что такое биомеханика в спорте

Биомеханика «Предмет, задачи спортивной биомеханики»

Онлайн-конференция

«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»

Свидетельство и скидка на обучение каждому участнику

Лекция № 1 Тема 1.1. Предмет, задачи спортивной биомеханики. История развития биомеханики.(2 ч.)

Д/З Подготовка сообщения «Вклад Российских и зарубежных ученых в развитие биомеханики».(2ч)

Биомеханика – это наука о законах механического движения в живых организмах.

Биомеханика спорта – изучает движения человека в процессе физических упражнений.

Она рассматривает двигательные действия спортсмена как системы взаимо связаных активных движений, при этом исследует механические и биологические причины движений и зависящие от них особенности двигательных действий в различных условиях.

Цель, задачи биомеханики двигательных действий

Цель биомеханики двигательных действий состоит с одной стороны, в повышении эффективности двигательных действий человека, а с другой – в предупреждении травм при выполнении двигательных действий и уменьшении их последствий

1. Повышение эффективности двигательных действий человека.

2. Предупреждение травм при выполнении двигательных действий и уменьшение их последствий.

Задачи биомеханики спорта делятся на общие и частные, и задачи которые относятся к определенной цели. Целевые задачи представлены на слайде.

1. Общие – раскрывают физико математические закономерности движений

2. Частные – изучает технику выполнения двигательных действий в различных видах спорта

Метод работы биомеханики спорта

1. Системный анализ это разложение одного целого на отдельные части

2. Системный синтез это способ выявления взаимосвязи частей в системе, закономерностей их воздействия.

Понятия системный анализ и синтез представлены на слайде, их нужно записать в тетрадь

А сейчас мы с вами посмотрим наглядно, чем занимается биомеханика и какие задачи ставят современные ученые перед собой(11:24)

История развития биомеханики

Биомеханика — одна из самых старых ветвей биологии. Ее истоками были работы Аристотеля и Галена, посвященные анализу движений животных и человека. Но только благодаря работам одного из самых блистательных людей эпохи Возрождения — Леонардо да Винчи (1452—1519) — биомеханика сделала свой следующий шаг. Леонардо особенно интересовался строением человеческого тела (анатомией) в связи с движением. Он описал механику тела при переходе из положения сидя к положению стоя, при ходьбе вверх и вниз, при прыжках и, по-видимому, впервые дал описание походок.

А сейчас посмотрим подробный вклад Леонардо да Винчи (видеоролик) ( 14 мин)

Р. Декарт (1596—1650) создал основу рефлекторной теории, показав, что причиной движений может быть конкретный фактор внешней среды, воздействующий на органы чувств. Этим объяс­нялось происхождение непроизвольных движений.

В дальнейшем большое влияние на развитие биомеханики ока­зал итальянец Д. Борелли (1608—1679) — врач, математик, физик. В своей книге «О движении животных» по сути он положил начало биомеханике как отрасли науки. Он рассматривал организм человека как машину и стремился объяснить дыхание, движение крови и работу мышц с позиций механики.

Первые шаги в подробном изучении биомеханики движений были сделаны лишь в конце XIX столетия немецкими учеными Брауном и Фишером (V. Braune, О. Fischer), которые разработали совершенную методику регистрации движений, детально изучили динамическую сторону перемещений конечностей и общего цент­ра тяжести (ОЦТ) человека при нормальной ходьбе.

К.Х. Кекчеев (1923) изучал биомеханику патологических похо­док, используя методику Брауна и Фишера.

П.Ф. Лесгафтом (1837—1909) создана биомеханика физических упражнений, разработанная на основе динамической анатомии. В 1877 г. П.Ф. Лесгафт начал читать лекции по этому предмету на курсах по физическому воспитанию. В Институте физического образования им. П.Ф. Лесгафта этот курс входил в предмет «физическое образование», а в 1927 г. был выделен в самостоятельный предмет под названием «теория движения» ив 1931 г. переименован в курс «Биомеханика физических упражнений».

Большой вклад в познание взаимодействия уровней регуляции движений внес Н.А. Бернштейн (1880— 1968). Им дано теоретическое обоснование процессов управления движениями с позиций общей теории больших систем. Исследования Н.А. Бернштейна позволили установить чрезвычайно важный принцип управления движениями, общепризнанный в настоящее время. Нейрофизиоло­гические концепции Н.А. Бернштейна послужили основой форми­рования современной теории биомеханики движений человека.

Идеи Н.М. Сеченова о рефлекторной природе управления движе­ниями путем использования чувствительных сигналов, получили раз­витие в теории Н.А. Бернштейна о кольцевом характере процессов управления.

М.Ф. Иваницкий (1895—1969) разработал функциональную (динамическую) анатомию применительно к задачам физкультуры и спорта, т. е. определил связь анатомии с физкультурой.

В 1939 году вышло первое учебное пособие Е.А. Котиковой «Биомеханика физических упражнений» в СССР, в городе Ленинграде, а в 1958 году во всех институтах ФК биомеханика стала обязательной учебной дисциплиной.

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Источник

Биомеханика в спорте

РубрикаСпорт и туризм
Видреферат
Языкрусский
Дата добавления11.01.2015
Размер файла1,8 M

что такое биомеханика в спорте. ba. что такое биомеханика в спорте фото. что такое биомеханика в спорте-ba. картинка что такое биомеханика в спорте. картинка ba. Лекция № 1 Тема 1.1. Предмет, задачи спортивной биомеханики. История развития биомеханики.(2 ч.)

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru1

Основным условием жизни вообще является взаимодействие живого организма с окружающей средой. В этом взаимодействии существенную роль играет двигательная деятельность. Только передвигаясь, животное может находить себе пищу, защищать свою жизнь, производить потомство и обеспечивать его существование. Только при помощи разнообразных и сложных движений человек совершает трудовую деятельность, общается с другими людьми, говорит, пишет и пр. Определенным образом организованная двигательная деятельность является основой физического воспитания и основным содержанием спорта.

Наиболее элементарной формой движения материи является механическое движение, т.е. перемещение тела в пространстве. Закономерности механического движения изучаются механикой. Предметом механики как науки является изучение изменений пространственного расположения тел и тех причин, или сил, которые вызывают эти изменения.

Вскрывая и описывая условия, необходимые для осуществления того или иного механического движения, механика является важной теоретической основой техники, в особенности техники построения разнообразных механизмов. Механическая точка зрения может быть использована и при изучении механических движений человека.

Двигательная деятельность человека практически осуществляется при участии всех органов тела. Однако непосредственным исполнителем функции движения является двигательный аппарат, состоящий из костей, скелета, связок и мышц с их иннервацией и кровеносными сосудами. С механической точки зрения, двигательный аппарат совмещает в себе рабочую машину и машину-двигатель.

Основные направления биомеханики

1) оценка физических упражнений с точки зрения их эффективности в решении определенных задач физического воспитания (ФВ);

2) изучение техники ФУ как предмета обучения с выявлением главного и ведущего в движениях, обеспечивающего высокий результат;

3) оценка качества выполнения ФУ, выявление ошибок, их причин, последствий и путей для устранения;

4) совершенствование спортивной техники с обобщением передового опыта и ее теоретическое обоснование;

5) изучение особенностей лучших образцов спортивной техники как общих для всех, так и тех, которые зависят от индивидуальных особенностей физического развития;

6) изучение функциональных показателей физического развития с целью уточнения путей повышения функциональных возможностей организма спортсмена.

Биомеханика возникла и развивается как наука о движениях животных организмов, в частности человека.

Движения частей тела человека представляют собою перемещения в пространстве и времени, которые выполняются во многих суставах одновременно и последовательно. Движения в суставах по своей форме и характеру очень разнообразны, они зависят от действия множества приложенных сил. Все движения закономерно объединены в целостные организованные действия, которыми человек управляет при помощи мышц. Учитывая сложность движений человека, в биомеханике исследуют и механическую, и биологическую их стороны, причем обязательно в тесной взаимосвязи.

Биомеханика исследует, каким образом полученная механическая энергия движения и напряжения может приобрести рабочее применение (А.А. Ухтомский). Рабочий эффект измеряется тем, как используется затраченная энергия. Для этого определяют, какие силы совершают полезную работу, каковы они по происхождению, когда и где приложены. То же самое должно быть известно о силах, которые производят вредную работу, снижающую эффективность полезных сил. Частные задачи биомеханики состоят в изучении и объяснении: а) самих движений человека в той или иной области его двигательной деятельности; б) движений физических объектов, перемещаемых человеком, в) результатов решения двигательной задачи; г) условий, в которых они осуществляются; д) развития движений человека (с учетом названных сторон) в результате обучения и тренировки.

1. На основе кинематики описывают движения (пространственную форму и характер движений), изучая динамику движений, влияние сил на их изменение, дают объяснение, находят причины особенностей движения.

2. Таким же образом описывают и объясняют движения снарядов, зависящие от движений человека.

3. Необходимо сопоставлять разные варианты исполнения, сложившиеся в практике, разную степень совершенства, зависящую от квалификации исполнения и др.

4. Движения часто исполняются в переменных условиях, характер изменения последних также влияет на движения. Учитывая условия внешние (все факторы внешнего окружения) и внутренние (уровень подготовленности, возрастные особенности и др.), с одной стороны выявляют, какие условия благоприятствуют эффективности, иначе говоря, какие нужно создавать условия. С другой стороны, определяют, как лучше приспособиться к заданным условиям, как их использовать.

5. На основе описания и объяснения движений необходимо указать путь их совершенствования: не только изучать действительность, но и преобразовывать ее.

Изучению механических характеристик движений были посвящены исследования В. Брауне, О. Фишера, Г. Хохмута, А. Новака и др.

Применение законов механики в биомеханике совершенно необходимо, но оно недостаточно. Как биомеханическая система тело человека существенно отличается от абсолютно твердого тела или материальной точки, которые рассматриваются в классической механике. Внутренние силы, которые при решении задач в механике твердого тела стараются исключить, имеют определяющее значение для движений человека. Безразличие к источнику силы в механике сменяется крайним интересом к этому вопросу в биомеханике.

Функционально-анатомическое направление. Функционально-анатомический подход характеризуется преимущественно описательным анализом движений в суставах, определением участия мышц при сохранении положений тела и в его движениях.

Изучая форму и строение органов опоры, а также движения человека в тесной связи с их функцией, анатомы исследовали преимущественно двигательный аппарат. Аналитическое изучение тела человека преобладало в работах О. Фишера, Р. Фикка, Г. Брауса, С. Моллье и других зарубежных анатомов.

Физиологическое направление. Физиологическое направление в биомеханике утвердило представление о рефлекторной природе движений, кольцевом характере управления движениями и об обусловленной этим чрезвычайной сложности движений человека.

На развитие биомеханики оказали существенное влияние физиология нервно-мышечного аппарата, учение о высшей нервной деятельности и нейрофизиология. Признание рефлекторной природы двигательных действий и механизмов нервной регуляции при взаимодействии организма и среды в работах И.М. Сеченова, И.П. Павлова, Н.Е. Введенского, А.А. Ухтомского, П.К. Анохина, Н.А. Бернштейна и других ученых составляет физиологическую основу изучения движений чело­века. Системно-структурный подход. Системно-структурный подход в биомеханике характеризуется изучением состава и структуры систем как в двигательном аппарате, так и в его функциях. Этот подход в известной мере объединяет механическое, функционально-анатомическое и физио­логическое направления в развитии теории биомеханики.

По современным представлениям, опорно-двигательный аппарат рассматривается как сложная биомеханическая система; движения человека также изучаются как сложная целостная система.

Системно-структурный подход требует изучения системы как единого целого, потому что ее свойства не сводятся к свойствам отдельных элементов. Важно изучать не только состав, но и структуру системы, рассматривать во взаимосвязи строение и функцию.

Идеи о системности внес в изучение двигательной деятельности также Н.А. Бернштейн. Кибернетический, по сути дела, подход к движениям был им осуществлен более чем за 10 лет до оформления кибернетики как самостоятельной науки.

Современный системно-структурный подход не только не отрицает значения в биомеханике всех направлений, а как бы объединяет их; при этом каждое направление сохраняет в биомеханике свое значение.

Тестирование двигательных качеств

Описание методов тестирования, применяемых для биомеханического контроля в физическом воспитании и спорте, начнем с тестов, позволяющих оценить уровень развития двигательных качеств. Биомеханические тесты выносливости позволяют установить, какой объем работы человек может выполнить и как долго может работать без снижения эффективности двигательной деятельности. Например, при беге с постоянной скоростью наступает момент, когда человек не может поддержать исходную длину шага (компенсированное утомление), а спустя еще некоторое время он вынужден снизить скорость (декомпенсированное утомление) (рис.1). Чем выносливее человек, тем дольше не наступает утомление.

Согласно правилу обратимости двигательных заданий все три разновидности теста на выносливость эквивалентны (табл.1), т.е. при тестировании группы людей наиболее выносливые в одном из этих трех тестов будут наиболее выносливыми и в двух других.

Рис 1. Измерение скорости, длины шаг и частоты шагов (темпа) у человека, выполняющего тест на выносливость: 1. Компенсированное утомление. 2. Декомпенсированное утомление.

Тестирование силовых качеств осуществляется либо в упражнениях статического характера, либо в таких общеразвивающих упражнениях, где выполняется локальная или регионарная мышечная работа. В первом случае мерой силовых возможностей служит величина проявляемой силы (Fo) и продолжительность ее удержания. Во втором случае определяется, сколько раз подряд человек может сжать или растянуть пружину динамометра, подтянуться, отжаться и т.п.

Проявляемая человеком сила зависит от позы, от углов в суставах. Влияние суставного угла на проявляемую силу иллюстрирует рис.28. Изображенный на нем график показывает, что, например, оптимальный угол в локтевом суставе близок к 80°. В этом случае угол между направлением тяги двуглавой мышцы плеча и костями предплечья близок к 90°.

Вообще говоря, измерение силы можно проводить при любой величине суставного угла. Важно лишь, чтобы он всегда был одним и тем же.

Рис 2. Сила тяги мышцы, необходимая для удержания груза в зависимости от величины суставного угла.

Общепринятым тестом силовых качеств является подтягивание на перекладине. Но далеко не каждый может подтянуться на высокой перекладине. Поэтому полезен тест, в котором человек выполняет возможно большее число подтягиваний на низкой перекладине (см. рис.4), и соответствующие педагогические шкалы (табл.2). С той же целью можно использовать «отжимания» (рис.3) и другие общедоступные упражнения

Тестирование гибкости чаще всего связано с измерением углов между звеньями тела (рис.4). Делается это гониометрами (угломерами). Существуют и другие методы контроля за гибкостью (рис.5).

Рис 4. Тестирование гибкости: измеряется угол между бедрами.

Рис 5. Тестирование гибкости: измеряется расстояние между руками и ногами.

Гибкость оценивается расстоянием от кончиков пальцев руки до опоры.1 см на линейке соответствует одному очку. Нормальной считается гибкость, оцениваемая в ноль очков; в этом случае испытуемый достает кончиками пальцев до опоры.

В настоящее время характерными чертами современного спорта является значительное его омоложение и неуклонный рост спортивного достижения.

Посвящая себя исследовательской работе, на первый взгляд кажется, что современная наука не оставила нерешённых проблем. В тоже время для практики, как бы совершенна она не была, всегда характерно стремление добиться результата быстрее и с меньшей затратой сил и средств. То есть повысить качество, производительность и эффективность общественного труда. В связи с этим возникает проблемная ситуация, связанная с необходимостью создания новых методов, технологии, приёмов производства, обучения.

Повышение функциональных возможностей организма учащихся является одной из основных задач школьного физического воспитания. Однако в последние годы стало появляться множество научных данных о низком уровне физической подготовленности большой части школьников нашей страны

Процесс совершенствования методических подходов к повышению функциональных возможностей организма школьников стимулирует поиск новых, более рациональных путей решения данной проблемы. Одним из основных направлений в этом является дифференцированный подход к учащимся, подразумевающий тщательное изучение индивидуальных особенностей каждого из них, с последующим распределением школьников по сходным типологическим признакам на определенные группы с учетом задач учебного процесса.

биомеханика спорт тестирование двигательный

Основные направления научных исследований в области биомеханики спорта за рубежом (1980-1986): Обзор. информ. / ВНИИ физ. культуры; Подгот. М.П. Дементьевой 33 с.20 см М. Отд. исслед. и разраб. НТИ «Спорт» 1986 1987

Размещено на Allbest.ru

Подобные документы

реферат [882,4 K], добавлен 28.04.2014

Сущность биомеханики, предмет и методы ее изучения, место среди наук о физическом воспитании и спорте. Двигательные действия в спортивной гимнастике и применение в ней законов биомеханики. Принципы управления вращениями в гимнастической постановке.

доклад [16,1 K], добавлен 27.05.2009

Предмет и методы исследования биомеханики, связь с другими науками. Задачи биомеханики спорта. Свойства инертности тел. Звенья тела как рычаги и маятники. Геометрия масс тела. Степени свободы в биомеханических цепях. Строение тела и моторика человека.

шпаргалка [33,1 K], добавлен 10.01.2011

Роль гимнастики для развития двигательных качеств школьников, в частности силы и гибкости. Влияние физических упражнений на организм человека. Анатомо-физиологические особенности подростка. Разработка комплексов упражнений для развития гибкости и силы.

курсовая работа [39,4 K], добавлен 24.11.2010

Возрастные особенности развития двигательных качеств. Изучение морфофункциональных особенностей детей и подростков. Исследование развития двигательных качеств, в группах начальной подготовки по легкой атлетике. Тестирование физической подготовленности.

курсовая работа [46,2 K], добавлен 27.08.2010

Источник

Биомеханика человека

Содержание

Функциональные, морфологические и физиологические аспекты передвижения и осанки человека [ править | править код ]

X. Витте Технический университет, Ильменау, Германия, и Университет им. Фридриха Шиллера, Йена, Германия

Г. Клауэр, Н.П. Шуманн, Г.Х. Шолле Университет им. Фридриха Шиллера, Иена, Германия






Общие наследуемые признаки млекопитающих [ править | править код ]

что такое биомеханика в спорте. Sportnauka38. что такое биомеханика в спорте фото. что такое биомеханика в спорте-Sportnauka38. картинка что такое биомеханика в спорте. картинка Sportnauka38. Лекция № 1 Тема 1.1. Предмет, задачи спортивной биомеханики. История развития биомеханики.(2 ч.)

что такое биомеханика в спорте. 250px Sportnauka39. что такое биомеханика в спорте фото. что такое биомеханика в спорте-250px Sportnauka39. картинка что такое биомеханика в спорте. картинка 250px Sportnauka39. Лекция № 1 Тема 1.1. Предмет, задачи спортивной биомеханики. История развития биомеханики.(2 ч.)

что такое биомеханика в спорте. 250px Sportnauka40. что такое биомеханика в спорте фото. что такое биомеханика в спорте-250px Sportnauka40. картинка что такое биомеханика в спорте. картинка 250px Sportnauka40. Лекция № 1 Тема 1.1. Предмет, задачи спортивной биомеханики. История развития биомеханики.(2 ч.)

Антропоцентрический подход к лечению болезней опорно-двигательного аппарата человека порожден, главным образом, двуногой специализацией людей с ее уникальными функционально-морфологическими приспособлениями. Для передвижения люди используют те же самые принципы, что и большинство других млекопитающих. Далее мы объясним некоторые важнейшие особенности локомоции (передвижения) млекопитающих и их значение в медицине.

Для животных, имеющих конечности, механика наземного передвижения подчиняется до удивления простым общим правилам. Ограничения задаются морфологией (масса и высота тела: результаты эволюции), тяготением (природная константа) и эластичностью (свойства материи, которые, похоже, совершенно не изменились в ходе эволюции млекопитающих). Синхронизация ограничена нервными механизмами, которые ведут свое происхождение от рептилий-предшественников, живших более 140 млн лет назад. С тех пор пропорции и распределение массы в пределах одного вида, например Homo sapiens, практически одинаковы для всех особей (эти признаки стали основой для дифференциации видов с точки зрения зоологии), и двигательные возможности связаны ограничениями нашего эволюционного наследия. Знание о них облегчает рациональное лечение.

Подсистемы опорно-двигательного аппарата человека и механические ограничения их филогении [ править | править код ]

Научные исследования человеческого прямохождения в современную эпоху начались в первой половине XIX в. с работы Эдуарда и Вильгельма Вебера Bber die Mechanik der menschlichen Gehwerkzeuge (О механике человеческой ходьбы), изданной в 1836 г. Эти исследования были инициированы прусским правительством, которое хотело повысить эффективность пехоты после того, как прусская армия была разбита войска-ми Наполеона при Иене и Ауэрштедте. Они рассматривали проблему с точки зрения биомеханики, а также физиологии. Технические достижения в области хронофотографии, разработанной Этьеном Жюлем Маре и Эдвардом Майбриджем, сделали возможным корректный анализ движения. Программы НАСА в 1960-х гг. осуществляли постепенную методологическую оптимизацию современных оптических анализаторов движения с частотой приблизительно 1000 Гц и пространственным разрешением около 1 мм. В результате механическое действие опорно-двигательного аппарата человека в настоящее время представляется хорошо описанным, но не полностью понятым.

что такое биомеханика в спорте. 250px Sportnauka41. что такое биомеханика в спорте фото. что такое биомеханика в спорте-250px Sportnauka41. картинка что такое биомеханика в спорте. картинка 250px Sportnauka41. Лекция № 1 Тема 1.1. Предмет, задачи спортивной биомеханики. История развития биомеханики.(2 ч.)

что такое биомеханика в спорте. Sportnauka42. что такое биомеханика в спорте фото. что такое биомеханика в спорте-Sportnauka42. картинка что такое биомеханика в спорте. картинка Sportnauka42. Лекция № 1 Тема 1.1. Предмет, задачи спортивной биомеханики. История развития биомеханики.(2 ч.)

что такое биомеханика в спорте. Sportnauka43. что такое биомеханика в спорте фото. что такое биомеханика в спорте-Sportnauka43. картинка что такое биомеханика в спорте. картинка Sportnauka43. Лекция № 1 Тема 1.1. Предмет, задачи спортивной биомеханики. История развития биомеханики.(2 ч.)

что такое биомеханика в спорте. 250px Sportnauka44. что такое биомеханика в спорте фото. что такое биомеханика в спорте-250px Sportnauka44. картинка что такое биомеханика в спорте. картинка 250px Sportnauka44. Лекция № 1 Тема 1.1. Предмет, задачи спортивной биомеханики. История развития биомеханики.(2 ч.)

что такое биомеханика в спорте. 250px Sportnauka45. что такое биомеханика в спорте фото. что такое биомеханика в спорте-250px Sportnauka45. картинка что такое биомеханика в спорте. картинка 250px Sportnauka45. Лекция № 1 Тема 1.1. Предмет, задачи спортивной биомеханики. История развития биомеханики.(2 ч.)

Это объяснение, основанное на механике твердого тела, необходимо дополнить с помощью механики упругих тел. Человеческий опорнодвигательный аппарат даже в положении стоя накапливает значительное количество упругой энергии. Помимо коллагена в сухожилиях и фасциях, который в силу невысокого его содержания в организме человека, по-видимому, большее значение имеет у четвероногих животных, в мышечных волокнах содержатся упругие гигантские белки, которые служат субстратом для накопления этой упругой энергии. Титин, основной представитель целой группы упругих гигантских белков, расположен параллельно рабочему аппарату мышцы (рис. 7).

что такое биомеханика в спорте. 250px Sportnauka46. что такое биомеханика в спорте фото. что такое биомеханика в спорте-250px Sportnauka46. картинка что такое биомеханика в спорте. картинка 250px Sportnauka46. Лекция № 1 Тема 1.1. Предмет, задачи спортивной биомеханики. История развития биомеханики.(2 ч.)

В силу регионарного принципа электрической активации мышц приводящая мышца становится «настраиваемой пружиной»; термин предложен Муссой-Ивальди в 1998 г. В человеческом туловище эти мышечные пружины расположены крестообразно под углом примерно 45° к продольной оси. При их идеальном расположении они активно и упруго управляют скручиванием туловища (рис. 8). Как следствие, линейная связь между грудной клеткой и тазом, образованная этими мышечными пружинами, приводит к формированию гиперболоидного внешнего контура, который мы называем талией.

Соотношение длин длинных сегментов можно в первом приближении рассматривать как адаптацию с целью минимизировать вращение суставов посредством линейного перемещения ног и рук. Точная регулировка определяется адаптацией к нуждам самостабилизации (т.е. «интеллектуальной механикой»). Потребность в использовании голеностопного сустава в качестве пружины кручения ведет к приспособлению формы и строения ступней. Хватание определяет форму ладоней и приводит к сосредоточению мышечной массы в предплечьях. Таким образом, обеспечиваются сопоставимые длины маятников рук и ног, даже если их общая длина различна.

Пространственный размах маятника пропорционален его длине, тогда как время цикла качания пропорционально квадратному корню длины (маятника). Если колебание перевести в приращение пространства, скорость при резонансе как соотношение пространственного размаха и времени цикла качания пропорциональна квадратному корню длины. Поэтому, с энергетической точки зрения, чем длиннее ноги, тем выше оптимальная скорость. Эта тенденция ограничивается потребностью в скоординированном взаимодействии гравитационных и упругих механизмов (рис. 10).

Механизмы управления механикой [ править | править код ]

За последние 50 лет было проведено большое количество экспериментов и исследований для получения сведений о механизмах CPG и о том, как обеспечивается надлежащая координация различных CPG и пулов мотонейронов, особенно при сложных пространственно-временных двигательных стереотипах у имеющих конечности животных. Убедительный эксперимент по проверке реального осциллирующего CPG представляет собой изолированную подготовку отдельной системы с блокировкой всех афферентных путей. После возбуждения при помощи NMDA, серотонина или дофамина, которые являются аналогами медиаторов в позвоночной системе, а также электрического возбуждения «двигательного ядра», расположенного в стволе мозга («мезэнцефальный двигательный центр»), можно было проследить ритмичные серии разрядов по эфферентным путям (передние корешки спинного мозга у позвоночных животных; «фиктивная локомоция»). Интенсивные исследования проводились с миногами, простейшими не имеющими конечностей позвоночными животными, с целью получить реальные данные о строении и функциях CPG, а также о ростро-каудальной связи разрозненных CPG, управляющей волнообразным плавательным движением. По сравнению с позвоночными животными, не имеющими конечностей, у имеющих конечности ходячих позвоночных животных с разными способами ходьбы и нейронный контроль отдельных членов, и координация всех членов намного сложнее. Впоследствии Гриллнер предположил, что для групп мышц-сгибателей и мышц-разгибателей, для сегментов конечностей и отдельных конечностей существуют независимые CPG. Реальная нейронная цепь, образующая CPG, у позвоночных животных, обладающих конечностями, до сих пор не обнаружена. Но сегменты спинного мозга, содержащие колебательные контуры, можно продемонстрировать на препаратах спинного мозга.В спинном мозге новорожденных крыс и мышей CPG расположены как в черепном (С7, С8, ТЫ), так и в пояснично-крестцовом отделе спинного мозга. Каждый CPG-отдел спинного мозга имеет свою собственную частоту колебаний, но может вовлекать и определить ростральные и/или каудальные сегменты соответственно. Что касается афферентной импульсации, поступающей в систему, которая фактически перекрывает эфферентный выход двигательного нерва и используется для модуляции наблюдаемого пространственно-временного стереотипа, ведутся споры о том, включать эти афференты в модель CPG или нет. Увеличение поступления афферентной информации в эти нейронные цепи либо для модуляции эффектов, либо для функционирования рефлексов усложняет модель CPG в геометрической прогрессии. Фактически, и нормальные поведенческие колебания, и нормальная межсегментная координация никогда не наблюдаются без сенсорной обратной связи.

что такое биомеханика в спорте. 250px Sportnauka47. что такое биомеханика в спорте фото. что такое биомеханика в спорте-250px Sportnauka47. картинка что такое биомеханика в спорте. картинка 250px Sportnauka47. Лекция № 1 Тема 1.1. Предмет, задачи спортивной биомеханики. История развития биомеханики.(2 ч.)

что такое биомеханика в спорте. 250px Sportnauka48. что такое биомеханика в спорте фото. что такое биомеханика в спорте-250px Sportnauka48. картинка что такое биомеханика в спорте. картинка 250px Sportnauka48. Лекция № 1 Тема 1.1. Предмет, задачи спортивной биомеханики. История развития биомеханики.(2 ч.)

Помимо модели CPG, которая включает в себя и колебательные характеристики, и двигательный стереотип, управляющие центры должны гарантировать, что силы, произведенные мышцами для производства суммарного крутящего момента, будут уравновешены. Из этого соображения следует вывод, что «центральная нервная система должна быть способна шаг за шагом решить обратную задачу динамики», чтобы сохранить суммарную силу на низком уровне. Но стоит ли ожидать этого в действительности?

На основании данных, полученных при электромиографических исследованиях на ряде животных, было выдвинуто предположение, что мышцы или мышечные лакуны действуют синергетически, порождая наблюдаемое движение конечности. Это понятие «мышечной синергии», хоть оно и выглядит впечатляюще, невозможно проверить с помощью согласованной классификации данных ЭМГ. Недавно с помощью нового алгоритма удалось продемонстрировать подобную согласованную классификацию данных ЭМГ задней конечности лягушки. Концепция «синергии мышц» подобна понятиям «поведенческих примитивов» или «двигательных модулей». На примере задней конечности лягушки, а также крысы было показано, что отдельных движений можно добиться с помощью ионофоретического (или электрического) возбуждения дивергентных цепей в спинном мозге. Измеренные силы, произведенные в лодыжке лягушки, при постоянной стимуляции одной и той же спинномозговой цепи и пассивном движении лодыжки лягушки вдоль определенных координат пространства ее ноги ниже в определенных одномерных пространственных координатах и выше в окружающем пространстве. При стимуляции различных спинномозговых цепей результирующие силы лодыжки, связанные с координатамив пространстве, для разных спинномозговых цепей оказываются разными. В ходе этих исследований было получено небольшое количество отдельных «модулей» или «примитивов движения». Они отвечают за осуществление отдельного движения с небольшими результирующими силами в лодыжке. Промежуточные движения осуществляются линейным добавлением двух или трех таких модулей. На примере крыс были продемонстрированы те же самые принципы, используя исключение сгибания и движения на растяжение.

Афферентная импульсация [ править | править код ]

Как уже описано выше, в двигательные нейронные цепи поступает огромное количество сенсорной (афферентной) информации. Можно выделить несколько аспектов значимой для двигательных систем сенсорной информации. Проприоцептивная импульсация передает информацию об устойчивом состоянии самой системы, которая используется для адаптации и приспособления двигательной системы к нуждам опорно-двигательного аппарата, а также для сохранения информации о биомеханических параметрах. Хотя организм в состоянии скоординировать и синхронизировать свои различные части с помощью проприоцептивной системы, важны также и внешние ориентиры, к которым организм должен приспособиться и адаптироваться. Главным элементом здесь являются рефлекторные проводящие пути. Сенсорная информация об окружающей среде также может быть использована для вычисления модификации пространственно-временных характеристик походки. Интересно, что информация от кожных механорецепторов, которые сигнализируют о контакте с опорной поверхностью, особенно в фазе опоры, важна не только в переходных фазах (т.е. при касании земли), но также и в фазах отрыва от земли. Кожные сигналы связаны с премоторными интернейронами в спинном мозге, в то время как в фазе переноса они блокируются пресинаптическим торможением. Продолжительные кожные сигналы, например, могут усилить опору. От поступления сенсорной информации также зависят целенаправленные движения и ориентационное поведение. Эта афферентная информация от органов чувств должна быть включена в двигательные программы на более высоких иерархических уровнях, которые передают двигательную программу спинномозговым цепям.

Активизация работы мышц во время передвижения [ править | править код ]

Физиологической основой для дифференцированного нейронного управления мышцами служит существование так называемых двигательных единиц. Это наименьшая функциональная единица нервно-мышечной системы у млекопитающих. Они всегда состоят из одного мотонейрона, который иннервирует множество мышечных волокон. Количество волокон, возбуждаемых одним мотонейроном (коэффициент иннервации), зависит от функции соответствующей мышцы. Например, глазные мышцы как группа прямых мышц, осуществляющих тонкие движения глазного яблока, имеют только пять-семь волокон на двигательную единицу. В мышцах нижних конечностей, выполняющих довольно грубые двигательные задачи и создающих большие усилия, на одну двигательную единицу приходится от нескольких сотен до тысяч мышечных волокон (например, в передней большеберцовой мышце на двигательную единицу приходится 562 волокна).

Известны три основных типа мышечных волокон. Для первого типа характерен аэробный метаболизм, создание всего лишь слабых усилий и незначительная усталость при длительной активности волокон. Этот тип мышечных волокон сокращается медленно (медленно сокращающиеся волокна, или волокна I типа). Другой тип характеризуется анаэробным метаболизмом. Эти волокна создают значительные усилия и быстро устают при длительном сокращении. Скорость сокращения высока (быстро сокращающиеся волокна, быстро утомляемые, или волокна типа IIB). Для волокон третьего типа также характерен анаэробный метаболизм. Они производят усилия средней интенсивности. Этот тип устойчив к утомлению при длительном сокращении. Скорость сокращения также является высокой (быстро сокращающиеся волокна, устойчивые к усталости, или волокна типа IIA). Для волокон типа II описаны дополнительные подтипы.

Обычно двигательные единицы волокон всех типов активируются следующим образом. После деполяризации мембраны мотонейрона (как правило, вызванной периферийной сенсорной импульсацией по афферентным нервам или воздействием ЦНС через другие нервные клетки; оба варианта активации осуществляются при посредстве синаптической передачи) и пересечения мембранного порога индуцируется последовательность биоэлектрических потенциалов. Эти последовательности потенциала действия, скачкообразно распространяясь, достигают зон иннервации мышцы (моторных бляшек). Таким образом, мышечные волокна получают регулируемую частотой информацию от периферийных, спинномозговых и супраспинальных нервных клеток. Возникающая в результате этого деполяризация мембран мышечных волокон порождает каскадное включение механизмов, заключительной фазой которого становится сокращение мышечных волокон двигательной единицы.

При незначительных мышечных усилиях сначала активизируются некоторые из двигательных единиц типа I. Если сила мышцы должна увеличиться, задействуются дополнительные двигательные единицы типа I. Такие процессы активации могут быть непрерывными (например, при выполнении постуральных моторных задач), потому что в волокнах типа I наблюдается аэробный метаболизм (при условии поступления достаточного количества кислорода и энергии). В случаях, когда требуется большее усилие, в процесс дополнительно вовлекаются двигательные единицы типа IIA, а затем, в случае необходимости, и двигательные единицы типа IIB. Когда активирована вся мышца, можно добиться дальнейшего увеличения силы мышцы, увеличивая скорость возбуждения мотонейронов. Скорость возбуждения больше 25 Гц приводит к сглаженному сокращению всей мышцы, что говорит о том, что влияние сокращения мышечных волокон отдельных двигательных единиц практически незаметно на диаграммах усилий.

Кроме того, более или менее значительное количество двигательных единиц может быть разделено на нервно-мышечные компартменты. Обособленные участки мышцы, относящиеся к этим компартментам, возбуждаются основным ответвлением нерва к мышце. Морфология и функции этих разделенных на компартменты мышц обычно сложны, как, например, у жевательной мышцы или икроножной мышцы (ИМ).

что такое биомеханика в спорте. 250px Sportnauka49. что такое биомеханика в спорте фото. что такое биомеханика в спорте-250px Sportnauka49. картинка что такое биомеханика в спорте. картинка 250px Sportnauka49. Лекция № 1 Тема 1.1. Предмет, задачи спортивной биомеханики. История развития биомеханики.(2 ч.)

Исследования двигательных единиц методом истощения запасов гликогена показали, что одиночные двигательные единицы в латеральной головке ИМ кошки распределены в тех же самых областях мышцы, которые иннервированы основными ответвлениями нерва к ИМ. Эти нерв но-мышечные компартменты могут быть «глав ным принципом организации скелетных мышц. Но функциональное значение нервно-мышечных компартментов пока еще не ясно, равно как и разделение процессов управления движением на сенсорные и осуществляемые ЦНС. Однако очевидно, что выборочная активация различных типов двигательных единиц, разнообразие структуры групп волокон двигательных единиц и компартментов, соответственно (перистость и сложное параллельное или последовательное расположение мышечных волокон), разнообразие мышечно-механических свойств делают возможным более сложное управление мышцами и. вследствие этого, точно отрегулированные движения, а также положения тела.

Электромиографический анализ (с помощью биполярных электродов из тонкой проволоки) четырех компартментов ИМ кошки, каждый из которых состоит из отдельной популяции двигательных единиц, показал, что во время свободного передвижения кошки компартменты выборочно активировались, но этот процесс можно было наблюдать в более чем одной модели активации. Эти модели в целом согласуются с упорядоченной активацией двигательных единиц. Результаты исследований распределения мотонейронов, обслуживающих компартменты ИМ кошки, в пространстве и по размеру (ретроградное исследование путем окрашивания перокси-дазой хрена) подтверждают идею выборочной активации мышц. В исследованиях жевательной мышцы человека с помощью сканирующей электромиографии также была описана выборочная активация мышцы. Подобным образом, при использовании методов поверхностной ЭМГ скелетных мышц с картированием, негомогенный характер активации мышцы очевиден.

что такое биомеханика в спорте. 250px Sportnauka50. что такое биомеханика в спорте фото. что такое биомеханика в спорте-250px Sportnauka50. картинка что такое биомеханика в спорте. картинка 250px Sportnauka50. Лекция № 1 Тема 1.1. Предмет, задачи спортивной биомеханики. История развития биомеханики.(2 ч.)

что такое биомеханика в спорте. 250px Sportnauka51. что такое биомеханика в спорте фото. что такое биомеханика в спорте-250px Sportnauka51. картинка что такое биомеханика в спорте. картинка 250px Sportnauka51. Лекция № 1 Тема 1.1. Предмет, задачи спортивной биомеханики. История развития биомеханики.(2 ч.)

Недавно была исследована пространственно-временная региональная активация мышц у мелких млекопитающих при передвижении по беговой дорожке. Использованный методологический подход позволил провести хронологический эксперимент (рис. 11). Применялась электродная матрица, состоящая из 16 активных шаровидных серебряных электродов диаметром 0,4 мм, встроенных в силиконовую матрицу с расстоянием между электродами 3 мм. Под общей анестезией изофлураном эта электродная матрица была хирургическим путем имплантирована на трехглавую мышцу плеча под кожу на фасции длинной и латеральной головки этой мышцы левой передней конечности (см. рис. 11а). Сравнительный и заземляющий электроды представляли собой серебряные проволочные петельки, соединенные серебряной нитью с микросоединителем, установленным хирургическим путем под загривком. Измерения начались со второго послеоперационного дня. По окончании электромиографических исследований распределение типов мышечных волокон в трехглавых мышцах плеча животных было трехмерно реконструировано на основании гистологических препаратов. Во время передвижения по беговой дорожке с постоянной скоростью были одновременно зарегистрированы данные ЭМГ от постоянно имплантированной электродной матрицы, проведена рентгеновская киносъемка и трехмерная высокоскоростная видеометрия. Пример рентгеновской киносъемки, выполненной со скоростью 150 кадров/с, представлен на рис. 11Ь. 16 монополярно (с электродом сравнения на шее) записанных каналов ЭМГ были усилены, отфильтрованы при 10—700 Гц и оцифрованы при скорости 4000/с на канал и с разрешением 2,44 мкВ/бит. Чтобы визуально определить начало и конец фазы опоры левой передней конечности, использовалась высокоскоростная видеометрия со скоростью 200 кадров/ сек. Для стандартизации продолжительности фазы опоры использовались пусковые механизмы (движение ноги вниз/пальца ноги вверх), полученные при быстродействующей видеометрии. После цифровой высокочастотной фильтрации при 20 Гц была вычислена среднеквадратичная величина данных ЭМГ, сглажена во временном окне в 21 миллисекунду, а затем была произведена повторная выборка в масштабе времени, нормализованном длительностью шага.

Передвижение и постуральномоторный контроль [ править | править код ]

У млекопитающих, и четвероногих и двуногих, управление передвижением тесно связано с постуральным контролем (т.е. обе системы взаимодействуют). Контроль положения тела крайне важен для эффективного передвижения, о чем свидетельствует передвижение младенцев. Чередующееся движение ног может осуществляться с помощью центрального генератора упорядоченной активности, но ребенок не в состоянии удерживать тело в вертикальном положении. В этой фазе развития афферентная информация о положении тела не может быть скоординирована с программой движения ног.

Другие системы, например дыхание, также координируются с процессами двигательного и постурального контроля. Не только передвижение или особенности постурального контроля влияют на ритм дыхания, но и фаза дыхания воздействует на передвижение или параметры постурального контроля. Например, правильность постуральных реакций увеличивается в средней части выдоха.

Постурально-моторный контроль и сидячее положение [ править | править код ]

что такое биомеханика в спорте. 250px Sportnauka52. что такое биомеханика в спорте фото. что такое биомеханика в спорте-250px Sportnauka52. картинка что такое биомеханика в спорте. картинка 250px Sportnauka52. Лекция № 1 Тема 1.1. Предмет, задачи спортивной биомеханики. История развития биомеханики.(2 ч.)

При последовательном исследовании мышечная координация поясничной области была измерена методом 16-канальной ЭМГ с использованием для регистрации однополярных поверхностных электродов. Эти 16 электродов были распределены по коже над мышцами в соответствии с морфологическими и функциональными характеристиками анализируемых областей (рис. 13). Электроды сравнения были расположены в области передних верхних подвздошных остей и соединены между собой проводом. Расстояния между 16 активными электродами были выбраны с учетом всех главных топографических особенностей ЭМГ. Использовалась частота выборки ЭМГ 1000 Гц (период дискретизации 512 миллисекунд). Образцы ЭМГ без артефактов были использованы для вычисления средней периодограммы с помощью быстрого преобразования Фурье. На основе этих параметров была вычислена общая спектральная интенсивность ЭМГ в частотном диапазоне 10-498 Гц. Затем спектральные параметры ЭМГ между местами расположения электродов были оценены линейной интерполяцией (алгоритм четырех ближайших соседей). Полученная матрица спектральных параметров ЭМГ была подогнана по серой шкале с десятью интервалами. Таким образом, миоэлектрические процессы активации могут быть показаны двумерными распределениями спектральной интенсивности ЭМГ (картирование интерференционной ЭМГ).

что такое биомеханика в спорте. 250px Sportnauka53. что такое биомеханика в спорте фото. что такое биомеханика в спорте-250px Sportnauka53. картинка что такое биомеханика в спорте. картинка 250px Sportnauka53. Лекция № 1 Тема 1.1. Предмет, задачи спортивной биомеханики. История развития биомеханики.(2 ч.)

Результаты говорят о том, что при сидении важнейшую роль играют индивидуальные мышечные возможности исследуемых людей, равно как их способность скоординировать задействованные мышцы поясничной области функционально ощутимым образом. Индивидуальный характер активации мышц также единообразен при сидении в течение более длительного времени (например, при сидении на стуле без спинки в течение 30 минут). Таким образом, на основании этих результатов можно предположить, что для «оптимального» положения при сидении одинаково важны и функциональное состояние поясничной области/туловища, и эргономика стульев или других сидений.

Благодарности [ править | править код ]

Мы хотели бы поблагодарить профессора Хольгера Пройшофта (отделение функциональной морфологии, Рурский университет, Бохум, Германия) и профессора Мартина С. Фишера (Институт специальной зоологии и эволюционной биологии с Филогенетическим музеем при Университете им. Фридриха Шиллера, Иена, Германия) за их поддержку, позволившую нам собрать экспериментальные и теоретические данные о передвижении человека. Исследования, лежащие в основе этого обзора, были профинансированы Немецким научно-исследовательским сообществом (DFG, Бонн, Германия), Исследовательским центром междисциплинарной профилактики (Иена, Германия), Профсоюзом общественного питания и продуктов питания (Эрфурт/Мангейм, Германия) и Обществом содействия кинологическим исследованиям (Бонн, Германия).

Глоссарий [ править | править код ]

Альфа-мотонейроны — моторные нейроны ствола мозга и вентрального рога спинного мозга.

Бипедализм — передвижение на двух конечностях (ногах).

Модули движения — спинномозговые премоторные нейронные сети, активизирующие группу мышц, отвечающих за определенное положение сустава. Небольшое количество таких модулей движения активизируется последовательно, оптимизируя траекторию, к примеру, движения конечностей.

Мышечные синергии — совместное действие мышц.

НАСА — Национальное управление по аэронавтике и исследованию космического пространства США.

Передвижение — движение с существенным изменением местоположения центра тяжести тела (превышающее предопределенный диапазон г в пределах предопределенного времени /). Если движение ограничено этим диапазоном, его называют идеомоторикой.

Упругая энергия — энергия (способность работать), накапливаемая в упругих нижних слоях.

Четвероногие — позвоночные животные с передними и задними конечностями. Большую их часть составляют наземные позвоночные.

Электродная матрица — совокупность электродов.

CPG — центральный генератор упорядоченной активности.

RMS — среднеквадратичное значение.

Читайте также [ править | править код ]

Библиография [ править | править код ]

Biedermann F., Schumann N. P., Fischer M.S., Scholle H.C. (2000). Surface EMG-recordings using a miniaturized matrix electrode: a new technique for small animals. Journal of Neuroscience. Methods 97 (1), 69-75.

Biischges A., El Manira A. (1998). Sensory pathways and their modulation in the control of locomotion. Current Opinion in Neurobiology 8, 733-739. [Обзорное исследование, посвященное влиянию сенсорной информации на контроль движения.]

English A.W., Letbetter W. D. (1982). Anatomy and innervation patterns of the cat lateral gastrocnemius and plantaris muscles. American Journal of Anatomy 164, 67-77. [Представлены результаты исследования мышечных компартментов, возбуждаемых основными ответвлениями нерва к мышце.]

Mussa-Ivaldi F.A., Bizzi Е. (2000). Motor learning through the combination of primitives. Philosophical transactions of the Royal Society of London. Series B: Biological Sciences 355 (1404), 1755-1769. [Вводится понятие модулей движения.]

Preuschoft Н., Witte Н., Demes В. (1992). Biomechanical factors that influence overall body shape of large apes and humans. Topics in Primatology, Vol. 3 (ed.S. Matano, R. H. Tuttle, H. Ishida, and M. Goodman), pp. 259-289. Tokyo: University of Tokyo Press.

Scholle H.Ch., Schumann N. P., Biedermann F., Stegeman D. F., СгаЯте R., Roeleveld K., Schilling N., Fischer M.S. (2001). Spatiotemporal surface EMG characteristics from rat triceps brachii muscle during treadmill locomotion indicate selective recruitment of functionally distinct muscle regions. Experimental Brain Research 138, 26- 36. [Исследование селективной активации трехглавой мышцы плеча крысы при передвижении, с учетом трехмерного распределения мышечных волокон.]

Schumann N. P., Grosch J., Bradl I., Anders Ch., Scholle H.Ch. (1996). Lumbales ОЬегПдсЬеп-EMG beim Sitzen. P^vention von berufs-und arbeitsbedingten Erkrankungen, Vol. 2 (ed.S. Radandt, R. Grieshaber, W. Schneider), pp. 255-269. Leipzig, Germany: Erfurter Tage. monade Verlag und Agentur, Rainer Rodewald. Selverston A. (1999). General principle of rhythmic motor pattern generation from invertebrate CPGs. Progress in Brain Research, Vol. 123: Peripheral and Spinal Mechanisms in Neural Control of Movement (ed. M.D. Binder), pp. 247-257. Amsterdam: Elsevier. [Краткий обзор понятия CPGs у насекомых и улиток.] Wagner Н., Blickhan R. (1999). Stabilizing function of skeletal muscles: an analytical investigation. Journal of Theoretical Biology 199, 163—179. [Предложен подход к применению механической концепции самостабилизацмм к функциям мышц.]

Windhorst U., Hamm Т. М., Stuart D.G. (Wyj,On the function of muscle and reflex раи’июп ing. Behavioral and Brain Sciences 12,629-[Дан обзор функций мышц и разделен*?* рефлекторной деятельности.]

Witte Н. (2002). Hints for the construction of an thropomorphic robots based on the functional morphology of human walking. Journal of the Robotics Society of Japan 20 (3), 25-32.

Witte H., Lesch C., Preuschoft H., and Loiisch С (1995). Die Gangarten der Pferde: Sind Schw щ gungsmechanismen entscheidend? Federschwin gungen bestimmen den Trab und den Galopp Pferdeheilkunde 11 (4), 265-272.

Witte H., Preuschoft H., Recknagel S. (1991). Hu man body proportions explained on the basis <>j biomechanical principles. Zeitschrift fur Morpho logie und Anthropologie 78, 407-423. (Функци ональная морфология формы человеческого тела, основанная на механике твердых тел.] Witte Н., Recknagel S., Lesch С., RaoJ.G., Preuschoft H. (1997). Is Elastic Energy Storage of Quantitative Relevance for the Functional Morphology of the Human Locomotor Appara tus? Acta Anatomica 158, 106-111. [Приведено доказательство накопления упругой эиср гии в опорно-двигательном аппарате людей в стоячем положении.]

Биографическая справка [ править | править код ]

Доктор Гертруда Й. Клауэр, Институт специ альной зоологии и эволюционной биологии Университет им. Фридриха Шиллера, Иена, Германия. Биология, Университет Гессена, Германия, 1969-1976; дипломная работа «Структура и иннервация ринариальной области кожи обыкновенной тупайи (Tupaia gils)», 1976; докторская диссертация (доктор философии) «Вырождение и регенерация механорецепторов в ринариальной коже тупайи обыкновенной (Tupaia glis)»; квалификационная работа «Вибриссы: анализ сенсорной системы», 1999. Доцент анатомии (Франкфурт-на-Майне, Германия), 1980-1992; доцент зоологии (Эссен, Германия), 1995-2000; старший научный сотрудник Института специальной зоологии и эволюционной биологии, Университет им. Фридриха Шиллера, Иена, Германия, 2000-2002. Область исследований: афферентная импульсация в двигательных цепях.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *