Что такое фигура неправильной формы

8 необычных геометрических форм, о существовании которых ты вряд ли знал

Что такое фигура неправильной формы. brodude.ru 10.06.2019 zSlIHtWHTvuAB. Что такое фигура неправильной формы фото. Что такое фигура неправильной формы-brodude.ru 10.06.2019 zSlIHtWHTvuAB. картинка Что такое фигура неправильной формы. картинка brodude.ru 10.06.2019 zSlIHtWHTvuAB. Какие фигуры ты знаешь? Квадрат, круг, треугольник. Этого вполне достаточно для повседневных задач. Но форм куда больше, чем ты можешь себе представить, и они порой настолько необычные, что кажется, будто их выдумали, просто чтобы потренироваться в фантазии.

Какие фигуры ты знаешь? Квадрат, круг, треугольник. Этого вполне достаточно для повседневных задач. Но форм куда больше, чем ты можешь себе представить, и они порой настолько необычные, что кажется, будто их выдумали, просто чтобы потренироваться в фантазии.

1. Тор

Если говорить научным языком, тор, или, как его ещё называют, тороид, — это поверхность, получаемая вращением образующей окружности вокруг оси, лежащей в плоскости этой окружности и не пересекающей её. Звучит непонятно, и человеку, незнакомому с геометрией, вообще невозможно представить, что это такое.

А на самом деле всё просто, ведь тор ты видишь каждый день — это форма бублика, пончика, спасательного круга, шины колеса и всего похожего на них. Что касается природы, то и в ней встречаются такие фигуры. Например, форму тора имеют вихревые потоки, электромагнитные поля, траектории элементарных частиц.

Так что в следующий раз, когда тебя спросят, какую форму имеет пончик, можешь сказать, что это тор.

2. Треугольник Рёло

Треугольник Рёло — это область пересечения трёх равных кругов с центрами в вершинах правильного треугольника и радиусами, равными его стороне. Сам треугольник чем-то напоминает медиатор для гитары и имеет не прямые, а изогнутые грани.

Его ты тоже регулярно встречаешь в обычной жизни. Так, например, треугольник Рёло используют в сфере искусства для уже упомянутых струнных инструментов, а также при рисовании различных диаграмм, где несколько элементов по кругу, сочетаясь между собой, приводят к центральному ядру.

Кроме того, треугольник Рёло — это одна из первых изобретённых человеком форм, так как древние люди, изготавливая свои примитивные орудия труда из камня, нередко обтачивали их именно в такой форме, что позволяло использовать их с любой стороны.

3. Гиперболоид

Гиперболоид — это трёхмерная форма, которая напоминает песочные часы. Существуют однополостные и двухполостные гиперболоиды. Вторые ты можешь увидеть в тех знаменитых тарелках спутниковой связи, а также в телескопах, если интересуешься астрономией. Не путай гиперболоид с гиперболой — это разные вещи.

4. Аполлонийская прокладка, или аполлоническая сетка

Это очень сложная фигура, состоящая из одного большого круга с кругами меньшего размера, которые заполняют пространство внутри него.

Эта фигура редко где используется, и её можно было встретить в старых калейдоскопах, а также в искусстве. В художественных школах иногда ученики рисуют аполлонийские прокладки для отработки навыка рисования ровных кругов от руки.

5. Балбис

Думаешь, что буква Н — это просто буква? На самом деле это геометрическая форма, которую по-простому можно описать как одну первичную линию, которая завершается вторичной линией на одном конце и ещё одной — на другом. Завершающие линии располагаются под прямым углом к первичной, а его параллельные стороны могут быть бесконечно длинными.

6. Лента Мёбиуса

Про эту фигуру ты мог слышать в каких-нибудь фантастических фильмах, да и то редко. Это простейшая неориентируемая поверхность, являющаяся односторонней и непрерывной в трёхмерном пространстве. Лучше увидеть ленту Мёбиуса своими глазами, чтобы понять, что это такое. Если ты хочешь пошутить над человеком, то просто попроси его развернуть ленту Мёбиуса так, чтобы она не изгибалась. Заранее скажем, что сделать это невозможно.

7. «Рыбий пузырь»

Эта фигура больше известна как Vesica piscis, и она образована пересечением двух кругов с одинаковым радиусом, наложенных так, что центр одного лежит на окружности другого.

Где ты мог видеть такую фигуру? К примеру, в эмблеме Audi или Олимпийских игр. Также «рыбий пузырь» можно встретить в средневековой архитектуре в орнаментах и мозаиках.

8. Лемниската

Не зря лемниската идет у нас под восьмым номером, ведь своим видом она напоминает именно эту цифру, а также символ бесконечности. Эта плоская алгебраическая кривая может иметь несколько фиксированных фокусов, и от количества точек будет зависеть её конечная форма.

Источник

Основные геометрические фигуры

Что такое фигура неправильной формы. 5fbdfa3c48b88027829628. Что такое фигура неправильной формы фото. Что такое фигура неправильной формы-5fbdfa3c48b88027829628. картинка Что такое фигура неправильной формы. картинка 5fbdfa3c48b88027829628. Какие фигуры ты знаешь? Квадрат, круг, треугольник. Этого вполне достаточно для повседневных задач. Но форм куда больше, чем ты можешь себе представить, и они порой настолько необычные, что кажется, будто их выдумали, просто чтобы потренироваться в фантазии.

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Основные понятия

Основные геометрические фигуры на плоскости — это точка и прямая линия. А простейшие фигуры — это луч, отрезок и ломаная линия.

Минимальный объект в геометрии — точка. Ее особенность в том, что она не имеет размеров: у нее нет высоты, длины, радиуса. У точки можно определить только ее расположение, которое принято обозначать одной заглавной буквой латинского алфавита.

Из множества точек может получится линия, а из нескольких соединенных между собой линий — геометрические фигуры.

Что такое фигура неправильной формы. 61307d172cabf067646674. Что такое фигура неправильной формы фото. Что такое фигура неправильной формы-61307d172cabf067646674. картинка Что такое фигура неправильной формы. картинка 61307d172cabf067646674. Какие фигуры ты знаешь? Квадрат, круг, треугольник. Этого вполне достаточно для повседневных задач. Но форм куда больше, чем ты можешь себе представить, и они порой настолько необычные, что кажется, будто их выдумали, просто чтобы потренироваться в фантазии.

Обучение на курсах по математике поможет быстрее разобраться в видах и свойствах геометрических фигур.

Каждая математическая фигура имеет собственную величину, которую можно измерить при помощи формул и внимательности.

Площадь — это одна из характеристик замкнутой геометрической фигуры, которая дает нам информацию о ее размере. S (square) — знак площади.

Периметром принято называть длину всех сторон многоугольника. Периметр обозначается заглавной латинской P.

Если параметры переданы в разных единицах измерения длины, нужно перевести все данные к одной единице измерения.

Популярные единицы измерения площади:

Геометрические тела — часть пространства, которая ограничена замкнутой поверхностью своей наружной границы.

Если все точки фигуры принадлежат одной плоскости, значит она является плоской.

Объемная фигура — геометрическая фигура, у которой все точки не находятся на одной плоскости.

Примеры объемных геометрических фигур:

Рассмотрим подробнее некоторые фигуры, разберем их определения и свойства.

Прямоугольник

Прямоугольник — четырехугольник, у которого все стороны пересекаются под прямым углом.

Узнать площадь прямоугольника помогут следующие формулы:

Диагональ — это отрезок, который соединяет противоположные вершины фигуры. Он есть во всех фигурах, число вершин которых больше трех.

Периметр прямоугольника — сумма длины и ширины, умноженная на два.

P = 2 × (a + b), где a — ширина, b — высота.

Что такое фигура неправильной формы. 613080258b20c661370641. Что такое фигура неправильной формы фото. Что такое фигура неправильной формы-613080258b20c661370641. картинка Что такое фигура неправильной формы. картинка 613080258b20c661370641. Какие фигуры ты знаешь? Квадрат, круг, треугольник. Этого вполне достаточно для повседневных задач. Но форм куда больше, чем ты можешь себе представить, и они порой настолько необычные, что кажется, будто их выдумали, просто чтобы потренироваться в фантазии.

Квадрат

Квадрат — это тот же прямоугольник, у которого все стороны равны.

Найти площадь квадрата легко:

Что такое фигура неправильной формы. 5fbdfc6046cda175715571. Что такое фигура неправильной формы фото. Что такое фигура неправильной формы-5fbdfc6046cda175715571. картинка Что такое фигура неправильной формы. картинка 5fbdfc6046cda175715571. Какие фигуры ты знаешь? Квадрат, круг, треугольник. Этого вполне достаточно для повседневных задач. Но форм куда больше, чем ты можешь себе представить, и они порой настолько необычные, что кажется, будто их выдумали, просто чтобы потренироваться в фантазии.

Периметр квадрата — это длина стороны, умноженная на четыре.

P = 4 × a, где a — длина стороны.

Что такое фигура неправильной формы. 613081534caf7237493227. Что такое фигура неправильной формы фото. Что такое фигура неправильной формы-613081534caf7237493227. картинка Что такое фигура неправильной формы. картинка 613081534caf7237493227. Какие фигуры ты знаешь? Квадрат, круг, треугольник. Этого вполне достаточно для повседневных задач. Но форм куда больше, чем ты можешь себе представить, и они порой настолько необычные, что кажется, будто их выдумали, просто чтобы потренироваться в фантазии.

Трапеция

Трапеция — это четырехугольник, у которого две стороны параллельны, а две не параллельны.

Основное свойство: в трапецию можно вписать окружность, если сумма ее оснований равна сумме боковых сторон.

Как найти площадь трапеции:

S = (a + b) : 2 × h, где a, b — два разных основания, h — высота трапеции.

Что такое фигура неправильной формы. 5fbdfcc469693847086300. Что такое фигура неправильной формы фото. Что такое фигура неправильной формы-5fbdfcc469693847086300. картинка Что такое фигура неправильной формы. картинка 5fbdfcc469693847086300. Какие фигуры ты знаешь? Квадрат, круг, треугольник. Этого вполне достаточно для повседневных задач. Но форм куда больше, чем ты можешь себе представить, и они порой настолько необычные, что кажется, будто их выдумали, просто чтобы потренироваться в фантазии.

Построить высоту трапеции можно, начертив отрезок так, чтобы он соединил параллельные стороны и был расположен перпендикулярно к этим основаниям.

Формула периметра для равнобедренной трапеции отличается от прямоугольника тем, что у равнобедренной трапеции есть две равные стороны.

P = a + b + 2 × c, где a, b — параллельные стороны, c — две длины одинаковых сторон.

Что такое фигура неправильной формы. 5fbdfce39b4be200501801. Что такое фигура неправильной формы фото. Что такое фигура неправильной формы-5fbdfce39b4be200501801. картинка Что такое фигура неправильной формы. картинка 5fbdfce39b4be200501801. Какие фигуры ты знаешь? Квадрат, круг, треугольник. Этого вполне достаточно для повседневных задач. Но форм куда больше, чем ты можешь себе представить, и они порой настолько необычные, что кажется, будто их выдумали, просто чтобы потренироваться в фантазии.

Параллелограмм и ромб

Параллелограмм — четырехугольник, противоположные стороны которого попарно параллельны

Ромб — это параллелограмм с равными сторонами.

Общие формулы расчета площади фигур:

Периметр ромба — это произведение длины стороны на четыре.

P = 4 × a, где a — длина стороны.

Что такое фигура неправильной формы. 6130843aef82a200915865. Что такое фигура неправильной формы фото. Что такое фигура неправильной формы-6130843aef82a200915865. картинка Что такое фигура неправильной формы. картинка 6130843aef82a200915865. Какие фигуры ты знаешь? Квадрат, круг, треугольник. Этого вполне достаточно для повседневных задач. Но форм куда больше, чем ты можешь себе представить, и они порой настолько необычные, что кажется, будто их выдумали, просто чтобы потренироваться в фантазии.

Периметр параллелограмма — сумма длины и ширины, умноженная на два.

P = 2 × (a + b), где a — ширина, b — высота.

Что такое фигура неправильной формы. 6130857807794335592288. Что такое фигура неправильной формы фото. Что такое фигура неправильной формы-6130857807794335592288. картинка Что такое фигура неправильной формы. картинка 6130857807794335592288. Какие фигуры ты знаешь? Квадрат, круг, треугольник. Этого вполне достаточно для повседневных задач. Но форм куда больше, чем ты можешь себе представить, и они порой настолько необычные, что кажется, будто их выдумали, просто чтобы потренироваться в фантазии.

Треугольник

Треугольник — это такая фигура, которая образуется, когда три отрезка соединяют три точки, не лежащие на одной прямой. Эти три точки принято называть вершинами, а отрезки — сторонами.

Рассчитать площадь треугольника можно несколькими способами по исходным данным, давайте их рассмотрим.

S = 0,5 × a × h, где a — длина основания, h — высота, проведенная к основанию.

Что такое фигура неправильной формы. 5fbdfe49b1c55954362692. Что такое фигура неправильной формы фото. Что такое фигура неправильной формы-5fbdfe49b1c55954362692. картинка Что такое фигура неправильной формы. картинка 5fbdfe49b1c55954362692. Какие фигуры ты знаешь? Квадрат, круг, треугольник. Этого вполне достаточно для повседневных задач. Но форм куда больше, чем ты можешь себе представить, и они порой настолько необычные, что кажется, будто их выдумали, просто чтобы потренироваться в фантазии.

Основание может быть расположено иначе, например так:

Что такое фигура неправильной формы. 5fbdfe6a7e5f8169667888. Что такое фигура неправильной формы фото. Что такое фигура неправильной формы-5fbdfe6a7e5f8169667888. картинка Что такое фигура неправильной формы. картинка 5fbdfe6a7e5f8169667888. Какие фигуры ты знаешь? Квадрат, круг, треугольник. Этого вполне достаточно для повседневных задач. Но форм куда больше, чем ты можешь себе представить, и они порой настолько необычные, что кажется, будто их выдумали, просто чтобы потренироваться в фантазии.

При тупом угле высоту можно отразить на продолжение основания:

Что такое фигура неправильной формы. 5fbdfe8b5658d546778934. Что такое фигура неправильной формы фото. Что такое фигура неправильной формы-5fbdfe8b5658d546778934. картинка Что такое фигура неправильной формы. картинка 5fbdfe8b5658d546778934. Какие фигуры ты знаешь? Квадрат, круг, треугольник. Этого вполне достаточно для повседневных задач. Но форм куда больше, чем ты можешь себе представить, и они порой настолько необычные, что кажется, будто их выдумали, просто чтобы потренироваться в фантазии.

При прямом угле основанием и высотой будут его катеты:

S = 0,5 × a × b × sinα, где a и b — две стороны, sinα — синус угла между ними.

S = (a × b × с) : 4 × R, где a, b и с — стороны треугольника, а R — радиус описанной окружности.

S = p × r, где р — полупериметр треугольника, r — радиус вписанной окружности.

Что такое фигура неправильной формы. 5fbdff416938e992311162. Что такое фигура неправильной формы фото. Что такое фигура неправильной формы-5fbdff416938e992311162. картинка Что такое фигура неправильной формы. картинка 5fbdff416938e992311162. Какие фигуры ты знаешь? Квадрат, круг, треугольник. Этого вполне достаточно для повседневных задач. Но форм куда больше, чем ты можешь себе представить, и они порой настолько необычные, что кажется, будто их выдумали, просто чтобы потренироваться в фантазии.

Периметр треугольника — это сумма длин трех его сторон.

P = a + b + c, где a, b, c — длина стороны.

Что такое фигура неправильной формы. 5fbdff5b336c0758964312. Что такое фигура неправильной формы фото. Что такое фигура неправильной формы-5fbdff5b336c0758964312. картинка Что такое фигура неправильной формы. картинка 5fbdff5b336c0758964312. Какие фигуры ты знаешь? Квадрат, круг, треугольник. Этого вполне достаточно для повседневных задач. Но форм куда больше, чем ты можешь себе представить, и они порой настолько необычные, что кажется, будто их выдумали, просто чтобы потренироваться в фантазии.

Формула измерения периметра для равностороннего треугольника — это длины стороны, умноженная на три.

P = 3 × a, где a — длина стороны.

Что такое фигура неправильной формы. 5fbdff86022a3465002557. Что такое фигура неправильной формы фото. Что такое фигура неправильной формы-5fbdff86022a3465002557. картинка Что такое фигура неправильной формы. картинка 5fbdff86022a3465002557. Какие фигуры ты знаешь? Квадрат, круг, треугольник. Этого вполне достаточно для повседневных задач. Но форм куда больше, чем ты можешь себе представить, и они порой настолько необычные, что кажется, будто их выдумали, просто чтобы потренироваться в фантазии.

Круг — это множество точек на плоскости, которые удалены от центра на равном радиусу расстоянии.

Окружность — это граница круга.

Радиус окружности — это расстояние от центра окружности до любой точки на ней.

Диаметр круга — это отрезок, который соединяет две точки на окружности и проходящий через ее центр. Диаметр круга равен двум его радиусам.

Формулы площади круга:

Периметр круга или длина окружности — это произведение радиуса на два Пи или произведение диаметра на Пи.

L = d × π = 2 × r × π, где d — диаметр, r — радиус, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

Источник

Что такое неправильный прямоугольник?

Кроме того, каковы примеры неправильных форм?

Примеры неправильных форм

Таким образом, имеет ли прямоугольник неправильную форму?

Также знать Как найти диагональ неправильного прямоугольника?
Нахождение диагонали неправильного четырехугольника

Что такое участок неправильной формы?

Площадь неправильной формы означает пространство, занимаемое фигурой, измеряется в квадратных единицах. Неправильная форма может быть любого размера и длины. … Любая форма, стороны и углы которой не равны по длине, называется неправильной формой.

Как найти неправильные формы?

Чтобы найти область неправильной формы, для начала нам понадобится чтобы разделить неправильную форму на правильные формы которые вы можете распознать, например, треугольники, прямоугольники, круги, квадраты и т. д. Затем найдите области этих отдельных форм и добавьте их, чтобы получить область неправильных форм.

Как определить неправильную форму?

У правильных форм все стороны равны, а внутренние (внутренние) углы равны. Неправильные формы иметь стороны и углы любой длины и размера.

Как называется неправильная 5-гранная форма?

Например, фигура с пятью сторонами разной длины и внутренними углами, которые измеряются по-разному, по-прежнему остается пятиугольником. Однако они часто добавляют перед ним слово «неправильный», чтобы указать, что стороны и углы фигуры не равны. Итак, они назовут это неправильный пятиугольник.

Как называется 4-сторонняя неправильная форма?

Неправильный четырехугольник: четырехсторонняя форма, у которой нет одинаковых сторон и внутренние углы. Все внутренние углы по-прежнему составляют 360 °, как и у всех других правильных четырехугольников.

Какая формула диагонали?

Как выглядит диагональ?

Имена формКоличество вершинКоличество диагоналей
декагон1035

Какая диагональ прямоугольного треугольника?

Как найти неправильные формы?

Можно определить участки неправильных фигур разделив фигуру на квадраты и прямоугольники. Некоторые неправильные фигуры состоят из прямоугольных или квадратных областей. Площади таких неправильных фигур можно определить, вычислив площади этих прямоугольников и квадратов.

Как разделить участки неправильной формы?

Что такое неправильная фигура в математике?

Что такое неправильный треугольник?

Что такое неправильный нонагон?

A нонагон, в котором все стороны не равны и все углы не равны. Размеры его углов различны, но общая сумма всех его внутренних углов всегда составляет 1260 °.

Что такое неправильная трехмерная форма?

Неправильные формы формы, у которых стороны и внутренние углы не одинаковы. … С другой стороны, у правильных форм есть стороны одинаковой длины и равные углы, поэтому часто их немного легче идентифицировать. Вы можете найти примеры как неправильных 2D, так и неправильных трехмерных форм.

Что такое 5-сторонняя форма?

Пятиугольник представляет собой пятисторонний многоугольник. Правильный пятиугольник имеет 5 равных граней и 5 равных углов.

Ромб неправильной формы?

Что такое фигура 5?

Как называются 4-сторонние формы?

Определение: Четырехугольник представляет собой многоугольник с 4 сторонами.

Какие бывают 4 типа параллелограммов?

Что такое диагональ?

Какова формула периметра квадрата?

Периметр квадрата определяется как длина, которую охватывает его граница. Формула для вычисления периметра квадрата имеет следующий вид: P = 4 × сторона.

Источник

Правильные фигуры в геометрии

Онлайн-конференция

«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»

Свидетельство и скидка на обучение каждому участнику

Что такое фигура неправильной формы. presentation bg. Что такое фигура неправильной формы фото. Что такое фигура неправильной формы-presentation bg. картинка Что такое фигура неправильной формы. картинка presentation bg. Какие фигуры ты знаешь? Квадрат, круг, треугольник. Этого вполне достаточно для повседневных задач. Но форм куда больше, чем ты можешь себе представить, и они порой настолько необычные, что кажется, будто их выдумали, просто чтобы потренироваться в фантазии.

Описание презентации по отдельным слайдам:

Описание слайда:

Правильные фигуры
в геометрии
Учитель математики Беленкова Ольга Александровна

Описание слайда:

Правильные многоугольники
Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны.
Центром правильного многоугольника называется точка, равноудаленная от всех его вершин и всех его сторон.
Центральным углом правильного многоугольника называется угол, под которым видна сторона из его центра.

Описание слайда:

Свойства правильного многоугольника:
Правильный многоугольник является вписанным в окружность и описанным около окружности.
Центр правильного многоугольника совпадает с центрами вписанной и описанной окружностей.
Периметры правильных n-угольников относятся как радиусы описанных окружностей.

Описание слайда:

Виды правильных многоугольников.

Описание слайда:

Правильные многогранники
«Правильных многогранников вызывающе мало, – написал когда-то Л. Кэрролл – но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук».

Описание слайда:

Многогранник- это такое тело, поверхность которого состоит из конечного числа плоских многоугольников.
Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого плоского многоугольника на его поверхности.
Общая часть такой плоскости и поверхности выпуклого многогранника называется гранью. Грани выпуклого многогранника являются плоскими выпуклыми многоугольниками.
Стороны граней называются рёбрами многогранника, а вершины – вершинами многогранника.

Описание слайда:

Существует 5 видов правильных многогранников:
1)тетраэдр
2) гексаэдр
3) додекаэдр
4)октаэдр
5)икосаэдр

Описание слайда:

Тетраэдр
Свойства:
Параллельные плоскости, проходящие через пары скрещивающихся рёбер тетраэдра, определяют описанный около тетраэдра параллелепипед.
Отрезок, соединяющий вершину тетраэдра с точкой пересечения медиан противоположной грани, называется его медианой, опущенной из данной вершины.
Отрезок, соединяющий середины скрещивающихся рёбер тетраэдра, называется его бимедианой, соединяющей данные рёбра.
Отрезок, соединяющий вершину с точкой противоположной грани и перпендикулярный этой грани, называется его высотой, опущенной из данной вершины.
Теорема. Все медианы и бимедианы тетраэдра пересекаются в одной точке. Эта точка делит медианы в отношении 3:1, считая от вершины. Эта точка делит бимедианы пополам.

Описание слайда:

Гексаэдр
Свойства :
Четыре сечения куба являются правильными шестиугольниками — эти сечения проходят через центр куба перпендикулярно четырём его главным диагоналям.
В куб можно вписать тетраэдр двумя способами. В обоих случаях четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба и все шесть рёбер тетраэдра будут принадлежать граням куба. В первом случае все вершины тетраэдра принадлежат граням трехгранного угла, вершина которого совпадает с одной из вершин куба. Во втором случае попарно скрещивающиеся ребра тетраэдра принадлежат попарно противолежащим граням куба. Такой тетраэдр является правильным.
В куб можно вписать октаэдр, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба.
Куб можно вписать в октаэдр, притом все восемь вершин куба будут расположены в центрах восьми граней октаэдра.
В куб можно вписать икосаэдр, при этом шесть взаимно параллельных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра — внутри куба. Все двенадцать вершин икосаэдра будут лежать на шести гранях куба.

Описание слайда:

Додекаэдр
(от греческого dodeka – двенадцать и hedra – грань) Правильный многогранник, составленный из 12 равносторонних пятиугольников. Додекаэдр имеет 20 вершин и 30 ребер. Вершина додекаэдра является вершиной трех пятиугольников, таким образом, сумма плоских углов при каждой вершине равна 324°.

Описание слайда:
Описание слайда:

Икосаэдр
Свойства:
Икосаэдр можно вписать в куб, при этом, шесть взаимно перпендикулярных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра внутри куба, все двенадцать вершин икосаэдра будут лежать на шести гранях куба
В икосаэдр может быть вписан тетраэдр, притом, четыре вершины тетраэдра будут совмещены с четырьмя вершинами икосаэдра.
Икосаэдр можно вписать в додекаэдр, при этом вершины икосаэдра будут совмещены с центрами граней додекаэдра.
В икосаэдр можно вписать додекаэдр с совмещением вершин додекаэдра и центров граней икосаэдра.
Усечённый икосаэдр может быть получен срезанием 12 вершин с образованием граней в виде правильных пятиугольников. При этом число вершин нового многогранника увеличивается в 5 раз (12×5=60), 20 треугольных граней превращаются в правильные шестиугольники (всего граней становится 20+12=32), а число рёбер возрастает до 30+12×5=90.

Описание слайда:

Спасибо за внимание!

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Источник

Геометрические фигуры. Особенности восприятия детьми формы предметов и геометрических фигур

Что такое фигура неправильной формы. 027d015befac839ab14f2e6ace71581d. Что такое фигура неправильной формы фото. Что такое фигура неправильной формы-027d015befac839ab14f2e6ace71581d. картинка Что такое фигура неправильной формы. картинка 027d015befac839ab14f2e6ace71581d. Какие фигуры ты знаешь? Квадрат, круг, треугольник. Этого вполне достаточно для повседневных задач. Но форм куда больше, чем ты можешь себе представить, и они порой настолько необычные, что кажется, будто их выдумали, просто чтобы потренироваться в фантазии. Чукур Людмила Васильевна
Геометрические фигуры. Особенности восприятия детьми формы предметов и геометрических фигур

«ГЕОМЕТРИЧЕСКАЯ ФИГУРА.

ОСОБЕННОСТИ ВОСПРИЯТИЯ ДЕТЬМИ

ФОРМЫ ПРЕДМЕТОВ И ГЕОМЕТРИЧЕСКИХ ФИГУР»

Подготовила: ст. воспитатель Чукур Л. В.

1. Понятие «геометрическая фигура». Особенности развития представлений о форме предметов у детей дошкольного возраста

Одним из свойств окружающих предметов является их форма. Форма предметов получила обобщенное отражение в геометрических фигурах.

Наблюдая за предметами окружающего мира, люди заметили, что есть некоторое общее свойство, позволяющее объединить предметы в одну группу. Это свойство было названо геометрической фигурой. Геометрическая фигура – это эталон для определения формы предмета, всякое непустое множество точек; обобщенное абстрактное понятие.

Само определение понятия геометрической фигуры дали древние греки. Они определили, что геометрической фигурой является внутренняя область, ограниченная замкнутой линией на плоскости. Активно это понятие применял в своей работе Евклид. Древние греки классифицировали все геометрические фигуры и дали им названия.

Упоминание о первых геометрических фигурах встречается и у древних египтян и древних шумеров. Учеными-археологами был найден папирусный свиток с геометрическими задачами, в которых упоминались геометрические фигуры. И каждая из них называлась каким-то определенным словом.

Таким образом, представление о геометрии и изучаемых этой наукой фигурах имели люди с давних времен, но название, «геометрическая фигура» и названия всем геометрическим фигурам дали древнегреческие ученые.

В наше время знакомство с геометрическими фигурами начинается с раннего детства и продолжается на всём пути обучения. Дошкольники, познавая окружающий мир, сталкиваются с разнообразием форм предметов, учатся называть и различать их, а затем знакомятся и со свойствами геометрических фигур.

Форма – это внешнее очертание предмета. Множество форм бесконечно.

Представления о форме предметов возникают у детей достаточно рано. В исследованиях Л. А. Венгера выясняется, возможно ли различение формы предметов детьми, у которых еще не сформировался акт хватания. В качестве индикатора он использовал ориентировочную реакцию ребенка в возрасте 3-4 месяцев.

Л. А. Венгер заметил также, что что на геометрической фигуре с изменением пространственной ориентации возникает такое же зрительное сосредоточение, как и на новой геометрической фигуре.

Исследования М. Денисовой и Н. Фигурина показали, что грудной ребенок по форме на ощупь определяет бутылочку, соску, материнскую грудь. Зрительно дети начинают различать форму предметов с 5 месяцев. При этом индикатором различения являются движения рук, корпуса по направлению к экспериментальному объекту и схватывание его (при пищевом подкреплении).

В других исследованиях выявлено, что, если предметы отличаются цветом, то ребенок 3-х лет выделяет их форму только в том случае, если предмет знаком ребенку из практического опыта (опыт манипуляций, действий).

Это доказывает и тот факт, что ребенок одинаково узнает прямые и перевернутые изображения (может рассматривать и понимать знакомые картинки, держа книжку «вверх ногами», предметы, окрашенные в несвойственные цвета (черное яблоко, но квадрат, повернутый на угол, т. е. в виде ромба, не узнает, так как исчезает непосредственное сходство формы предмета, которого нет в опыте.

2. Особенности восприятия детьми дошкольного возраста формы предметов и геометрических фигур

Одним из ведущих познавательных процессов детей дошкольного возраста является восприятие. Восприятие помогает отличить один предмет от другого, выделить какие-то предметы или явления из других похожих на него.

Первичное овладение формой предмета осуществляется в действиях с ним. Форма предмета, как таковая, не воспринимается отдельно от предмета, она является его неотъемлемым признаком. Специфические зрительные реакции прослеживания контура предмета появляются в конце второго года жизни и начинают предшествовать практическим действиям. Действия детей с предметами на разных этапах различны.

Исследования психолога С. Н. Шабалина показывают, что геометрическая фигура воспринимается дошкольниками своеобразно. Если взрослый воспринимает ведро или стакан как предметы, имеющие цилиндрическую форму, то в его восприятие включается знание геометрических форм. У дошкольника происходит обратное явление.

В 4-5 лет ребенок начинает сравнивать геометрическую фигуру с предметом: про квадрат говорит «это как платочек».

В результате организованного обучения дети начинают выделять в окружающих предметах знакомую геометрическую фигуру, сравнивать предмет с фигурой (стаканчик как цилиндр, крыша как треугольник, учится давать правильное название геометрической фигуры и формы предмета, в их речи появляются слова «квадрат», «круг», «квадратный», «круглый» и т. п.

Проблему знакомства детей с геометрическими фигурамии их свойствами следует рассматривать в двух аспектах:

• в плане сенсорного восприятия форм геометрических фигур и использования их как эталонов в познании форм окружающих предметов;

• в смысле познания особенностей их структуры, свойств, основных свя-зей и закономерностей в их построении, т. е. собственно геометри-ческого материала.

Контур предмета это общее начало, которое является исходным как для зрительного, так и для осязательного восприятия. Однако вопрос о роли контура в восприятии формы и формировании целостного образа требует еще дальнейшей разработки.

Первичное овладение формой предмета осуществляется в действиях с ним. Форма предмета, как таковая, не воспринимается отдельно от предмета, она является его неотъемлемым признаком. Специфические зрительные реакции прослеживания контура предмета появляются в конце второго года жизни и начинают предшествовать практическим действиям.

Уже на втором году жизни дети свободно выбирают фигурупо образцу из таких пар: квадрат и полукруг, прямоугольник и треугольник. Но различать прямоугольник и квадрат, квадрат и треугольник дети могут лишь после 2,5 лет. Отбор же по образцу фигур более сложной формы доступен примерно на рубеже 4-5 лет, а воспроизведение сложной фигуры осуществляют дети пятого и шестого года жизни.

Под обучающим воздействием взрослых восприятие геометрических фигур постепенно перестраивается. Геометрические фигуры начинают восприниматься детьми как эталоны, с помощью которых познание структуры предмета, его формы и размера осуществляется не только в процессе восприятия той или иной формы зрением, но и путем активного осязания, ощупывания ее под контролем зрения и обозначения словом.

Совместная работа всех анализаторов способствует более точному восприятию формы предметов. Чтобы лучше познать предмет, дети стремятся коснуться его рукой, взять в руки, повернуть; причем рассматривание и ощупывание различны в зависимости от формы и конструкции познаваемого объекта. Поэтому основную роль в восприятии предмета и определении его формы имеет обследование, осуществляемое одновременно зрительным и двигательно-осязательным анализаторами с последующим обозначением словом. Однако у дошкольников наблюдается весьма низкий уровень обследования формы предметов; чаще всего они ограничиваются беглым зрительным восприятием и поэтому не различают близкие по сходству фигуры (овал и круг, прямоугольник и квадрат, разные треугольники).

Сравнение фигуры с формой того или иного предмета помогает детям понять, что с геометрическими фигурами можно сравнивать разные предметы или их части. Так, постепенно геометрическая фигура становится эталоном определения формы предметов.

3. Особенности обследования и этапы обучения обследованию детьми дошкольного возраста формы предметов и геометрических фигур

Известно, что в основе познания всегда лежит сенсорное обследование, опосредованное мышлением и речью. В исследованиях Л. Венгера с детьми 2-3 лет индикатором зрительного различения формы предметов служили предметные действия ребенка.

По исследованиям С. Якобсон, В. Зинченко, А. Рузской дети 2-4 лет лучше узнавали предметы по форме, когда предлагалось сначала ощупать предмет, а потом найти такой же. Более низкие результаты наблюдались тогда, когда предмет воспринимался зрительно.

Исследования Т. Гиневской раскрывают особенности движений рук при обследовании предметов по форме. Детям завязывали глаза и предлагали ознакомиться с предметом путем осязания.

В 3-4 года – движения исполнительные (катают, стучат, возят). Движения немногочисленны, внутри фигуры, иногда (однократно) по осевой линии, много ошибочных ответов, смешение разных фигур. В 4-5 лет – движения установочные (зажимают в руке). Количество движений увеличивается в два раза; судя по траектории, ориентированы на размер и площадь; крупные, размашистые, обнаруживаются группы близко расположенных фиксаций, относящихся к наиболее характерным признакам фигуры; дают более высокие результаты. В 5-6лет – движения обследовательские (прослеживание контура, проверка на упругость). Появляются движения, прослеживающие контур, однако они охватывают наиболее характерную часть контура, другие части оказываются необследованными; движения внутри контура, количество то же, высокие результаты; как и в предыдущий период, наблюдается смешение близких фигур. В 6-7 лет – движения по контуру, пересечение поля фигуры, причем движения сосредотачиваются на наиболее информативных признаках, наблюдаются отличные результаты не только при узнавании, но и при воспроизведении.

Таким образом, для того, чтобы ребенок выделил существенные признаки геометрических фигур, необходимо их зрительное и двигательное обследование. Движения рук организовывают движения глаз и этому детей необходимо научить.

Этапы обучения обследованию

Второй этап обучения детей 5-6 лет должен быть посвящен формированию системных знаний о геометрических фигурах и развитию у них начальных приемов и способов «геометрического мышления».

«Геометрическое мышление» вполне возможно развить еще в дошкольном возрасте. В развитии «геометрических знаний» у детей прослеживается несколько различных уровней.

Первый уровень характеризуется тем, что фигура воспринимается детьми как целое, ребенок еще не умеет выделять в ней отдельные элементы, не замечает сходства и различия между фигурами, каждую из них воспринимает обособленно.

На втором уровне ребенок уже выделяет элементы в фигуре и устанавливает отношения как между ними, так и между отдельными фигурами, однако еще не осознает общности между фигурами.

На третьем уровне ребенок в состоянии устанавливать связи между свойствами и структурой фигур, связи между самими свойствами. Переход от одного уровня к другому не является самопроизвольным, идущим параллельно биологическому развитию человека и зависящим от возраста. Он протекает под влиянием целенаправленного обучения, которое содействует ускорению перехода к более высокому уровню. Отсутствие же обучения тормозит развитие. Обучение поэтому следует организовывать так, чтобы в связи с усвоением знаний о геометрических фигурах у детей развивалось и элементарное геометрическое мышление.

Познание геометрических фигур, их свойств и отношений расширяет кругозор детей, позволяет им более точно и разносторонне воспринимать форму окружающих предметов, что положительно отражается на их продуктивной деятельности (например, рисовании, лепке).

Большое значение в развитии геометрического мышления и про-странственных представлений имеют действия по преобразованию фигур (из двух треугольников составить квадрат или из пяти палочек сложить два треугольника).

Все эти разновидности упражнений развивают пространственные представления и начала геометрического мышления детей, формируют у них умения наблюдать, анализировать, обобщать, выделять главное, существенное и одновременно с этим воспитывают такие качества личности, как целенаправленность, настойчивость.

Итак, в дошкольном возрасте происходит овладение перцептивной и интеллектуальной систематизацией форм геометрических фигур. Перцептивная деятельность в познании фигур опережает развитие интеллектуальной систематизации.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *