций митохондрий, постепенному развитию фиброза печени и формированию стеатогепатита.
Сравнительный анализ содержания стабильных метаболитов оксида азота в сыворотке крови больных и контрольной группы показал, что воспалительный процесс в группе стеатогепатита достоверно сопровождался повышенной продукцией оксида азота. Уровень метаболитов возрастал параллельно концентрации аминотрансфераз. Отмечена корреляционная зависимость оксида азота и аланиновой трансаминазой (АЛТ) r=0,86 Р=0,001). Уровень ФЛА2 возрастал при воспалении у больных НАСГ и коррелировал с уровнем оксида азота (r=0,62 Р=0,001).
Рис. 4. Морфология. Жировая инфильтрация гепатоцитов при стеатозе печени
Рис. 5. Морфология. Смешанноклеточный внутридольковый инфильтрат при стеатогепатите
Рис. 6. Морфология. Фагоцитарные гранулемы и перигепатоцеллюлярный фиброз при стеатогепатите
У больных с висцеральным ожирением и инсулинорезистентностью усиление оксидативного стресса приводит к инактивации NO за счет накопления реактивных кислородных радикалов. Нарушается равновесие в системе NO в сторону увеличения концентрации сосудосуживающих факторов и снижении биодоступности NO. Повреждение эндотелия сосудов усугубляется воздействием окисленных форм ЛПНП.
Обильный рост патогенной микрофлоры вызывает формирование бактериального воспаления в слизистой оболочке тонкой кишки, что вызывает активацию процессов ПОЛ.
Содержание эндотоксина в сыворотке крови было повышено у больных НАСГ по сравнению с контролем и больными стеатозом печени. При попадании ЛПС в системный кровоток он связывается с белком и запускает каскад иммунных реакций. Эндотоксемия определяется как циркуляция в крови бактериальных эндотоксинов в концентрации выше 2,5 ЕЭ. [10]
Отмечена корреляционная связь между содержанием эндотоксина и оксида азота (r=0,62, Р=0,001). Повышение эндотоксина и оксида азота выявлено при прогрессировании воспалительной инфильтрации в печени, что доказывает участие маркеров воспаления в патогенезе НАЖБП.
При НАЖБП маркеры воспаления были повышены при воспалительной стадии перехода стеатоза к стеатогепатиту параллельно повышению печеночных ферментов и морфологической картине воспалительной инфильтрации в печени.
НАЖБП часто ассоциируется с метаболическими нарушениями: повышенной массой тела, дислипидемией, сердечно-сосудистыми заболеваниями, сахарным диабетом типа 2.
В настоящее время для лечения больных НАЖБП используют препараты, сочетающие в себе антиоксидантную защиту, стабилизацию мембран гепатоцитов, противовоспалительную терапию. Получены убедительные данные о влиянии препарата Дибикор на углеводный и жировой обмен при НАЖБП. Дибикор – лекарственный препарат (ПИК-ФАРМА, Россия), действующим веществом которого является таурин. Дефицит таурина в печени приводит к нарушению желчевыделения и образования камней.
Желчные кислоты препятствуют развитию ожирения и тканевой резистентности к инсулину. Повышение растворимости гидрофильности желчных кислот достигается конъюгированием с аминокислотами глицином и таурином. Соединяясь с холевой кислотой, таурин образует парные желчные кислоты и непосредственно участвует во всасывании жиров и жирорастворимых витаминов, а также способствует выведению холестерина.
Дибикор может быть использован для коррекции и профилактики метаболических нарушений в терапии НАЖБП. Клиническая эффективность препарата Дибикор была оценена у больных с НАЖБП и СД типа 2, нарушением толерантности к глюкозе. Двойное слепое плацебо-контролируемое сравнительное исследование проводилось на базе ЦНИИГ.
Дибикор назначался по 0,5 г 2 раза в день за 20 минут до еды в течение 3 месяцев. Все больные продолжали получать подобранную терапию по поводу сахарного диабета – метформина гидрохлорид 1000мг\сут и эналаприла малеат 20 мг\ сут. Прием Дибикора статистически значимо улучшал показатели билирубина, АСТ, АЛТ, ХС, фибриногена, веса, ИМТ. АЛТ снижалась с 51,48±8,9 Е\л до 32,98±5,93 (Р=0,001), АСТ с 39,13±6,53 Е\л до 26,81±2,99 (Р=0,01), ГГТП с 68,86±17,56Е\л до 63,45±18,4. Снижались также метаболиты оксида азота с 220,7±14,27 до 123,9 ±8,13мкмоль\л и содержание эндотоксина с 2,2 ЕЭ\мл до 0,9 ЕЭ\мл.
Фармакотерапия больных НАЖБП с включением препарата Дибикор, который проявляет свойства антиоксиданта, способствует удалению свободных радикалов за счет повышения доступности глутатиона и гипотаурина, таурин ингибирует генерацию активных молекул перекисей и супероксидных анионов, тем самым снижается уровень малонового диальдегида и активность маркеров воспаления.
Применение Дибикора улучшает самочувствие больных, способствует нормализации АД, приводит к улучшению углеводного и жирового обмена, проявляет гепатопротективный эффект, что может быть использовано в лечении больных и профилактике НАЖБП.
Выводы
Выявлена взаимосвязь между маркерами воспаления (ФЛА2, NO, Эт, МДА), морфологической картиной печени и активностью печеночных ферментов.
Активность липопротеин-ассоциированной фосфо-липазы А2 при НАСГ у 40% больных была увеличена в 3,8 раза по сравнению с контрольной группой и сте-атозом, что сопровождалось повышением активности печеночных ферментов и тяжестью морфологических изменений. При НАЖБП развивается недостаточность антиок-сидантной системы в результате активации процессов ПОЛ. Содержание МДА в сыворотке крови было увеличено в 2 раза у больных НАЖБП при стеатогепатите в 30% случаев. Активность ФЛА2 и уровень МДА находятся в корреляционной зависимости (r=-578).
Повышение эндотоксина, оксида азота и активность ФЛА2 наблюдается при прогрессировании воспалительной инфильтрации в печени. Применение Дибикора в комплексной терапии НАЖБП снижает активность маркеров воспаления, оказывает положительный эффект на антиоксидантную систему клетки и удаление супероксидных радикалов.
Литература
1. Андреева Л. И., Кожемякин Л. А., Кишкун А. А. Модификация метода определения перекисей липидов в тесте с тиобарбитуровой кислотой // Лабор. дело. 1988. № 11. С. 41-43.
2. Буеверов А. О., Богомолов П. О., Маевская М. В. Патогенетическое лечение неалкогольного стеатогепатита: обоснование, эффективность, безопасность // Тер. архив. Т. 2007. № 8. С. 1-4.
3. Горожанская Э. Г. Свободнорадикальное окисление и механизмы антиоксидантной защиты в нормальной клетке и при опухолевых заболеваниях // Клин. лаб. диагн. 2010. № 6. С. 28-44.
4. Драпкина О. М. Атерогенная дислипидемия и печень // Приложение к журналу Consilium medicum. 2013. № 1. С. 52-56.
5. Жаворонок Т. В., Степовая Е. А., Рязанцева Н. В. и др. Нарушение окислительного метаболизма при острых воспалительных заболеваниях // Клин. лаб. диагн. 2006. № 12. С. 10-14.
6. Звенигородская Л. А., Нилова Т. В., Ткаченко Е. В., Варванина Г. Г. Клиническое значение определения содержания липопротеин-ассоциированной фосфолипазы А2 в диагностике НАЖБП // Гастроэнтерология. 2, 2013. Приложение Consilium medicum. C. 42-46.
7. Звенигородская Л. А., ЧеркашоваЕ. А., Нилова Т. В. Гиполипидемическая терапия у больных с НАЖБП // Эффективная фармакотерапия. Гастроэнтерология. № 2. 2012. С. 22-32.
8. Ивашкин В. Т., Драпкина О. М., Корнеева О. Н. Клинические варианты метаболического синдрома. – М.: ООО Издательство «Медицин. информац. агентство. – 2012. – 216 с.
9. Ивашкин В. Т., Маевская М. В. Липотоксичность и метаболические нарушения при ожирении // Рос. журн. гастро-энтер. гепатол. колопроктол. 2010. № 1. С. 4-13.
10. Ивашкин В. Т., Морозова М. А., Маевская М. В. Основные причины лихорадки у пациентов с нарушением функции печени // Рос. журн. гастроэнтерол. гепатол. колопроктол. 2010. № 1. С. 21-29.
11. Метельская В. А., Гуманова Н. Г. Оксид азота в регуляции биологических функций. Методы определения в крови человека // Лаб. медицина. 2005. № 7. С. 17-24.
12. Нозадзе Д. Н., Семенова А. Е., Каминная В. И. и др. Липопротеин ассоциированная фосфолипаза А2 – новая позиция в системе стратификации риска.// Атеросклероз и дислипидемии.2011№1 С.39-46
13. Титов В. Н. Альбумин. Транспорт насыщенных жирных кислот и метаболический стресс синдром // Клин. лаб. диагн. 1999. № 4. С. 3-11.
14. Титов В. Н., Дугин С. Ф. Синдром транслокации, липополисахариды бактерий, нарушения биологических реакций воспаления и артериального давления // Клин. лаб. диагн. 2010. № 4. С. 21-37.
15. Федосьина Е. А., Маевская М. В. Применение урсодезоксихолевой кислоты при неалкогольном и алкогольном стеатогепатите // Рос. журн. гастроэнтерол., гепатол. и колопроктол. 2010. № 3. С. 29-36.
16. Чернов Ю. Н., Васин М. В., Батищева Г. А. Патологические изменения клеточных мембран при ишемической болезни сердца и возможные пути фармакологической коррекции // Эксперим. и клин. фармак. 1992. Т. 57. № 4. С. 67-72.
17. Шульпекова Ю. О. Роль липидов в патогенезе НАЖБП // Рос. журн. гастроэнтерол., гепатол., колопроктол. 2012. № 1. С. 45-56. 18. Gorelick P. B. Lipoprotein-associated phospholipase A2 and risk of stroke. Am. J. Cardiol. 2008, 101 (12A) 34 F. – 40 F.
19. Li Z. Z., Berk M., McIntyre T. M. et al. Hepatic lipid partitioning and liver gamage in Nonalcoholic fatty liver disease role of steatoril-CoA desaturase // J. Biol. Chtm. 2009. 284 (9) 5637-44.
20. Lin K. T., Xue J. Y., Nomen M. et. al. Peroxynitrite-induced apoptosis in cells // J. Biol. Chem. 1995. 270, 16487-90.