что такое большой адронный коллайдер бак и nica
Не только бозон Хиггса: что еще нашли в Большом адронном коллайдере
В этом году адронным коллайдерам исполнилось 50 лет. 27 января 1971 года два пучка протонов впервые столкнулись в ускорителе CERN Intersecting Storage Rings. За последние 10 лет на Большом адронном коллайдере открыты 50 новых частиц, а не только известный бозон Хиггса. Рассказываем, что это за частицы.
Читайте «Хайтек» в
Сколько новых частиц открыты на Большом адронном коллайдере?
Самым известным открытием, конечно же, является бозон Хиггса. Менее известен тот факт, что за последние 10 лет эксперименты на БАК (Большом адронном коллайдере) также обнаружили более 50 новых частиц, называемых адронами. По совпадению, число 50 появляется в контексте адронов дважды, поскольку в 2021 году исполняется 50 лет адронным коллайдерам: 27 января 1971 года два пучка протонов впервые столкнулись в ускорителе CERN Intersecting Storage Rings, что сделало его первым ускорителем в мире. История возникновения столкновений между двумя противоположно вращающимися пучками адронов.
Что такое адроны?
Так что же это за новые адроны, которых всего 59? Давайте начнем с самого начала: адроны не являются элементарными частицами — физики знают это с 1964 года, когда Мюррей Гелл-Манн и Джордж Цвейг независимо друг от друга предложили то, что сегодня известно как модель кварков. Она представила адроны как составные частицы, состоящие из новых типов элементарных частиц — кварков.
Кварки рождаются свободными, но встречаются только связанными…
Фрэнк Вилчек,
лауреат Нобелевской премии по физике за за открытие асимптотическое свободы в теории сильных взаимодействий, 2004 г.
Сам термин «адрон» происходит от греческого «хадрос» («сильный») и отражает свойство адронов участвовать в сильных взаимодействиях. Это короткодействующие фундаментальные взаимодействия, связывающие кварки внутри нуклонов и других адронов. Сила этого взаимодействия намного превосходит силу трех других фундаментальных взаимодействий — электромагнитного, слабого и гравитационного.
Адроны — связанные системы кварков и антикварков. Они существуют двух типов — барионы и мезоны.
Как появляются новые адроны?
Но точно так же, как исследователи все еще открывают новые изотопы спустя 150 лет после того, как Менделеев создал периодическую таблицу, исследования возможных составных состояний, образованных кварками, все еще являются активной областью физики элементарных частиц.
Причина этого кроется в квантовой хромодинамике, или КХД, теории, описывающей сильное взаимодействие, которое удерживает кварки вместе внутри адронов. У этого взаимодействия есть несколько любопытных особенностей, включая тот факт, что сила взаимодействия не уменьшается с расстоянием. Это приводит к свойству, которое запрещает существование свободных кварков вне адронов — ограничение цвета. Такие особенности делают эту теорию очень сложной с математической точки зрения.
Фактически до настоящего времени само ограничение цвета не было доказано аналитически. И у ученых до сих пор нет способа точно предсказать, какие комбинации кварков могут образовывать адроны.
Что мы знаем об адронах?
Еще в 1960-х годах было уже более 100 известных разновидностей адронов. Их обнаружили в экспериментах на ускорителях и в экспериментах с космическими лучами. Модель кварков позволила физикам описать весь «зоопарк» как разные составные состояния всего трех разных кварков: верхнего, нижнего и странного. Все известные адроны могут быть описаны либо как состоящие из трех кварков (образующих барионы), либо как кварк-антикварковые пары (образующие мезоны). Но теория также предсказывала другие возможные устройства кварков.
Уже в оригинальной статье Гелл-Манна о кварках 1964 года идея частиц, содержащих более трех кварков, считалась возможной. Сегодня ученые знают, что такие частицы действительно существуют. И все же потребовалось несколько десятилетий, чтобы экспериментально подтвердить первые четырехкварковые и пятикварковые адроны, или тетракварки и пентакварки.
Полный список из 59 новых адронов, обнаруженных на БАК, показан на изображении ниже.
Некоторые из этих частиц являются пентакварками, некоторые — тетракварками, а некоторые — новыми (возбужденными) состояниями барионов и мезонов с более высокой энергией.
Открытие этих новых частиц вместе с измерениями их свойств по-прежнему дает важную информацию для проверки границ кварковой модели. В свою очередь, это позволяет исследователям углубить понимание сильного взаимодействия, проверить теоретические предсказания и настроить модели. Стоит отметить, что это особенно важно для исследований, проводимых на БАК. Дело в том, что сильное взаимодействие отвечает за большинство того, что происходит при столкновении адронов. Чем лучше ученые поймут сильное взаимодействие, тем точнее будет моделирование этих столкновений. В итоге шансы увидеть небольшие отклонения от ожиданий, которые могут намекать на возможные новые физические явления, вырастут.
Первый адрон, открытый на БАК (LHC), χb (3P), был открыт ATLAS, а самые последние включают новый возбужденный красивый странный барион, наблюдаемый CMS, и четыре тетракварка, обнаруженные LHCb.
Стандартная модель — теоретическая конструкция в физике элементарных частиц, описывающая электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Современная формулировка была завершена в середине 70-х годов после экспериментального подтверждения существования кварков.
Фермион — частица или квазичастица с полуцелым значением спина, собственного момента импульса элементарных частиц.
Большой адронный коллайдер (БАК) – что это такое?
Большой адронный коллайдер (сокр. БАК, англ. LHC) – это самый большой и мощный ускоритель частиц в мире, расположенный на франко-швейцарской границе около города Женева. Он предназначен для ускорения и столкновения встречных пучков протонов и тяжелых ионов (ионов свинца). БАК создан при Европейском совете ядерных исследований ЦЕНР. В его строительстве и обслуживании, участвовало более 10 тыс инженеров и ученых из более чем 100 стран мира. Стоимость проекта оценивается в 10 млрд. долларов.
Коллайдер по сути является замкнутой туннельной системой, расположенной под земной поверхностью на глубине до 180 м. Название «коллайдер» уместно перевести на русский как «устройство для сталкивания». А сталкивает он адроны (класс составных частиц, подверженных сильному взаимодействию). Отсюда и название «адронный коллайдер». Приставку «большой» он получил за свои внушительные размеры, длина основного туннеля БАК составляет 26,7 км.
По большей части эксперименты проводятся с протонами. Протон – элементарная частица, составляющая часть атома, ее отличительное свойство – наличие положительного заряда. БАК разгоняет потоки протонов внутри подземного туннеля до более 99,9% скорости света, направляя их навстречу друг другу. При столкновении на такой скорости моделируются условия, сходные с состоянием нашей Вселенной на ранних стадиях ее существования.
Каково происхождение протонов для экспериментов в БАК?
Их получают методом ионизации атома водорода. Как известно, в его составе имеется 1 протон и 1 электрон. Ионизация помогает избавиться от электрона, и сохранить необходимый для научных опытов протон.
Предназначение
Большой адронный коллайдер помогает исследовать сами элементарные частицы и особенности процессов их взаимодействия. БАК уже принес науке немало бесценных сведений в области квантовой физики, и ученым не терпится получить больше информации о том, как устроены наше пространство и время. Процессы, уловленные детекторами БАК во время столкновения протонов, дают исследователям возможность прийти к лучшему пониманию того, что представляла собой Вселенная в продолжение первых мгновений после Большого взрыва.
Как известно, к началу 1970-х физики разработали так называемую Стандартную модель (СМ), в которой объединились 3 из 4 фундаментальных взаимодействий (кроме гравитационного):
Однако СМ невозможно принять исчерпывающей теорией элементарных частиц. Предположительно, она – не более чем фрагмент более масштабной теоретической картины устройства микромира. Основополагающая цель создание Большого адронного коллайдера – приблизиться к пониманию сущности новой теории (поиск новой физики).
В наше время наука применяет различные способы объединения фундаментальных взаимодействий:
— петлевая квантовая гравитация и пр.
Не все они являются совершенными, и ни одна из них не была подтверждена экспериментальным методом. Препятствие заключается в недостатке энергии, доступной ученым на современных устройствах для ускорения частиц.
Большой адронный коллайдер дал науке возможность реализовать эксперименты с недоступной прежде энергией, и по-видимому, это позволит оценить корректность некоторых из вышеупомянутых теоретических подходов. В частности, имеется большое число теоретических систем, допускающих наличие такого явления, как суперсимметрия – в частности, теория струн (она же теория суперструн), которая в случае доказанного отсутствия суперсимметрии утратит свой логический смысл. Соответственно, если будет получено доказательство существования суперсимметрии, то это станет и косвенным аргументом в подтверждение правоты данных теорий.
Исследование топ-кварков
Эти частицы – наиболее тяжелые не только из кварков, но также из всех известных науке элементарных частиц. Их масса слишком велика для того, чтобы топ-кварки можно было изучать на большинстве ускорителей. Помимо прямого научного интереса, данные частицы используются как средство для исследований бозона Хиггса. Бозоны появляются на свет в БАК совместно с парой топ-кварк/антикварк. Поэтому следует лучше представлять свойства кварков, чтобы выделять из их среды бозоны.
Исследование электрослабой симметрии
Среди основных задач БАК, помимо подтверждения существования бозона Хиггса, следует отметить то, каким образом данная нестабильная частица оказывает влияние на симметрию электрослабого взаимодействия. Бозон, как известно, — квант такого физического явления, как поле Хиггса. Преодолевающее эту среду элементарные частицы сталкиваются с сопротивлением, что физика осознает как поправки к массе.
Исследование кварк-глюонной плазмы
Помимо прочих экспериментов, в БАК проводятся опыты со столкновением ядер атомов свинца. В процессе неупругого контакта пары таких ядер на ультрарелятивистских скоростях на короткий срок появляется и исчезает сгусток ядерного в-ва высокой плотности и температуры. Изучение характерных для этого процессов (преобразование в-ва в кварк-глюонную плазму) необходимо для выстраивания более корректной теоретической модели сильных ядерных взаимодействий, которая позволит добиться существенного прогресса как собственно в физической науке, так и в понимании астрономических процессов.
Исследование фотонных взаимодействий
ЭМ взаимодействие понимается как обмен фотонами. Проще говоря, фотоны считаются носителями ЭМ поля. Протоны же обладают электрическим зарядом и электростатическим полем, которое допустимо считать совокупностью виртуальных фотонов.
Когда протоны приходят в столкновение, окружающие их фотоны вступают во взаимодействие. Тем самым, изучая процесс столкновения протонов, физики занимаются исследованием поведения фотонов высокой энергии.
Помимо этого, имеет место особая разновидность реакций – прямое взаимодействие пары фотонов.
Как устроен БАК
Коллайдер состоит из 3 базовых структур;
— ускоритель элементарных частиц. Он позволяет разогнать и столкнуть адроны (тяжелые элементарные частицы из кварков), используя электрические магниты огромной мощности, которые распределены параллельно всей протяженности подземного туннеля;
— детекторы. Процесс, а также итоги взаимодействия ускоренных магнитами протонов невозможно наблюдать непосредственно в туннеле, по этой причине особые устройства-детекторы собирают максимально возможный объем информации с целью дальнейшей ее обработки;
— грид. Детекторы набирают петабайты экспериментальных данных. Для того, чтобы корректно обработать столь внушительный массив информации, применяют грид-систему – компьютерную сеть, расположенную в 36 государствах, она формирует своего рода единый супер-компьютер. Но даже он способен интерпретировать приблизительно 1% параметров реакции в БАК.
Детекторы
ATLAS (A Toroidal LHC ApparatuS)
ALICE (A Large Ion Collider Experiment)
LHCb (The Large Hadron Collider beauty experiment)
CMS (Compact Muon Solenoid)
LHCf (The Large Hadron Collider forward)
TOTEM (TOTal Elastic and diffractive cross section Measurement)
MoEDAL (Monopole and Exotics Detector At the LHC).
ATLAS, ALICE, CMS, LHCb — это большие детекторы, расположенные вокруг точек столкновения пучков. Детекторы TOTEM и LHCf являются вспомогательными, находятся в нескольких десятках метров от точек столкновения и используются параллельно с основными.
ATLAS и CMS участвовали в поиске бозона Хиггса, а также тёмной материи. Детектор ALICE — изучает кварк-глюонную плазму при столкновении тяжёлых ионов свинца. LHCb — исследует физику b-кварков, для лучшего понимания различия между антиматерией и материей. TOTEM — изучает рассеивание частиц на малые углы (а также ведет анализ не столкнувшихся частиц). LHCf — исследует космические лучи, которые моделируются теми же не сталкивающимися частицами. MoEDAL — нацелен на поиск медленно движущихся тяжёлых частиц
Как работает БАК
В туннеле коллайдера частицы разгоняют почти до скорости света, при этом увеличивая их массу в несколько тысяч раз. Весь процесс можно разделить на 5 ключевых этапов:
Интересные факты:
Всего за 1 секунду частицы пролетают всю протяженность основного туннеля более 11000 раз (т.е на 1 цикл уходит не более, чем 0,0001 с). За ту же секунду в БАК происходит около 1 миллиарда столкновений, каждое из которых генерирует 1,5 мегабайта данных.
Каковы научные достижения БАК
Поскольку БАК располагает большей энергией в сравнении с коллайдерами ранних версий, он дал ученым возможность исследовать неизведанную до того область энергий и обрести научные данные, которые помогают уточнить некоторые теоретические построения.
Сегодня к наиболее заметным научным «прорывом», достигнутым при помощи коллайдера, относят открытие бозона Хиггса. Уже сейчас его многие называют одним из наиболее громких открытий XXI столетия, поскольку бозон Хиггса помогает объяснить наличие массы частиц в нашем пространстве. Следовательно, тем самым получено подтверждение Стандартной модели, на основе каковой в наше время физика моделирует поведение и реакции элементарных частиц. И как раз это их взаимодействие является фундаментом, на котором построено все наше мироздание.
Сущность действия бозона Хиггса заключается в том, что он участвует в формировании массы и обмене ею среди прочих элементарных частиц. Однако это крайне упрощенное изложение функций бозона, и всем заинтересовавшимся этой частицей рекомендуем изучить соответствующие научные публикации.
Прочие научные результаты БАК:
— проведены исследования базовых статистических параметров столкновений протонов, оценка числа рожденных адронов, корреляции мезонов;
— продемонстрировано, что не существует асимметрия протонов и антипротонов;
— наблюдались необычные корреляции протонов, летящих по весьма различным траекториям;
— уточнены параметры возможных контактных взаимодействий кварков;
— зафиксированы существенные признаки образования кварк-глюонной плазмы и т.д.
Способен ли БАК разрушить планету
С первых дней своей постройки адронный коллайдер вызывал всевозможные спекулятивные опасения и фантазии. В частности, в интернете прошел слух, что вследствие экспериментальной работы БАК способен создать черную дыру, и та проглотит Землю.
Разумеется, эти опасения имеют под собой определенную основу, однако:
— в случае, если теоретически БАК сформировал бы черную дыру, то ее размеры оказались бы микроскопическими. И есть предположение, что чем они миниатюрнее, тем быстрее такой объект аннигилируется, превращаясь в энергию, не успев нанести ни малейшего ущерба. Но здесь нельзя утверждать ничего наверняка, потому что все это основано на гипотезах и теориях.
С другой стороны, возможно, при столкновении в БАК недостаточно кинетической энергии, чтобы выполнилось условие R=2GM/c 2 (гравитационный радиус), необходимое для образования черной дыры.
Планы на будущее
По мере того, как Большой адронный коллайдер приступит к работе на полной мощности и светимости (2021 — 2023 гг.), его разработчики планируют остановку на 2,5 года для модернизации детекторов и ускорителей (проект HL-LHC). Тем самым будет усилена светимость БАК и обеспечена возможность проведения опытов с еще большей энергией. Ученые также намерены организовать опыты путем столкновения протонов и электронов, что потребует дополнительного оборудования для разгона элементарных частиц.
Кроме того, в планах ЦЕРНа есть куда более амбициозный международный проект, создание коллайдера с 100 км. кольцом. Текущее название проекта Future Circular Collider (FCC, «Будущий циклический коллайдер»).
Дорогие друзья, мы все люди и можем ошибаться, а информация имеет тенденцию устаревать. Поэтому, если найдете неверную информацию или грубые смысловые и прочие ошибки, то, пожалуйста, дайте знать об этом в комментариях.
Мы знаем, как разгадать тайны времени и пространства. Но нам нужен коллайдер размером с Солнечную систему
Гравитация невероятно слабая сила. Просто вдумайтесь: вы можете оторвать свою ногу от земли, несмотря на всю массу Земли, которая ее притягивает. Почему она такая слабая? Неизвестно. И, возможно, потребуется очень и очень большой научный эксперимент, чтобы это выяснить. Джеймс Бичем — физик из Университета Дьюка, который работает с детектором ATLAS на знаменитом Большом адронном коллайдере в Швейцарии. Недавно он описал свой физический эксперимент для Gizmodo: невероятно большой ускоритель атомов — Ультра-адронный коллайдер — расположенный по внешнему краю Солнечной системы.
Такой эксперимент мог бы решить большинство загадок физики сразу, например, раскрыть истинную природу темной материи или доказать возможность путешествий во времени.
Мысленный эксперимент: коллайдер размером с Солнечную систему
«Чтобы понять, что происходило во время Большого Взрыва, чем ближе к самому моменту мы подбираемся, тем выше энергии нам нужны для экспериментов на коллайдере, а значит приходится строить коллайдеры все больше и больше», говорит Бичем. «В настоящее время мы довольно хорошо понимаем, что происходило, когда Вселенная была размером с яблоко; этого мы можем достичь с энергиями БАК. Но когда она была меньше, чем дальше назад во времени, тем непонятнее».
Физики уверены, что знают основные принципы Вселенной. Частицы взаимодействуют через силы, из которых известно четыре: электромагнетизм; «слабая» сила; «сильная» сила; гравитаци. Каждая сила имеет правила, которые мы находили в ходе экспериментов, проводимых в течение сотен лет. Некоторые фундаментальные взаимодействия сильнее, некоторые слабее.
По сравнению с другими тремя «гравитация не просто слабая, она практически несущественная», говорит Бичем. Далее — от первого лица.
Эта загадка науки одна из самых непонятных для нас. Почему силы взаимодействий выстроились таким образом? Почему гравитация такая слабая?
Природа такова, какая есть, независимо от того, какой люди ее представляют. Но эксперименты показали, что при достаточно высоких энергиях электромагнетизм и слабая сила сливаются вместе в одну силу. При еще более высоких энергиях, полагают ученые, сильное взаимодействие также будет к ним присоединяться. Но гравитация отличается. Ученые не знают, будет ли гравитация объединяться с остальными силами при достаточно высоких энергиях.
«Гравитация — это сила природы, но ее правила — математика, которая лежит в ее основе, самое точное описание — каким-то образом сильно отличаются от остальных», говорит Бичем. И продолжает:
Гравитация лучше всего описывается общей теорией относительности Эйнштейна, а три другие силы, которые описываются Стандартной моделью физики элементарных частиц, основываются на квантовой теории поля. И хотя сходства есть, они разные. То есть когда мы наивно пытаемся сшить их вместе, мы получаем бессмысленные ответы.
В нашей нынешней Вселенной, используя наши нынешние технологии, «практически невозможно найти ответ на этот вопрос эмпирическим путем», говорит Бичем. Почему? «Мы не можем добраться до таких высоких энергий столкновения, в первую очередь потому, что не можем построить коллайдер достаточно большой для этого». Он говорит, что некоторые теоретики полагают, что есть что-то еще (вроде других частиц или дополнительных пространственных измерений, как вытекает из теории струн и ее расширенных моделей), что может показаться в эксперименте, объединяющем гравитацию с другими силами.
Но для этого нам нужен коллайдер размером с Солнечную систему.
Большой адронный коллайдер на самом деле маленький
Даже 27-километровый круглый Большой адронный коллайдер, использующий сверхпроводящие магниты для ускорения и столкновений пучков протонов на 99,999999% скорости света, недостаточно большой, чтобы ответить на эти вопросы. Он может узнать только лишь какой была Вселенной, когда она была размером с яблоко. Ученым может потребоваться больше энергии и, следовательно, больший коллайдер, чтобы разобраться во Вселенной меньше размера яблока.
Насколько больше? Возможно, сильную и слабую ядерные силы можно было бы объединить при помощи коллайдера, построенного вокруг Марса. Но чтобы добавить гравитацию в это уравнение, «по некоторым приблизительным оценкам потребуется коллайдер, опоясывающий орбиту Нептуна. Более того, некоторые ученые утверждают, что эта оценка очень приблизительна и нам придется построить кольцо еще больше». Преимущества будут огромными — такой коллайдер сможет опробовать масштабы Планка, самые маленькие масштабы, в которые мы можем заглянуть, позволенные квантовой механикой. «Мы бы поняли все о гравитации, о квантовой механике и, между тем, также получили бы объединенную электрослабую и электросильную силу просто так, а вслед за ней путешествия во времени, теорию струн, темную материю, темную энергию, проблему измерения, теорию множественных вселенных и так далее.
Что? Путешествия во времени? По мнению Бичема, мы бы получили настолько подробное представление о Вселенной и о том, как работает пространство-время, что, возможно, смогли бы положить свои знания в основу будущих технологий манипуляции со временем.
«Вполне возможно, что сила гравитации и другие силы природы объединяются при некоторых чрезвычайно высоких энергиях, но для исследования этого вопроса нам потребуется создать коллайдер по типу БАК, опоясывающий внешние пределы Солнечной системы или даже больше».
К сожалению, мысленный эксперимент Бичема неосуществим в настоящее время:
«Технологий, человеческой силы и ресурсов для создания коллайдера частиц, опоясывающего внешние пределы Солнечной системы, просто не существует. Даже если бы мы взяли технологии существующего ускорителя и детектора на БАК, масштаб был бы проблемой в самом практическом смысле: непонятно, хватит ли материала для создания этой махины в Солнечной системе, на всех источниках — Земля, Луна, планеты, астероиды и т.п.
И чтобы разогнать протоны до таких высоких энергий, даже на БАК, мы используем сверхпроводящие магниты. Магниты приобретают свойства сверхпроводников только если вы делаете их очень холодными. Можно было бы подумать, что это будет полезно для создания ускорителя частиц в космосе. Космос ведь очень холодный. Но для сверхпроводимости он не очень холодный. Внешний космос имеет температуру 2,7 Кельвина, но магниты требуют 1,9 Кельвина. Близко, но все еще нет. На БАК эти температуры достигаются при помощи жидкого гелия. Непонятно, хватит ли жидкого гелия вообще где-нибудь поблизости, чтобы охладить круговой ускоритель размером с Солнечную систему.
Размер имеет значение
При таких энергиях детекторы должны быть огромными. Вам придется обучать физиков и обзаводиться непостижимым количеством вычислительной мощности. Вам понадобится передовая робототехника, защита от астероидов, комет и другого мусора. И все это еще нужно привести в движение. Вы не можете использовать энергию Солнца, потому что машина окружает Солнце на расстоянии Нептуна. Устройство таких размеров потребует прорывов в области энергетики, которые не представляются возможными в ближайшем будущем.
Такой эксперимент изменил бы физику. В конце концов, такие эксперименты помогают физикам понять, как все устроено, и такой ускоритель даст убедительные ответы на множество вопросов. Это изменит мышление людей. Изменит то, что мы подразумеваем под «пониманием».
Если бы мы строили коллайдер вокруг внешней границы Солнечной системы, знания, которые мы бы приобрели — о природе гравитации, о том, как увязать в одно квантовую механику и общую теорию относительности, о путешествиях во времени, о том, что было в момент Большого Взрыва, о том, может ли наша Вселенная быть всего одной из бесконечного числа множественных вселенных — настолько изменили бы наше представление о реальности, наше отношение к природе, этому ее языку, пониманию мира, человечества, происходящего вообще, нашего места во вселенной, что нам пришлось бы изобретать новую концепцию понимания, чтобы это описать.
Очевидно, никто из людей не работает над таким экспериментом, хотя ЦЕРН уже разрабатывает на бумаге Будущий круговой коллайдер, туннель которого будет 80-100 километров длиной. Впрочем, возможно, где-то кто-то во Вселенной и работает над таким проектом.
Помогут внеземные цивилизации?
Было бы фантастикой, если бы некая далекая цивилизация где-нибудь еще во Вселенной уже работала бы над этим, а у нас была хотя бы возможность найти и связаться с ней, чтобы спросить о результатах даже обычных физических экспериментов. Такая же у них масса бозона Хиггса? Нашли ли они X и Y бозоны, которые демонстрируют объединение электрослабой и электросильной сил? Добрались они до планковских масштабов? Что такое темная материя? Можем ли мы двигаться назад во времени?
Вселенная будет продолжать работать по тем же законам. Реальный вопрос в том, смогут ли люди когда-нибудь понять эти законы.
Смогут? Расскажите в нашем чате в Телеграме.