Что такое фазы питания материнской платы
Что такое фазы питания VRM материнской платы?
VRM: важный в роли, но часто забытый
На каждой материнской плате есть цепь рядом с CPU, называемая модулем регулятора напряжения или VRM. Задача VRM состоит в том, чтобы сделать питание от блока питания пригодным для использования процессором и помочь, стабилизировать его. Если бы не VRM, ваш процессор даже не работал бы!
ОЗУ также имеет гораздо меньший, более простой VRM рядом со слотами оперативной памяти. Тем не менее, обычно фокусируется только на VRM процессора. Тяжёлый разгон ОЗУ выполняется немногими, и ОЗУ потребляет меньше энергии, чем ЦП, поэтому его часто игнорируют.
Технический материал: силовые фазы
В VRM есть две отдельные группы фаз питания. Один используется для ядер ЦП, а другой используется другими частями ЦП, например, встроенным графическим процессором. На типичной материнской плате фазы питания, используемые для ядер ЦП (те, которые нас интересуют больше всего), находятся слева от ЦП, в то время как другие находятся над ним, но это не всегда так, особенно для небольших материнских плат.
По мере увеличения количества фаз питания время, в течение которого данная фаза питания «работает», уменьшается. Например, если у вас есть две фазы питания, каждая фаза работает 50% времени. Добавьте третью, и каждая фаза работает только 33% времени, и так далее.
Если предположить, что используются одни и те же компоненты, то чем больше фаз вы добавите, тем круче будет работать каждая фаза, тем больше мощности сможет выдать VRM и тем стабильнее будет напряжение на процессоре. Чем больше энергии использует ваш процессор, тем горячее работает VRM. Работа кулера увеличивает срок службы VRM и снижает риск перегрева, что может стать проблемой для оверклокеров. Более высокая выходная мощность снижает риск перегрузки VRM, что может привести к выключению системы или замедлению работы процессора. Лучшая стабильность питания ЦП может в ограниченной степени снизить необходимое напряжение для стабильности разгона, повышения температуры ЦП и теоретического срока службы.
Качество фазы
Важно понимать, что большее количество фаз питания не обязательно означает лучший VRM. Фактический выбор компонентов во всем VRM имеет большое значение для рабочих температур и того, какую мощность способен выдержать VRM. Преимущество большего количества фаз заключается в стабильности напряжения, которое выдает VRM, в то время как температура и способность выходной мощности VRM находятся в воздухе.
Четыре фазы вполне могут быть лучшим выбором, чем восемь фаз, если компоненты достаточно лучше. С практической точки зрения, больше этапов, лучший выбор, но это не всегда так, поэтому лучше рассмотреть это в каждом конкретном случае.
Обманчивый маркетинг и дизайн
Довольно распространенная конструкция, используемая производителями материнских плат, заключается в удвоении количества компонентов, используемых в каждой фазе питания, без удвоения количества фаз питания. Те, кто не знает лучше, могут предположить, что вы можете подсчитать количество дросселей для подсчета количества фаз питания. Что возможно и более важно, производители материнских плат часто (но не всегда) используют эту конструкцию, одновременно требуя более высокого числа фаз. Хотя количество фаз питания не увеличивается, фактическое качество фаз все еще увеличивается, что значительно повышает выходную мощность VRM, а также рабочие температуры.
Эта практика вводит в заблуждение и не идеальна по сравнению с более актуальными фазами, но она все же помогает. ASUS Z390 Maximus XI Hero и MSI B450M Mortar (Titanium) считаются примерами такого дизайна, хотя и не являются обманчивым маркетингом. Тем не менее, Asrock Fatal1ty AB350 Gaming-ITX/ac, безусловно, считается примером притязательного подсчета количества фаз с использованием этой конструкции.
Производители материнских плат иногда выходят за рамки маркетинга двухкомпонентных фаз как дополнительные фазы, даже не удваивая все компоненты, но при этом требуют большего числа фаз. Они могут добавить еще один дроссель и, возможно, один транзистор (хотя и более важный, который обрабатывает большую часть мощности), чтобы создать видимость большего количества фаз, но не добавлять отдельные фазы. Это делает любую ложь о подсчете фаз еще более вопиющей и (в ограниченной, но не большой степени) уменьшает реальную выгоду. Gigabyte B450 Aorus M и Aorus Elite, Biostar B450MHC и ASUS TUF Z370-Pro Gaming являются примерами этого дизайна, хотя у них нет претензий по количеству фаз, связанных с ними.
Вывод
В конечном счете, в системах с процессорами последнего поколения беспокойство о VRM будет в основном актуально для тех, кто хочет достичь высоких разгонов, а не для обычных пользователей. До тех пор, пока производитель не укажет определенный процессор TDP как не поддерживаемый, вы можете использовать любой современный процессор на материнской плате с совместимым сокетом и запускать его без разгона и без проблем.
Основанное на доступных в настоящее время материнских платах, маловероятно, что вы столкнетесь с какими-либо существенными неудачами с любой приличной (фактической) четырехфазной материнской платой и четырехъядерным или шестиядерным процессором, а также с шестифазной материнской платой и восьмиъядерной центральный процессор (по крайней мере, до тех пор, пока его охлаждение не будет ужасным, как на ASRock Z390 Pro4). И если вы не пытаетесь побить рекорды разгона или используете процессор с 16+ ядрами, практические преимущества для виртуальных виртуальных машин высшего класса, которые могут иметь более восьми высококачественных фаз питания, невелики. Температура всегда может быть проблемой, но фактические температуры всегда будут варьироваться между пользователями и их оборудованием, в то время как какое-либо влияние на срок службы материнской платы неясно.
Все это говорит о том, что для большинства людей не стоит беспокоиться о VRM. Для нас, обычных пользователей, лучше сосредоточиться в основном на функциях и, возможно, эстетике, которую обеспечивает материнская плата. Но, зная это, вы можете сделать свой выбор более эффективно для ваших нужд.
Сколько фаз нужно материнской плате
При сборке настольного компьютера максимум внимания обычно уделяется процессору, видеокарте и оперативной памяти. В то время как материнская плата чаще всего выбирается по модели чипсета и цене. В редких случаях пользователи среднего звена обращают внимание на наличие встроенных модулей беспроводной сети и звуковой модуль Realtek.
Однако материнская плата – это платформа, которая должна обеспечить все необходимые условия работы для компонентов ПК и в первую очередь процессора. Поэтому ключевым моментом выбора материнской платы должны стать фазы питания процессора. Что это такое и какое количество является оптимальными расскажем в этой статье.
Кратко о подсистеме питания материнской платы
Не будем глубоко погружаться в электротехнику и постараемся кратко объяснить структуру подсистемы питания материнской платы.
Называется она Voltage Regulator Module, поэтому часто можно встретить аббревиатуру VRM. Это часть общей электрической цепи материнской платы, которая отвечает за снабжение процессора напряжением.
Ее задача – преобразование параметров поступающего в систему электрического тока, до значений, необходимых для стабильной работы центрального процессора.
Блок питания компьютера выдает напряжения 3,3В, 5В и 12В. Процессору среднего уровня производительности для работы требуется порядка 0,9 – 1,5В. Причем, в зависимости от нагрузки, это значение постоянно меняется в большую или меньшую сторону. VRM материнской платы преобразует 12 В в напряжение, требуемое процессору, и при этом контролирует уровень потребления и обеспечивает повышение параметров при работе под нагрузками или после разгона.
Рабочими элементами подсистемы питания являются:
Цепь из пяти этих элементов и называется фазой. Все фазы подсистемы работают синхронно, обеспечивая идентичные значения напряжения и силы тока. Именно сила тока является показателем производительности фазы питания. Значение силы тока одной фазы среднего сегмента пользовательских платформ обычно колеблется в пределах 20 – 30 А.
Зачем материнской плате несколько фаз?
В современных пользовательских материнских платах используется от 4+2 фаз до 14+2 фаз у новейших моделей на базе системной логики Z 590. При этом +2 фазы как правило идут для контроллера памяти, и часто находятся рядом с фазами ядра, но иногда они могут быть и вынесены в сторону.
Что такое сдвоенные фазы?
В спецификации материнских плат, сконструированных на базе одного чипсета можно встретить довольно противоречивые значения количества фаз. На одних моделях производитель указывает наличие 8 или 10 фаз, в то время, как у конкурентов модели на тех-же чипсетах оснащены 16 или 20 фазами соответственно. Естественно покупатель при равных ценовых категориях предпочтет более мощную цепь питания и окажется жертвой маркетингового хода.
На самом деле фазы в описании материнских плат не всегда таковыми являются. Причина путаницы – технология «сдвоенных фаз».
Количество фаз определяет PWM-контроллер. В новейших моделях материнских плат после каждого контроллера устанавливается делитель или дублер. Он разделяет сигнал на 2 потока, каждый из которых направляется к собственной цепочке, состоящей из драйвера, ключа и фильтра. Это позволяет существенно увеличить общую мощность цепи питания, и параллельно снизить количество проходящего через каждую цепочку тока, а значит увеличить срок службы элементов цепи питания и снизить уровень нагрева. При этом сигнал существенно теряет в стабильности, поскольку временнóго смещения у пары потоков от одной фазы не будет.
Таким образом 16-фазная система питания и цепь на 8 сдвоенных фаз у материнских плат на одном чипсете – это фактически одно и то же.
Что лучше: 6+2 или 8?
Не все процессорные фазы материнской платы питают ядра процессора. Обычно 2 предусмотрены для питания других элементов архитектуры CPU, например, графического ядра.
И опять-таки, в зависимости от маркетинговой компании производителя это может быть отражено в спецификации материнской платы различными способами:
6 + 2 – распределение фаз на ядра и другие компоненты CPU.
8 – это может быть, как число фаз только на ядра, так и их общее количество.
Подробнее этот момент можно уточнить в спецификации материнской платы на сайте производителя. Обязательно учитывайте его при выборе материнской платы.
Сколько фаз выбрать?
Подсистему питания выбирают в соответствие с производительностью процессора по следующей примерной схеме:
4 фазы – Intel Core i3 и AMD Ryzen 3.
6 – 8 фаз – Intel Core i3 и Core i5 с возможностью разгона, Core i7 без; AMD Ryzen 5 и Ryzen 7.
10 фаз и более – топовые модели процессоров Intel Core i9 и AMD Ryzen 9 с функцией разгона, а также Threadripper.
Выбор подсистемы процессорного питания материнской платы – это именно тот случай, когда лучше переплатить и взять устройство с запасом мощности, чем сэкономить и не позволить процессору реализовать свою производительность.
Из чего состоит VRM материнской платы
Содержание
Содержание
VRM или модуль регулятора напряжения — это важнейший функциональный узел материнской платы, который преобразует 12 В от блока питания в стабилизированное низкое напряжение для процессора и оперативной памяти. Он состоит из пяти базовых функциональных элементов, которые мы подробно разберем.
Подробнее узнать о работе VRM можно в специализированном материале.
PWM-контроллер
Это центр управления всего VRM, который координирует количество энергии, передаваемой от линии 12 В и проходящей через фазы питания на процессор. Pulse-Width Modulation переводится как «широтно-импульсная модуляция», поэтому его еще называют ШИМ-контроллер.
Управление происходит путем изменения ширины импульсов, формируемых контроллером, которые через драйверы поступают на мосфеты (о них расскажем в следующих разделах). Ширина импульсов зависит от количества энергии, необходимой процессору в данный момент времени. Если вычислительная нагрузка возросла, то возрастает и потребляемая мощность, а напряжение питания процессора при этом уменьшается. ШИМ-контроллер через цепь обратной связи фиксирует это и увеличивает ширину управляющих импульсов, тем самым увеличивая количество энергии, поступающее через фазы питания на процессор. Напряжение восстанавливается до исходного значения.
Из блок-схемы видно, что VRM устроен довольно сложно. Казалось бы, зачем городить огород, используя ШИМ-контроллер, драйверы, мосфеты и сглаживающие фильтры? Ведь достаточно применить линейный стабилизатор, который отлично сглаживает выходное напряжение и очень просто устроен. Давайте разберемся.
Линейный стабилизатор состоит из делителя, на вход которого подается напряжение. Стабилизация происходит путем изменения сопротивления регулирующего элемента (РЭ).
Представим, что такой стабилизатор используется для преобразования напряжения блока питания (12 В) в напряжение питания процессора (1,2 В). Ток потребления ЦП с рассеиваемой мощностью 120 Вт при 1,2 В составит 100 А (100 А × 1,2 В = 120 Вт). Он проходит через регулирующий элемент. При этом на последнем выделяется излишек напряжения, равный разнице на входе и выходе (12 – 1,2 = 10,8 В). Рассеиваемая мощность на регулирующем элементе составит внушительные 1080 Вт (100 А × 10,8 В = 1080 Вт), что соответствует мощности среднего обогревателя! Система охлаждения такого модуля питания была бы настоящим монстром и имела колоссальную стоимость. А КПД — всего 10 % (120Вт / 1200Вт = 0,1 × 100 % = 10 %).
Именно поэтому для питания процессоров применяются импульсные стабилизированные источники питания, в частности VRM. Его мосфеты работают импульсно, периодически открываясь (режим насыщения) и закрываясь (режим отсечки). В первом случае сопротивление очень мало, в среднем до 0,004 Ом. Для примера возьмем те же 100 А. Мощность — это ток в квадрате, умноженный на сопротивление: (100 А)2 = 10 000 × 0,004 = 40 Вт. А теперь сравните эту цифру с выделяемой мощностью на линейном стабилизаторе.
Умножитель фазы (даблер)
ШИМ-контроллер имеет ограниченное количество каналов управления и может управлять таким же количеством фаз питания VRM. Чтобы обойти это, применяют умножители фаз, которые увеличивают их в 2-4 раза. Чаще применяется удвоение, поэтому такие элементы называют даблерами.
В схеме VRM сигнал с выходов ШИМ-контроллера подается сперва на даблер. Затем от него два отдельных сигнала идут на драйверы фаз питания.
Умножитель фазы формирует управляющие импульсы со сдвигом по времени, при этом их частота на выходе будет вдвое меньше частоты на входе.
Драйвер
Этот функциональный элемент предназначен для управления парой полевых транзисторных ключей (мосфетов). Он согласует низковольтные сигналы, поступающие с ШИМ-контроллера или даблера с необходимыми управляющими напряжениями.
Переключение ключей из открытого состояния в закрытое (и наоборот) приводит к кратковременному переходу в активный режим работы. В таком режиме у любого транзистора резко увеличивается тепловыделение, поэтому драйвер должен минимизировать этот промежуток. На частотах переключения в районе 500 кГц реализовать это не так уж и просто. Мощные мосфеты обладают достаточно большой емкостью затвора (свыше 100 пФ) — для быстрого переключения драйвер должен очень шустро перезаряжать паразитные емкости.
Кроме того, при одновременном переключении ключей верхнего и нижнего плеча возникает ситуация, когда один ключ еще не успел до конца закрыться, а другой уже открывается. В этом случае через них протекает сквозной ток по цепи 12 В — ключ верхнего плеча — ключ нижнего плеча — корпус. Мосфеты при этом сильно нагреются.
Чтобы подобного не происходило, в задачи драйвера входит формирование задержки между сигналами управления ключей. В этом случае появление сквозных токов сводится к минимуму. Функциональное устройство подробно разбирать не будем, это тема для отдельной статьи.
Мосфеты
MOSFET (Metal Oxide Semiconductor Field Effect Transistor, в переводе «полупроводниковый полевой транзистор на основе оксида металла») — это мощный низковольтный электронный ключ. Такие силовые ключи применяются парами в фазах питания VRM. Ключ верхнего плеча подключается между источником питания 12 В и входом сглаживающего LC-фильтра, а нижнего плеча — между фильтром и корпусом.
При поступлении управляющих сигналов с драйвера на затворы, они поочередно подключают вход сглаживающего фильтра к источнику питания 12 В или к корпусу, обеспечивая необходимые по направлению и по величине токи протекания.
Мосфеты изготавливают на основе кремниевых полупроводников типов N и P.
Полупроводники N-типа выполняют на основе легированного кремния. Это значит, что в него добавлены атомы других химических элементов, которые имеют один лишний электрон по отношению к кремнию. Атомы встраиваются в кристаллическую решетку — в результате образуются излишки, которые и являются основными носителями заряда.
В полупроводниках Р-типа основой тоже выступает кремний, но в него легированы атомы химических элементов, в которых не достает одного электрона. В результате в кристаллической решетке образуются «дырки», которые также являются носителями заряда.
В качестве примера рассмотрим мосфет с N-каналом. Он состоит из подложки P-типа, по краям которой располагаются участки полупроводника (Сток и Исток). Между ними размещается металлическая пластина, называемая Затвором. Она изолирована от подложки диэлектрическим слоем из оксида кремния.
При отсутствии напряжения на Затворе энергии электронов Истока не хватает, чтобы преодолеть энергетический барьер и сформировать канал через подложку к Стоку. Ток не будет протекать через транзистор.
Если подать на затвор отпирающее положительное напряжение, то появится электрическое поле, которое начнет оттеснять основные носители заряда («дырки») вглубь подложки и станет притягивать к себе электроны, образуя канал электропроводимости между Истоком и Стоком. Через транзистор потечет ток.
При увеличении напряжения на затворе, в один момент ток через транзистор достигнет максимального значения и больше расти не будет. Этот режим называется насыщением. Именно в такой режим и входят мосфеты VRM при их открытии.
Фильтры
Сглаживающий фильтр состоит из индуктивности L, подключенной последовательно с нагрузкой, и емкости C, подключенной параллельно. Поэтому иногда его называют LC-фильтром.
Он преобразует короткие импульсы амплитудой 12 В в постоянное низковольтное напряжение питания процессора (1–1,4 В). Процесс проходит в два этапа.
При открытии ключа верхнего плеча через индуктивность начинает протекать ток. Энергия накапливается, заряжая при этом конденсатор.
После того, как напряжение на конденсаторе достигнет установленного значения, ключ верхнего плеча закрывается и открывается нижний. Индуктивность обладает свойством поддерживать неизменным направление и величину тока, поэтому возникшая в ней ЭДС еще некоторое время сохраняет их.
Запасенная энергия расходуется на питание нагрузки, помогая конденсатору. После исчерпания энергии в индуктивности ток через нее прекращается и цикл повторяется снова.
VRM. Что такое, зачем? Фазы и цепи питания.
Зачем нужен VRM?
В современном мире GPU и CPU кристаллы потребляют довольно много энергии, при этом они требуют питание с довольно низким напряжением, что создаёт очень серьезную проблему, связанную с большой силой тока которую передать от блока питания без потерь довольно сложно. Передача больших токов — это вообще значительная проблема и в любых электросетях.
Допустим на электростанциях специально выводят линии высокого напряжения, чтобы передавать большие мощности малыми токами. И уже только вблизи потребителя устанавливаются трансформаторные подстанции понижающие напряжение до бытовых 230 Вольт на фазу, если говорить про российские стандарты.
Именно для того чтобы так это всё работало и не приходилось вести толщенные медные кабели от электростанций и существуют все эти преобразования. По этой же причине мы используем переменный ток. Законы природы подарили нам прекрасное свойство электромагнитных излучений, при котором наведённые ЭДС сильно зависят от того чем они наводятся и на что они наводятся. Поэтому достаточно просто подобрать катушки с нужным числом витков и почти без потери мощности можно трансформировать питание изменяя как нам удобно ток и напряжение. Собственно эти устройства для преобразования переменного тока называются трансформаторами. А нужно нам преобразования чтобы получить нужное питание.
И тут встаёт вопрос в том, что чипам графики и процессора нужно довольно низкое напряжение — менее полутора вольт. И это создает проблемы. Допустим, видеокарта может потреблять 350 и даже более Ватт. Учитывая, что напряжение питания на чип составляет порядка 1,35 Вольт, то получается, что ток в подводящих кабелях должен быть около 260 Ампер. И для передачи такого тока с малыми потерями на 1 метр от блока питания до видеокарты вам нужно будет хотя бы провод сечением в 120-150 квадратных мм. Это должен быть кабель толщина которого примерно как у большого пальца на руке, плюс изоляция и выходит штуковина в почти два сантиметра диаметром. И это всё из меди. Даже отбрасывая вопросы того какими должны быть клеммы для того чтобы они не плавились встают вопросы гибкости такого кабеля, а также токоподводящие кабели будут в несколько раз дороже тех блоков питания, что сейчас продаются.
В общем проблема точно такая же как и с электростанциями. Поэтому требуются компромиссы при которых часть задач по преобразованию отводится в блок питания, а часть остаётся за материнской платой (более того часть отводится сейчас самим процессорам, которые одно входное напряжение трансформируют в несколько более низких уже внутри себя).
Если нам надо использовать VRM, почему весь блок питания нельзя разместить на материнской плате?
Если представить что все вопросы по трансформации брали бы на себя материнские платы, то это бы вызвало ряд проблем. Во первых питание у нас идёт 230 Вольт переменного напряжения. То есть прямо на материнской плате пришлось бы разводить и часть включающую в себя переменное напряжение. А это тоже проблема, и проблема в наводках. Корпуса блоков питания металлические по двум причинам. Первая — это вопрос пожарной безопасности, то есть в случае возникновения открытого горения внутри блока питания — огню через какое-то время будет нечего жечь, корпус при этом не пропустит огонь наружу и горение прекратится. А вторая причина — корпус блока питания металлический и заземлён и он экранирует наводки от переменного напряжения. То есть если бы у нас преобразование происходило на материнской плате, то и в динамиках у нас постоянно бы фонили 50 Герц от розетки и было бы намного больше ошибок записи и чтения данных, особенно на устройствах которые либо записывают и читают изначально по аналоговому (например жёские диски), либо имеют много градаций логических уровней, или требуют точных зарядок и разрядок каких-то элементов, то есть это SSD диски, оперативная память и тому подобное. Всё это бы было плохо электромагнитно совместимо с той частью материнской платы которая бы получала переменное напряжение. Вторая проблема — напряжение 230 Вольт достаточно большое, чтобы пробивать через живые ткани человека, поражая электрическим током пользователя который будет недостаточно аккуратен. А это, помимо прочего, и законодательные проблемы. То есть нельзя будет сертифицировать для розничной продажи отдельные комплектующие, можно было бы в таком случае продавать только полностью собранные компьютеры в корпусе без доступа к его содержимому пользователей. И это тоже проблема.
Поэтому такая штука как отдельный блок питания и существует. И она занимается тем чтобы получать из розетки переменное напряжение, а выдавать несколько наиболее потенциально востребованных выходных постоянных напряжений, но достаточно высоких, чтобы токи были не очень большими, и можно было использовать провода адекватных сечений, но при этом напряжение должно быть не настолько высокое, чтобы пользователя могло ударить током, и чтобы в целом свести возможности случайных замыканий и пробоев к минимуму. И в настоящий момент такое напряжение — это напряжение 12 Вольт. Блок питания выдаёт и другие напряжения, но для самых требовательных компонентов по мощности используются именно 12 Вольтовые линии, так как обеспечивают наименьшие потери при передаче тока.
А всё остальное — то есть преобразование 12 Вольт в более низкое напряжение — это уже выполняется на материнской плате или на плате видеокарты в непосредственной физической близости к самим кристаллам.
Как преобразовать напряжение в более низкое?
И тут возникает главное НО. Дело в том, что переменный ток трансформировать с малыми потерями в мощности довольно просто. Надо намотать катушки с нужными пропорциями витков и поместить их в общий замкнутый магнитный контур и всё. С постоянным напряжением, выходящим из блока питания, трансформатор будет работать только как кипятильник, ничего преобразовывать он не будет.
И тут на помощь приходит импульсный понижающий преобразователь напряжения. Чаще всего мы все эту область называем как VRM.
А характеризуются VRM возможным преобразуемым током и создаваемыми пульсациями. Но эти цифры никто не указывает, а указывают как правило только число фаз питания или число цепей питания. А максимальный ток вообще производители не указывают, потому что иногда меняют элементы в VRM на получше, если первые версии показали проблемы и выходы из строя или на похуже, если производитель хочет сэкономить в ущерб запасу по передаваемой мощности. И чтобы понять что такое фазы, а что такое цепи или линии питания и в чём разница между цепями и фазами нужно для начала понять общий смысл работы импульсного преобразователя напряжения.
Представьте, что у вас есть питание в 12 Вольт, а вам надо 2 вольта.
Кто хорошо помнит школьный курс физики тот может вспомнить, что можно разбить нагрузками цепь так, что в нужных частях вы получите меньшее напряжение. В таком случае альтернативная ветвь либо должна выполнять какую-то другую полезную работу, либо просто рассеивать мощность в тепло.
Данных вид понижающих преобразователей существует и называется линейным регулятором напряжения и бывают случаи когда применяют именно такой метод, но у нас с вами значительная мощностная нагрузка и нам надо очень сильно снизить напряжение, то есть мы берём малую долю от исходных 12 Вольт. В случае использования линейного преобразователя напряжения КПД такого снижения был бы очень низким. Вдобавок у нас процессор и видеокарта потребляют всегда разное количество мощности, а значит и другая нагрузка должна постоянно меняться чтобы напряжение всегда создавалось правильное. То есть это не будут просто резисторы как на схеме, нужна управляемая нагрузка, которую, как правило, ещё и тоже нельзя перегревать, то есть создаётся много проблем.
Этот метод нам не подходит.
В нашем случае куда лучше подойдёт импульсный преобразователь, чтобы понять общий смысл его работы приведу пример. Допустим если у нас за секунду первую 1/6 времени будет 12 Вольт, а оставшихся ⅚ секунды 0 Вольт, то в среднем у нас будет 2 Вольта, которые нам и надо получить.
С точки зрения математики всё прекрасно, мы получили из 12 Вольт — 2 Вольта с КПД 100%, но с точки зрения техники у нас всё равно 12 Вольт вперемешку с отсутствием питания и работать это не будет. Благо есть методы позволяющие частично решить эту проблему. Существует такое электротехническое решение как LC фильтр применяемый в куче разных мест.
Данная конструкция не даёт происходить любым изменениям очень резко, то есть все переходные процессы становятся заторможенными во времени. В том числе размываются и наши включения/выключения.
И в итоге на выходе мы получаем некое подобие постоянного напряжения и некое подобие относительно высокого КПД. Естественно это не 100%, но куда выше, чем в линейном преобразователе.
Проблема только в том, что мы всё равно не получаем постоянное напряжение как в линейном преобразователе потому что есть пульсации напряжения.
И если супер критично отсутствие этих пульсаций то и применяется линейный преобразователь напряжения. Для процессора эти пульсации тоже критичны. Дело в том, что процессор работает на частотах выше, чем происходит пульсирующее включение питания, а значит в отдельные такты он будет менее стабильным, так как получает недостаточное напряжение для питания, то есть для стабильной работы придется завышать напряжение, так чтобы в моменты падений между импульсами было достаточно стабильности, то есть среднее напряжение должно быть излишним, что ухудшит энергоэффективность работы. Помимо этого — высокие пульсации — это ещё и наводки, то есть помехи при работе.
Но проблема эта не единственная. Есть вторая сложность, которая заключается в том, что процессор потребляет довольно много энергии.
Как работает VRM?
И тут уже стоит перейти к тому как же всё таки происходит генерация этих самых импульсов напряжения, чтобы понять почему высокие токи — это проблема.
В классическом исполнении мы для подачи импульсного питания ставим сборку из двух MOSFETов которые в данном случае чаще называют ключом (по русски мосфетами в данном случае называются МДП транзисторы с изолированным каналом N типа).
Суть таких транзисторов заключается в том, что он состоит из трёх областей кремния с разным лигированием, так что заряды просто так не могут преодолеть центральную часть, то есть центральная часть отталкивает от себя заряды подаваемые в крайние области. То есть по умолчанию он работает как диэлектрик не пропуская ток. Но если чуть-чуть помочь зарядам преодолеть малую область пространства центральной части, то заряд пройдёт. Собственно если подать напряжение на затвор, то есть к электроду у центральной части, то создаваемое электромагнитное поле поможет подровнять в центральной области потенциальную яму, которую не могут преодолеть заряды, и образуется в центральной области переход по которому между крайними частями начинает идти ток, а если с центрального электрода опять убрать заряд, то ток опять перестаёт идти через центральную часть.
И эти переключения режимов могут происходить часто и быстро.
Но сами по себе транзисторы не могут открываться и закрываться, затворами нужно управлять. Для того чтобы это происходило правильно нужен драйвер который и отвечает за управление базой.
Но проблема в том, что в задачи драйвера входит только управление затворами. Он не знает на сколько их надо открывать по времени. Нагрузка, то есть потребление процессором, постоянно меняется, и это проблема, потому что от увеличения нагрузки может происходить просадка напряжения и эти драйверы должны не бездумно включать и выключать течение тока, а делать это на необходимое время. И это необходимое время включения драйверу сообщает контроллер.
Контроллер в режиме реального времени отслеживает состояние питания и быстро корректирует требуемые изменения скважности импульсов, этим требованиям подчиняется драйвер который уже управляет затворами транзисторов.
Но вернёмся к двум ранее высказанным проблемам. Первая — это высокие токи, а вторая — это пульсации.
Начнём с высоких токов.
Дело в том, что геометрические размеры перехода для тока в транзисторах значительно ограничены, то есть у нас получается место с малым сечением проводника в транзисторе, а это значит что в этом месте есть сопротивление и как следствие нагрев. Обычно применяются мосфеты способные передать через себя от 20 до 60 Ампер. С ними есть ещё одна неприятная особенность, что их характеристики зависят от температуры. Кроме того в момент переходного процесса между работой как диэлектрик и проводник — транзистор также является далеко не идеальным проводником, то есть несмотря на то что мы их используем как ключи постоянно закрывая и открывая с высокой частотой — это не самый их любимый режим работы. И эти характеристики портятся от роста температур. То есть при приближении силы тока к заявленным пределам — происходит повышенный нагрев выше 80 градусов, который ещё ухудшает характеристики перехода, отчего нагрев происходит интенсивней, от чего ещё сильнее ухудшаются характеристики от чего нагрев становится ещё выше, от чего характеристики ещё ухудшаются и… вы поняли.
Решается вопрос с недостатком пропускной способности по току довольно просто. Ставится просто несколько цепей питания (не путать с фазами питания, об этом будет чуть позже).
Допустим надо обеспечить пропускание 300 Ампер через VRM, производитель, берёт, допустим, 50 Амперные транзисторные сборки, делит 300 А на 50 А и получает — 6. Именно столько цепей питания потребуется. А если взять 30 Амперные, то надо поставить 10 цепей питания (300/30=10). Ни то ни другое не является худшим или лучшим решением в плане передачи тока. Худшим решением является когда производитель железки заказывает разработку VRM, скажем на 100 Ампер, а маркетологи пишут, что на это можно поставить i9 9900ks и называют плату оверклокерской.
А вот со второй проблемой — пульсациями — всё сложнее.
Если просто так поставить много цепей питания — это не решит вопрос пульсаций ровным счётом никак.
Но и тут есть целых два варианта уменьшения пульсаций.
Первый — более очевидный. Если делать импульсы пропорционально чаще и при этом короче по длине, то будет гораздо короче промежуток времени на котором происходит сглаживание.
И этот метод отлично работает и применяется довольно широко, особенно в оверклокерских материнских платах. Проблема только в том, что режим переключения далеко не самый любимый для транзисторов. То есть при увеличении частоты увеличивается нагрев и падает КПД VRM. Но метод этот всё равно применяется очень активно. Допустим лет 5 назад оверклокерские платы давали возможность делать переключения в лучшем случае по 500 тыс раз в секунду, то есть 500 КГц. Сейчас уже вполне себе средние платы имеют частоту 500 КГц, есть множество видеокарт с частотой даже выше. А топовые оверклокерские материнские платы имеют частоту переключений в 1 МГц. Но это всегда был метод в тупую и вспомогательный. Он работает и очень хорош, но имеет минусы в ухудшении эффективности.
Есть методы и не в тупую. Не в тупую потому что не приносят ухудшений в КПД и в разы снижают пульсации.
В реальности, я напомню, у нас цепей питания не одна, а больше. И это важно не только для того чтобы увеличить максимальный преобразуемый ток.
В теории возможно одновременное управление этими цепями питания, то есть управление таким образом, что все импульсы включения будут совпадать во всех цепях.
Но если промежутки включения в каждой из цепей сместить, равномерно распределив по всему периоду времени, то пульсаций станет меньше, при этом мы не получаем никаких отрицательных эффектов, виртуально частично имитируя более высокую частоту. Цепи питания со смещением импульсов друг относительно друга называются уже не просто цепями питания, они называются фазами питания.
Каждый из драйверов управляется контроллером со смещением.
И тут начинается путаница. дело в том, что иногда число фаз и цепей равны друг другу, а иногда эти числа разные. То есть если все цепи питания разнесены друг относительно друга по фазам срабатывания импульсов, то число фаз и число цепей равно, и каждая цепь имеет уникальную фазу в работе. А если, допустим, есть 4 цепи питания, но две пары из них синфазны, то есть имеют совпадающие фазы, то в таком случае это будет 4 цепи питания, но при этом две фазы питания. С точки зрения первой проблемы — передачи большого тока это будут именно 4 цепи питания и они ничем не хуже, чем такие же цепи, но не синфазные, но с точки зрения уменьшения пульсаций, это будет две фазы.
Теперь разберёмся кто же отвечает за смещение фаз.
И тут не всё просто.
Напомню, что у нас есть контроллер, есть драйвер и пара транзисторов с фильтром.
Задача распределить открытие цепей питания по разным фазам ложится на плечи контроллера. Одна из характеристик контроллеров — это число выходных каналов для управления драйверами. Соответственно если таких каналов 8, то такой контроллер может управлять драйверами так чтобы те обеспечили 8 разных фаз питания. Если 6, то 6 и т.д.
И несколько лет назад — на этом бы рассказ и закончился. То есть контроллер управляет драйверами каждый со своим смещением по фазе, те управляют транзисторами со смещением по фазе и так это и работает. А если цепей питания больше, чем максимально может выдать фаз контроллер, значит часть цепей работает синфазно, то есть, допустим, цепей питания 8, а фаз питания — 4.
Но сейчас — это уже не так. Дело в том, что часть задач по разбитию на фазы взяли на себя драйвера. То есть драйвер может получить от контроллера сигнал со своим смещением по фазе и уже сам драйвер может обслуживать более 1-ой цепи питания, самостоятельно разделяя эти цепи на фазы.
В текущий момент драйвера уже умеют разбивать одну фазу на свои 4 подфазы, но в процессорных VRM используется сейчас либо фазы с чистым управлением от контроллера либо фазы полученные драйверами удвоителями, называемых даблерами, квадреры, то есть драйвера делящие одну фазу на 4 до материнских плат ещё не добрались, а вот в видеокартах они периодически встречаются.
Выводы
Теперь вы уже должны понимать разницу между цепями и фазами. Ну и то что количество цепей и максимальный ток на транзисторах описывает возможный передаваемый ток, а количество фаз описывает как хорошо происходит борьба с пульсациями.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.