Что такое частота модуляции
Частотная модуляция
Технологии модуляции п ·Аналоговая модуляция |
---|
AM · SSB · ЧМ(FM) · ЛЧМ · ФМ(PM) · СКМ |
Цифровая модуляция |
АМн · ФМн · КАМ · ЧМн · GMSK OFDM · COFDM · TCM |
Импульсная модуляция |
АИМ · ДМ · ИКМ · ΣΔ · ШИМ · ЧИМ · ФИМ |
Расширение спектра |
FHSS · DSSS |
См. также: Демодуляция |
Частотная модуляция (ЧМ) — вид аналоговой модуляции, при котором информационный сигнал управляет частотой несущего колебания. По сравнению с амплитудной модуляцией здесь амплитуда остаётся постоянной.
Частотная модуляция была предложена Эдвином Армстронгом и запатентована им 26 декабря 1933 года.
Применение
Частотная модуляция применяется для высококачественной передачи звукового (низкочастотного) сигнала в радиовещании (в диапазоне УКВ), для звукового сопровождения телевизионных программ, передачи сигналов цветности в телевизионном стандарте SECAM, видеозаписи на магнитную ленту, музыкальных синтезаторах.
Высокое качество кодирования аудиосигнала обусловлено тем, что при ЧМ применяется большая (по сравнению с шириной спектра сигнала АМ) девиация несущего сигнала, а в приёмной аппаратуре используют ограничитель амплитуды радиосигнала для ликвидации импульсных помех.
См. также
Ссылки
Полезное
Смотреть что такое «Частотная модуляция» в других словарях:
частотная модуляция — ЧМ Модуляция синусоидального колебания путем изменения частоты в соответствии с амплитудными вариациями модулирующего сигнала. [http://www.vidimost.com/glossary.html] частотная модуляция [IEV number 314 08 02] EN frequency modulation process by… … Справочник технического переводчика
ЧАСТОТНАЯ МОДУЛЯЦИЯ — изменение частоты колебаний по заданному закону, медленное по сравнению с периодом этих колебаний (см. Модуляция колебаний). Преимущество частотной модуляции перед амплитудной модуляцией большая помехоустойчивость. Применяется для передачи звука… … Большой Энциклопедический словарь
ЧАСТОТНАЯ МОДУЛЯЦИЯ — ЧАСТОТНАЯ МОДУЛЯЦИЯ, форма радиопередачи, особый способ передачи радиоволн, излучаемых по сигналу радиовещания. Технический прием, который позволил сделать прием радиоволн совершенно свободным от статических помех. И хотя при этом ограничено… … Научно-технический энциклопедический словарь
ЧАСТОТНАЯ МОДУЛЯЦИЯ — вид модуляции колебаний, при к рой частота высокочастотного колебания изменяется во времени по закону, соответствующему передаваемому сигналу. Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия
частотная модуляция — изменение частоты колебаний по заданному закону, медленное по сравнению с периодом этих колебаний (см. Модуляция колебаний). Преимущество частотной модуляции перед амплитудной модуляцией большая помехоустойчивость. Применяется для передачи звука … Энциклопедический словарь
частотная модуляция — dažnio moduliavimas statusas T sritis automatika atitikmenys: angl. frequency modulation vok. Frequenzmodulation, f rus. частотная модуляция, f pranc. modulation de fréquence, f … Automatikos terminų žodynas
частотная модуляция — dažnio moduliavimas statusas T sritis Standartizacija ir metrologija apibrėžtis Veiksmas, kuriuo pagal tam tikrą dėsnį keičiamas nešlio dažnis. atitikmenys: angl. frequency modulation vok. Frequenzmodulation, f rus. частотная модуляция, f pranc.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
частотная модуляция — dažnio moduliavimas statusas T sritis fizika atitikmenys: angl. frequency modulation vok. Frequenzmodulation, f rus. частотная модуляция, f pranc. modulation de fréquence, f … Fizikos terminų žodynas
Частотная модуляция — вид модуляции колебаний (См. Модуляция колебаний), при которой частота несущего высокочастотного колебания изменяется во времени по закону, соответствующему передаваемому сигналу. Особенность Ч. м. высокая помехозащищенность. Ч. м.… … Большая советская энциклопедия
ЧАСТОТНАЯ МОДУЛЯЦИЯ — изменение частоты колебаний по заданному закону, медленное по сравнению с периодом этих колебаний (см. Модуляция колебаний). Преимущество Ч.м. перед амплитудной модуляцией большая помехоустойчивость. Применяется для передачи звука в телевидении и … Естествознание. Энциклопедический словарь
Частотная модуляция: теория, временная и частотная области
Хотя менее и интуитивно понятная, чем амплитудная модуляция, частотная модуляция (ЧМ, англ. FM) по-прежнему является довольно простым способом беспроводной передачи данных.
Мы все, по крайней мере, смутно знакомы с частотной модуляцией – это источник термина «FM радио». Если мы считаем частоту тем, что имеет мгновенное значение, а не как нечто, состоящее из нескольких периодов сигнала, деленных на соответствующий период времени, мы можем непрерывно изменять частоту в соответствии с мгновенной величиной низкочастотного сигнала.
Математика
В первой статье данной главы мы обсудили парадоксальную величину, называемую мгновенной частотой. Если вы считаете этот термин незнакомым или запутанным, вернитесь на эту страницу и прочитайте раздел «Частотная модуляция (ЧМ, англ. FM) и фазовая модуляция (ФМ, англ. PM)». Тем не менее, вы всё еще можете быть немного запутаны, и это понятно: идея мгновенной частоты нарушает основной принцип, согласно которому «частота» указывает, как часто сигнал завершает полный цикл: десять раз в секунду, миллион раз в секунду или сколько бы то ни было раз.
Мы не будем пытаться заниматься каким-либо тщательным или всесторонним рассмотрением мгновенной частоты в качестве математической концепции. (Если вы намерены подробно изучить эту проблему, вот академический документ, который должен помочь.) В контексте FM важно понять, что мгновенная частота естественно вытекает из того, что частота сигнала несущей изменяется непрерывно в ответ на модулирующую волну (т.е. низкочастотный сигнал). Мгновенное значение модулирующего сигнала влияет на частоту в определенный момент, а не на частоту одного или нескольких полных циклов.
На самом деле это верно только для аналоговой частотной модуляции; в цифровой ЧМ один бит соответствует дискретному числу циклов. Это приводит к интересной ситуации, когда более старая технология (аналоговая ЧМ) менее интуитивно понятна, чем более новая технология (цифровая частотная модуляция, также называемая частотной манипуляцией или FSK (Frequency Shift Keying)).
Вам не нужно размышлять над мгновенной частотой, чтобы понимать цифровую частотную модуляцию
Единственное, что нам нужно здесь добавить, это индекс модуляции m. В предыдущей статье мы увидели, что индекс модуляции можно использовать для того, чтобы изменения амплитуды несущей были более или менее чувствительны к изменениям амплитуды низкочастотного сигнала. Его функция в FM аналогична: индекс модуляции позволяет нам точно настраивать интенсивность изменения частоты, которое возникает при изменении амплитуды низкочастотного сигнала.
Временна́я область
Давайте посмотрим на несколько сигналов во временной области. Ниже показана наша несущая 10 МГц:
Низкочастотным модулирующим сигналом будет синусоида 1 МГц, показанная ниже:
Низкочастотный сигнал
\[x_<чм>(t)=\sin((10\times10^6\times2\pi t)-\cos(1\times10^6\times2\pi t))\]
Результат показан ниже (красным показан низкочастотный модулирующий сигнал):
Частотная модуляция
Похоже, что несущая не изменилась, но если присмотреться, пики немного ближе друг к другу, когда низкочастотный модулирующий сигнала приближается к своему максимальному значению. Итак, у нас есть частотная модуляция; но проблема заключается в том, что изменения модулирующего сигнала не создают достаточного изменения частоты несущей. Мы можем легко исправить эту ситуацию, увеличив индекс модуляции. Используем m =4.
\[x_<чм>(t)=\sin((10\times10^6\times2\pi t)-4\cos(1\times10^6\times2\pi t))\]
Частотная модуляция ( m =4)
Теперь мы можем более четко видеть, как частота модулированной несущей непрерывно следует за мгновенным значением амплитуды низкочастотного модулирующего сигнала.
Частотная область
Формы AM и FM сигналов при одинаковых сигнале несущей и низкочастотном модулирующем сигнале выглядят совершенно по-разному. Поэтому интересно обнаружить, что AM и узкополосная FM дают аналогичные изменения в частотной области. (Узкополосная частотная модуляция предусматривает ограниченную полосу модулирующего сигнала и позволяет упростить анализ.) В обоих случая низкочастотный спектр (включая отрицательные частоты) переносится в полосу, которая простирается выше и ниже несущей частоты. В AM спектр самого низкочастотного модулирующего сигнала сдвигается вверх. В FM это спектр интеграла низкочастотного модулирующего сигнала, который появляется в полосе, окружающей несущую частоту.
Для модуляции, показанной выше, с m=1 мы получаем следующий спектр:
Спектр частотно-модулированного сигнала при m=1
Следующий спектр соответствует m=4:
Спектр частотно-модулированного сигнала при m=4
Это очень ясно показывает, что индекс модуляции влияет на частотные составляющие частотно-модулированного сигнала. Спектральный анализ частотной модуляции сложнее, чем для амплитудной модуляции; поэтому для частотно-модулированных сигналов трудно предсказать ширину полосы частот.
Как данные передаются по радио?
В одном из комментариев к предыдущим статьям был задан вопрос, можно ли по виду сигнала определить вид его модуляции. Идея рассмотреть основные виды модуляции показалась довольно-таки интересной.
Попробуем разобраться, без формул и максимально просто, как можно передать данные из точки «А» в точку «В».
OOK (On-Off Keying)
Самый простой вид цифрового кодирования. Просто включаем-выключаем передатчик в соответствии с двоичным сигналом:
На спектре такой сигнал выглядит примерно так, их довольно много на частоте
Схема передатчика очень проста, поэтому активно используется в беспроводных пультах, радиокнопках и прочих устройствах ценой 1-2$. Никакого шифрования здесь обычно нет, частота и битовая последовательность жестко «зашиты», передать и принять сигнал может любой желающий, так что ставить такой пульт на дверь гаража, где стоит Lamborgini, я бы не стал, но для ночника у кровати вполне сойдет (такая лампа, купленная в ближайшем MediaMarkt, работает у меня 3 года, ложных срабатываний не было ни разу, принцип «неуловимого Джо» в действии).
Интересно отметить, что исторически это наверное один из самых первых способов радиопередачи. Если включать-выключать передатчик с помощью ключа и принимать сигнал на слух или на бумажную ленту, мы получим старую добрую азбуку Морзе.
Амплитудная модуляция (АМ)
АМ мы наверное сможем видеть еще долго — модуляция используется как в вещательных станциях, так и в передатчиках авиадиапазона 118-137 МГц. Отличительная особенность АМ — спектр симметричен относительно центральной частоты. «На глаз» даже можно примерно понять, что передается, речь или музыка. Скриншот из онлайн приемника Websdr Twente:
Исторически АМ был одним из первых способов приема и передачи речи — всем известная «школьная» схема детекторного приемника отличалась крайней простотой, и даже не требовала батареек для приема — для работы высокоомных наушников было достаточно энергии радиоволн. Любопытно, что такие приемники выпускались в СССР серийно аж до 60х годов:
Детекторный приемник «Комсомолец» (с) Википедия
Видимо, с доступностью как приемников, так и источников питания в глубинке были определенные проблемы, так что детекторный приемник долго оставался актуален.
Однополосная модуляция (USB, LSB, SSB)
Однополосная модуляция является частным случаем амплитудной. Как было сказано выше, спектр АМ сигнала симметричен относительно центра. Но можно передавать лишь «одну половину» сигнала, что обеспечивает большую дальность при той же мощности передатчика:
Однополосная модуляция (с) Википедия
Как видно из картинки, можно настроиться на верхнюю или нижнюю боковую полосу, такой режим в приемнике или передатчике соответственно обозначается USB или LSB.
В режиме однополосной модуляции работают служебные станции, передаются метеосводки на коротких волнах, также он используется радиолюбителями. Но не менее важен он еще и тем, что в режиме USB или LSB спектр сигнала фактически переносится с радиочастоты на звуковую без искажений — что позволяет принимать различные виды цифровых сигналов, рассмотренных ниже. Это важно иметь в виду при выборе радиоприемника — цифровые виды связи (FSK, PSK и пр) могут приниматься и декодироваться лишь в режиме однополосной модуляции, простой бытовой приемник с поддержкой «обычной» AM принять такие сигналы не сможет.
Частотная модуляция (FM)
В частотной модуляции работает всем известное FM-вещание. Интересно отметить, что в передатчике FM-станции кодируется не только звук — передается сложный сигнал, включающий моно и стерео каналы, пилот-тон, RDS и пр. Чтобы не путать с «обычной» FM, у инженеров такая модуляция обычно называется WFM (Wide FM). В программе HDSDR несложно увидеть спектр радиостанции после декодирования:
На сигнале (справа снизу) несложно видеть пилот-тон на частоте 19 КГц, RDS, моно и стерео-каналы FM-вещания. В отличие от WFM, радионяни, рации и прочие аналогичные устройства используют «узкую» FM (NFM, Narrow FM) модуляцию, где передается только звук.
Частотная модуляция активно используется и для цифровых сигналов, в этом случае для передачи бинарного кода может использоваться переключение двух частот. В качестве примера можно привести сигнал немецкой станции Pinneberg, наличие двух частот хорошо видно на спектре:
Pinneberg передает метеосводки судам на длинных, средних и коротких волнах. Частот в принципе, может быть и больше 2х. Пример такого сигнала — радиолюбительский FT8:
С помощью FT8 радиолюбители могут обмениваться короткими сообщениями на расстоянии в несколько тысяч километров при мощности всего лишь несколько ватт.
Интересно, что модуляция может быть и комбинированной — например в авиации используется система ACARS, передающая текстовые сообщения. Цифровой FM сигнал передается через АМ передатчик. Зачем так сложно? Вероятно, используется уже готовый передатчик, ко входу которого просто подключили цифровую схему, формирующую FM-сигнал. Legacy в чистом виде, но вероятно, это дешевле, чем менять миллионы передатчиков в аэропортах и самолетах во всем мире.
Фазовая модуляция (PSK)
Кроме частоты, мы можем менять и фазу сигнала, что дает нам фазовую модуляцию. Такие сигналы могут уверенно приниматься на больших расстояниях, и используются в частности, в спутниковой связи. Из радиолюбительских протоколов можно отметить PSK31, который одно время был весьма популярен.
С помощью PSK31 можно обмениваться информацией в виде «текстового чата», подключив трансивер к компьютеру. Фаз может быть больше 2х, например 4, 18 или 16, все зависит от скорости и канала связи.
Можно менять и фазу и амплитуду одновременно, что дает нам еще большую скорость, но требует более сложного кодирования и декодирования. В качестве примера такого сигнала можно привести QAM. Такой сигнал наглядно проще всего изобразить на фазовой плоскости:
Модуляция QAM используется при передаче данных в стандарте LTE и в цифровом телевидении DVB-T.
Orthogonal frequency-division multiplexing (OFDM)
Одним из современных методов модуляции является OFDM. Его суть состоит в том, что отдельные биты сигнала можно передавать параллельно, представляя сигнал в виде независимо работающих частотных каналов (subcarriers), каждый из которых передает свой отдельный бит. Есть определенные математические правила, гарантирующие что каналы не будут пересекаться и могут быть декодированы.
В качестве примера можно привести DRM, сигналы такого формата можно увидеть на вещательных диапазонах, разница между АМ и DRM хорошо видна на спектре:
Это цифровой сигнал шириной 10 КГц, в котором параллельно передается 206 несущих с интервалом 47 Гц. Стандарт DRM (Digital Radio Mondiale) используется для передачи цифрового радио на средних и коротких волнах, просьба не путать с другим стандартом Digital Rights Management.
OFDM используется и в WiFi (802.11a), структура сигнала там сложнее, желающие могут изучить PDF самостоятельно.
Code-division multiple access (CDMA)
Другой способ широкополосной передачи — разделение данных. Данные для нескольких получателей могут быть комбинированы в один сигнал с помощью специальной функции (например Walsh code), которая гарантирует как прямое, так и обратное преобразование. Одним из ключевых факторов и в OFDM и в CDMA является так называемая «ортогональность», получаемые сигналы не должны «смешиваться», чтобы из результирующего сигнала можно было извлечь исходные данные.
Кодирование CDMA используется в мобильных сетях 3G. Хороший пример разбора CDMA с помощью ручки и бумаги можно найти здесь, интересующимся рекомендую посмотреть.
Заключение
Все что приведено выше, это разумеется, очень краткое объяснение «на пальцах», в реальности, описание только одного декодера может занять в несколько раз больше текста чем вся статья целиком, да и вряд ли многим здесь это нужно — Хабр это все же не научный журнал. Впрочем, общее впечатление у читателей надеюсь все же осталось. При наличии интереса у аудитории (что будет определяться по оценкам текста:) какой-либо из сигналов можно будет разобрать более подробно.
В завершение интересно отметить, что различные схемы кодирования — это не просто какая-то математическая абстракция — все это активно используется, в том числе и в военных целях (например протокол STANAG модемов NATO). Этот скриншот сделан во время написания текста с помощью онлайн-приемника Websdr:
Как можно видеть, несмотря на наличие интернета практически в любой обитаемой точке планеты, возможность передать данные напрямую, анонимно и без посредников, весьма актуальна — каждая линия на графике это работающий прямо сейчас канал связи (и да, внимательные читатели могут заметить здесь даже сигналы азбуки морзе, несмотря на 2020 год).
Теория радиоволн: аналоговая модуляция
Амплитудная модуляция
При амплитудной модуляции, огибающая амплитуд несущего колебания изменяется по закону, совпадающему с законом передаваемого сообщения. Частота и фаза несущего колебания при этом не меняется.
Одним из основных параметров АМ, является коэфициент модуляции(M).
Коэффициент модуляции — это отношение разности между максимальным и минимальным значениями амплитуд модулированного сигнала к сумме этих значений(%).
Проще говоря, этот коэффициент показывает, насколько сильно значение амплитуда несущего колебания в данный момент отклоняется от среднего значения.
При коэффициенте модуляции больше 1, возникает эффект перемодуляции, в результате чего происходит искажение сигнала.
Данный спектр свойственен для модулирующего колебания постоянной частоты.
На графике, по оси Х представлена частота, по оси У — амплитуда.
Для АМ, кроме амплитуды основной частоты, находящейся в центре, представлены также значения амплитуд справа и слева от частоты несущей. Это так называемые левая и правая боковые полосы. Они отнесены от частоты несущей на расстояние равное частоте модуляции.
Расстояние от левой до правой боковой полосы называют ширина спектра.
В нормальном случае, при коэффициенте модуляции
Что такое частота модуляции
Компьютерная техника, радиоэлектроника, электрика
Частотная модуляция
Другим распространенным типом модуляции, применяемым в радиосвязи, является частотная модуляция (ЧМ), при которой частота несущей изменяется в соответствии с модулирующим сигналом (рис. 15.1).
Рис. 15.1. Частотная модуляция.
Обратите внимание, что амплитуда несущей остается постоянной, а частота изменяется.
Девиация частоты
Девиация частоты есть степень изменения частоты несущей при изменении уровня сигнала на 1 В. Девиация частоты измеряется в килогерцах на вольт (кГц/В). Предположим, например, что несущая с частотой 1000 кГц должна быть промодулирована сигналом в виде меандра с амплитудой 5 В (рис. 15.2). Предположим также, что девиация частоты равна 10 кГц/В. Тогда во временном интервале от А до В частота несущей увеличится на 5 · 10 = 50 кГц (произведение амплитуды сигнала на девиацию частоты) и станет равной 1000 кГц + 50 кГц = 1050 кГц. Во временном интервале от В до С частота несущей изменится на ту же величину, а именно на 5 · 10 = 50 кГц, но на этот раз в отрицательную сторону с уменьшением частоты несущей до 1000 – 50 = 950 кГц.
Рис. 15.2. Частотная модуляция несущей сигналом в виде меандра.
Максимальная девиация
Изменение частоты несущей при изменении уровня сигнала должно быть ограничено некоторой максимальной величиной, превышение которой недопустимо. Эта величина называется максимальной девиацией. Например, при ЧМ-передачах радиостанции Би-би-си используется девиация частоты 15 кГц/В и максимальная девиация 75 кГц. Максимальная величина модулирующего сигнала определяется максимальной допустимой девиацией.
Максимальная девиация ±75
Максимальный сигнал = —————————————— = —— = ±5 В
Девиация частоты 15
или, другими словами, 5 В в положительную или отрицательную область.
Боковые частоты и ширина полосы
Если несущая промодулирована по частоте гармоническим сигналом, образуется неограниченное число боковых частот. Амплитуды боковых Компонент постепенно уменьшаются по мере отдаления частоты этих компонент от частоты несущей.
Таким образом, для размещения всех боковых частот ширина полосы частот ЧМ-системы должна быть бесконечной. На практике малые по амплитуде боковые компоненты ЧМ-сигнала могут быть отброшены без внесения каких-либо заметных искажений. Например, ЧМ-передачи радиостанции Би-би-си ведутся с использованием полосы частот шириной 250 кГц.
Сравнение AM— и ЧМ-систем модуляции
1. Амплитуда несущей Изменяется вместе Остается
с сигналом постоянной
2. Боковые частоты Две для каждой Бесконечное
частоты в спектре число
3. Ширина занимаемой 9 кГц 250 кГц полосы частот
4. Диапазон частот ДВ, СВ. KB УКВ
Преимущества частотной модуляции
Радиовещание с использованием ЧМ имеет следующие преимущества по сравнению с АМ-передачей программ.
1. В системе с ЧМ обеспечивается лучшее качество звучания. Это связано с большой шириной полосы частот ЧМ-сигнала, охватывающей гораздо большее число гармоник.
2. При ЧМ-передаче достигается очень низкий уровень шума. Шум — это нежелательные сигналы, которые появляются на выходе обычно в форме изменения амплитуды несущей. В ЧМ-системе эти сигналы легко устраняются путем двустороннего ограничения амплитуды несущей. Информация, которую несет изменяющаяся частота, при этом полностью сохраняется.
В этом видео рассказывается о частотной модуляции: