что такое биг дата в маркетинге

Big Data от А до Я. Часть 1: Принципы работы с большими данными, парадигма MapReduce

что такое биг дата в маркетинге. image loader. что такое биг дата в маркетинге фото. что такое биг дата в маркетинге-image loader. картинка что такое биг дата в маркетинге. картинка image loader. Привет, Хабр! Этой статьёй я открываю цикл материалов, посвящённых работе с большими данными. Зачем? Хочется сохранить накопленный опыт, свой и команды, так скажем, в энциклопедическом формате – наверняка кому-то он будет полезен.

Привет, Хабр! Этой статьёй я открываю цикл материалов, посвящённых работе с большими данными. Зачем? Хочется сохранить накопленный опыт, свой и команды, так скажем, в энциклопедическом формате – наверняка кому-то он будет полезен.

Проблематику больших данных постараемся описывать с разных сторон: основные принципы работы с данными, инструменты, примеры решения практических задач. Отдельное внимание окажем теме машинного обучения.

Начинать надо от простого к сложному, поэтому первая статья – о принципах работы с большими данными и парадигме MapReduce.

История вопроса и определение термина

Термин Big Data появился сравнительно недавно. Google Trends показывает начало активного роста употребления словосочетания начиная с 2011 года (ссылка):

что такое биг дата в маркетинге. image loader. что такое биг дата в маркетинге фото. что такое биг дата в маркетинге-image loader. картинка что такое биг дата в маркетинге. картинка image loader. Привет, Хабр! Этой статьёй я открываю цикл материалов, посвящённых работе с большими данными. Зачем? Хочется сохранить накопленный опыт, свой и команды, так скажем, в энциклопедическом формате – наверняка кому-то он будет полезен.

При этом уже сейчас термин не использует только ленивый. Особенно часто не по делу термин используют маркетологи. Так что же такое Big Data на самом деле? Раз уж я решил системно изложить и осветить вопрос – необходимо определиться с понятием.

В своей практике я встречался с разными определениями:

· Big Data – это когда данных больше, чем 100Гб (500Гб, 1ТБ, кому что нравится)

· Big Data – это такие данные, которые невозможно обрабатывать в Excel

· Big Data – это такие данные, которые невозможно обработать на одном компьютере

· Вig Data – это вообще любые данные.

· Big Data не существует, ее придумали маркетологи.

В этом цикле статей я буду придерживаться определения с wikipedia:

Большие данные (англ. big data) — серия подходов, инструментов и методов обработки структурированных и неструктурированных данных огромных объёмов и значительного многообразия для получения воспринимаемых человеком результатов, эффективных в условиях непрерывного прироста, распределения по многочисленным узлам вычислительной сети, сформировавшихся в конце 2000-х годов, альтернативных традиционным системам управления базами данных и решениям класса Business Intelligence.

Таким образом под Big Data я буду понимать не какой-то конкретный объём данных и даже не сами данные, а методы их обработки, которые позволяют распредёлено обрабатывать информацию. Эти методы можно применить как к огромным массивам данных (таким как содержание всех страниц в интернете), так и к маленьким (таким как содержимое этой статьи).

Приведу несколько примеров того, что может быть источником данных, для которых необходимы методы работы с большими данными:

· Логи поведения пользователей в интернете

· GPS-сигналы от автомобилей для транспортной компании

· Данные, снимаемые с датчиков в большом адронном коллайдере

· Оцифрованные книги в Российской Государственной Библиотеке

· Информация о транзакциях всех клиентов банка

· Информация о всех покупках в крупной ритейл сети и т.д.

Количество источников данных стремительно растёт, а значит технологии их обработки становятся всё более востребованными.

Принципы работы с большими данными

Исходя из определения Big Data, можно сформулировать основные принципы работы с такими данными:

1. Горизонтальная масштабируемость. Поскольку данных может быть сколь угодно много – любая система, которая подразумевает обработку больших данных, должна быть расширяемой. В 2 раза вырос объём данных – в 2 раза увеличили количество железа в кластере и всё продолжило работать.

2. Отказоустойчивость. Принцип горизонтальной масштабируемости подразумевает, что машин в кластере может быть много. Например, Hadoop-кластер Yahoo имеет более 42000 машин (по этой ссылке можно посмотреть размеры кластера в разных организациях). Это означает, что часть этих машин будет гарантированно выходить из строя. Методы работы с большими данными должны учитывать возможность таких сбоев и переживать их без каких-либо значимых последствий.

3. Локальность данных. В больших распределённых системах данные распределены по большому количеству машин. Если данные физически находятся на одном сервере, а обрабатываются на другом – расходы на передачу данных могут превысить расходы на саму обработку. Поэтому одним из важнейших принципов проектирования BigData-решений является принцип локальности данных – по возможности обрабатываем данные на той же машине, на которой их храним.

Все современные средства работы с большими данными так или иначе следуют этим трём принципам. Для того, чтобы им следовать – необходимо придумывать какие-то методы, способы и парадигмы разработки средств разработки данных. Один из самых классических методов я разберу в сегодняшней статье.

MapReduce

Про MapReduce на хабре уже писали (раз, два, три), но раз уж цикл статей претендует на системное изложение вопросов Big Data – без MapReduce в первой статье не обойтись J

MapReduce – это модель распределенной обработки данных, предложенная компанией Google для обработки больших объёмов данных на компьютерных кластерах. MapReduce неплохо иллюстрируется следующей картинкой (взято по ссылке):

что такое биг дата в маркетинге. image loader. что такое биг дата в маркетинге фото. что такое биг дата в маркетинге-image loader. картинка что такое биг дата в маркетинге. картинка image loader. Привет, Хабр! Этой статьёй я открываю цикл материалов, посвящённых работе с большими данными. Зачем? Хочется сохранить накопленный опыт, свой и команды, так скажем, в энциклопедическом формате – наверняка кому-то он будет полезен.

MapReduce предполагает, что данные организованы в виде некоторых записей. Обработка данных происходит в 3 стадии:

1. Стадия Map. На этой стадии данные предобрабатываются при помощи функции map(), которую определяет пользователь. Работа этой стадии заключается в предобработке и фильтрации данных. Работа очень похожа на операцию map в функциональных языках программирования – пользовательская функция применяется к каждой входной записи.

Функция map() примененная к одной входной записи и выдаёт множество пар ключ-значение. Множество – т.е. может выдать только одну запись, может не выдать ничего, а может выдать несколько пар ключ-значение. Что будет находится в ключе и в значении – решать пользователю, но ключ – очень важная вещь, так как данные с одним ключом в будущем попадут в один экземпляр функции reduce.

2. Стадия Shuffle. Проходит незаметно для пользователя. В этой стадии вывод функции map «разбирается по корзинам» – каждая корзина соответствует одному ключу вывода стадии map. В дальнейшем эти корзины послужат входом для reduce.

3. Стадия Reduce. Каждая «корзина» со значениями, сформированная на стадии shuffle, попадает на вход функции reduce().

Функция reduce задаётся пользователем и вычисляет финальный результат для отдельной «корзины». Множество всех значений, возвращённых функцией reduce(), является финальным результатом MapReduce-задачи.

Несколько дополнительных фактов про MapReduce:

1) Все запуски функции map работают независимо и могут работать параллельно, в том числе на разных машинах кластера.

2) Все запуски функции reduce работают независимо и могут работать параллельно, в том числе на разных машинах кластера.

3) Shuffle внутри себя представляет параллельную сортировку, поэтому также может работать на разных машинах кластера. Пункты 1-3 позволяют выполнить принцип горизонтальной масштабируемости.

4) Функция map, как правило, применяется на той же машине, на которой хранятся данные – это позволяет снизить передачу данных по сети (принцип локальности данных).

5) MapReduce – это всегда полное сканирование данных, никаких индексов нет. Это означает, что MapReduce плохо применим, когда ответ требуется очень быстро.

Примеры задач, эффективно решаемых при помощи MapReduce

Word Count

Начнём с классической задачи – Word Count. Задача формулируется следующим образом: имеется большой корпус документов. Задача – для каждого слова, хотя бы один раз встречающегося в корпусе, посчитать суммарное количество раз, которое оно встретилось в корпусе.

Раз имеем большой корпус документов – пусть один документ будет одной входной записью для MapRreduce–задачи. В MapReduce мы можем только задавать пользовательские функции, что мы и сделаем (будем использовать python-like псевдокод):

Функция map превращает входной документ в набор пар (слово, 1), shuffle прозрачно для нас превращает это в пары (слово, [1,1,1,1,1,1]), reduce суммирует эти единички, возвращая финальный ответ для слова.

Обработка логов рекламной системы

Второй пример взят из реальной практики Data-Centric Alliance.

Задача: имеется csv-лог рекламной системы вида:

Необходимо рассчитать среднюю стоимость показа рекламы по городам России.

Функция map проверяет, нужна ли нам данная запись – и если нужна, оставляет только нужную информацию (город и размер платежа). Функция reduce вычисляет финальный ответ по городу, имея список всех платежей в этом городе.

Резюме

В статье мы рассмотрели несколько вводных моментов про большие данные:

· Что такое Big Data и откуда берётся;

· Каким основным принципам следуют все средства и парадигмы работы с большими данными;

· Рассмотрели парадигму MapReduce и разобрали несколько задач, в которой она может быть применена.

Первая статья была больше теоретической, во второй статье мы перейдем к практике, рассмотрим Hadoop – одну из самых известных технологий для работы с большими данными и покажем, как запускать MapReduce-задачи на Hadoop.

В последующих статьях цикла мы рассмотрим более сложные задачи, решаемые при помощи MapReduce, расскажем об ограничениях MapReduce и о том, какими инструментами и техниками можно обходить эти ограничения.

Спасибо за внимание, готовы ответить на ваши вопросы.

Источник

Что такое Big Data (большие данные) в маркетинге: проблемы, алгоритмы, методы анализа

что такое биг дата в маркетинге. image01. что такое биг дата в маркетинге фото. что такое биг дата в маркетинге-image01. картинка что такое биг дата в маркетинге. картинка image01. Привет, Хабр! Этой статьёй я открываю цикл материалов, посвящённых работе с большими данными. Зачем? Хочется сохранить накопленный опыт, свой и команды, так скажем, в энциклопедическом формате – наверняка кому-то он будет полезен.

Большие данные (Big Data) — довольно распространенное понятие в IT и интернет-маркетинге. По сути, определение термина лежит на поверхности: «большие данные» означает управление и анализ очень больших объемов данных. Если смотреть шире, то это информация, которая не поддается обработке классическими способами по причине больших объемов.

Содержание

Big Data — что это такое?

Цифровые технологии присутствуют во всех областях жизни человека. Объем записываемых в мировые хранилища данных ежесекундно растет, а это означает, что такими же темпами должны изменяться условия хранения информации и появляться новые возможности для наращивания ее объема.

Эксперты в области IT высказывают мнение, что расширение Big Data и ускорение темпа роста стало объективной реальностью. Ежесекундно гигантские объемы контента генерируют такие источники, как социальные сети, информационные сайты, файлообменники — и это лишь сотая часть поставщиков.

Согласно исследованию IDC Digital Universe, в ближайшие пять лет объем данных на планете вырастет до 40 зеттабайтов, то есть к 2020 году на каждого живущего на Земле человека будет приходиться по 5200 Гб.

что такое биг дата в маркетинге. image02. что такое биг дата в маркетинге фото. что такое биг дата в маркетинге-image02. картинка что такое биг дата в маркетинге. картинка image02. Привет, Хабр! Этой статьёй я открываю цикл материалов, посвящённых работе с большими данными. Зачем? Хочется сохранить накопленный опыт, свой и команды, так скажем, в энциклопедическом формате – наверняка кому-то он будет полезен.

Рост Big Data к 2020 году, прогноз IDC Digital Universe от 2012 года Источник:www.emc.com.

Известно, что основной поток информации генерируют не люди. Источником служат роботы, находящиеся в постоянном взаимодействии друг с другом. Это приборы для мониторинга, сенсоры, системы наблюдения, операционные системы персональных устройств, смартфоны, интеллектуальные системы, датчики и прочее. Все они задают бешеный темп роста объема данных, что приводит к появлению потребности наращивать количество рабочих серверов (и реальных, и виртуальных) — как следствие, расширять и внедрять новые data-центры.

По сути, большие данные — довольно условное и относительное понятие. Самое распространенное его определение — это набор информации, по объему превосходящей жесткий диск одного персонального устройства и не поддающейся обработке классическими инструментами, применяемыми для меньших объемов.

что такое биг дата в маркетинге. image00. что такое биг дата в маркетинге фото. что такое биг дата в маркетинге-image00. картинка что такое биг дата в маркетинге. картинка image00. Привет, Хабр! Этой статьёй я открываю цикл материалов, посвящённых работе с большими данными. Зачем? Хочется сохранить накопленный опыт, свой и команды, так скажем, в энциклопедическом формате – наверняка кому-то он будет полезен.

Наглядная иллюстрация роста объемов с 1986 до 2007 годов. Источник: www.martinhilbert.net.

Технология Big Data — что это? Обобщенно говоря, технологию обработки больших данных можно свести к трем основным направлениям, решающим три типа задач:

В сущности, применение Big Data подразумевает все направления работы с огромным объемом самой разрозненной информации, постоянно обновляемой и разбросанной по разным источникам. Цель предельна проста — максимальная эффективность работы, внедрение новых продуктов и рост конкурентоспособности.

Проблема Big Data

Проблемы системы Big Data можно свести к трем основным группам: объем, скорость обработки, неструктурированность. Это три V — Volume, Velocity и Variety.

Хранение больших объемов информации требует специальных условий, и это вопрос пространства и возможностей. Скорость связана не только с возможным замедлением и «торможением», вызываемом старыми методами обработок, это еще и вопрос интерактивности: чем быстрее процесс, тем больше отдача, тем продуктивнее результат.

Проблема неоднородности и неструктурированности возникает по причине разрозненности источников, форматов и качества. Чтобы объединить данные и эффективно их обрабатывать, требуется не только работа по приведению их в пригодный для работы вид, но и определенные аналитические инструменты (системы).

Но это еще не все. Существует проблема предела «величины» данных. Ее трудно установить, а значит трудно предугадать, какие технологии и сколько финансовых вливаний потребуется для дальнейших разработок. Однако для конкретных объемов данных (терабайт, к примеру) уже применяются действующие инструменты обработки, которые к тому же и активно развиваются.

Существует проблема, связанная с отсутствием четких принципов работы с таким объемом данных. Неоднородность потоков только усугубляет ситуацию. Каким образом подходить к их применимости, чтобы вынести из них что-то ценное? Здесь требуется разработка такого направления, как новые методы анализа Big Data, чтобы этот поток стал полезным источником информации. Возможно, согласно утверждениям представителей университетов США (Нью-Йоркского, Вашингтонского и Калифорнийского), сегодня пришло время ввести и развивать новую дисциплину — науку о Big Data.

Собственно, это и является главной причиной отсрочки внедрения в компании проектов Big Data (если не брать во внимание еще один фактор — довольно высокую стоимость).

Подбор данных для обработки и алгоритм анализа может стать не меньшей проблемой, так как отсутствует понимание, какие данные следует собирать и хранить, а какие можно игнорировать. Становится очевидной еще одна «болевая точка» отрасли — нехватка профессиональных специалистов, которым можно было бы доверить глубинный анализ, создание отчетов для решения бизнес-задач и как следствие извлечение прибыли (возврат инвестиций) из Big Data.

Еще одна проблема Big Data носит этический характер. А именно: чем сбор данных (особенно без ведома пользователя) отличается от нарушения границ частной жизни? Так, информация, сохраняемая в поисковых системах Google и Яндекс, позволяет им постоянно дорабатывать свои сервисы, делать их удобными для пользователей и создавать новые интерактивные программы.

Поисковики записывают каждый клик пользователя в Интернете, им известен его IP-адрес, геолокация, интересы, онлайн-покупки, личные данные, почтовые сообщения и прочее, что, к примеру, позволяет демонстрировать контекстную рекламу в соответствии с поведением пользователя в Интернете. При этом согласия на это не спрашивается, а возможности выбора, какие сведения о себе предоставлять, не дается. То есть по умолчанию в Big Data собирается все, что затем будет храниться на серверах данных сайтов.

Здесь можно затронуть дргую проблему — обеспечение безопасности хранения и использования данных. Например, сведения о возможных покупателях и их история переходов на сайтах интернет-магазинов однозначно применимы для решения многих бизнес-задач. Но безопасна ли аналитическая платформа, которой потребители в автоматическом режиме (просто потому, что зашли на сайт) передают свои данные, — это вызывает множество споров. Современную вирусную активность и хакерские атаки не сдерживают даже супер-защищенные серверы правительственных спецслужб.

История больших данных

Сами по себе алгоритмы Big Data возникли при внедрении первых высокопроизводительных серверов (мэйнфреймов), обладающих достаточными ресурсами для оперативной обработки информации и пригодных для компьютерных вычислений и для дальнейшего анализа..

Сам термин Big Data впервые был озвучен в 2008 году на страницах спецвыпуска журнала Nature в статье главного редактора Клиффорда Линча. Этот номер издания был посвящен взрывному росту глобальных объемов данных и их роли в науке.

Специалисты утверждают, что большими данными допустимо называть любые потоки информации объемом более 100 Гб в сутки.

Однако в последние 2-3 года ученые отмечают, что термин Big Data стал лишком популяризирован, его употребляют практически везде, где упоминаются потоки данных, и как следствие он стал восприниматься слишком обобщенно и размыто. Виной тому не совсем сведущие журналисты и малоопытные предприниматели, которые попусту злоупотребляют данным понятием. По мнению западных экспертов, термин давно дискредитировал себя и пришло время от него отказаться.

Сегодня мировое сообщество вновь заговорило о больших данных. Причины — в неизменном росте объемов информации и отсутствии какой-либо структуры в ней. Предпринимателей и ученых волнуют вопросы качественной интерпретации данных, разработки инструментов для работы с ними и развитие технологий хранения. Этому способствует внедрение и активное использованию облачных моделей хранения и вычислений.

Big Data в маркетинге

Информация – это главный аспект успешного прогнозирования роста и составления маркетинговой стратегии в умелых руках маркетолога. Анализ больших данных давно и успешно применяется для определения: целевой аудитории, интересов, спроса, активности потребителей. Таким образом, Big Data является точнейшим инструментом маркетолога для предсказания будущего компании.

К примеру, анализ больших данных позволяет выводить рекламу (на основе известной модели RTB-аукциона — Real Time Bidding) только тем потребителям, которые заинтересованы в товаре или услуге.

Применение Big Data в маркетинге позволяет бизнесменам:

Например, сервис Google.trends очень точно укажет маркетологу прогноз сезонной активности спроса на конкретный продукт, колебания и географию кликов. Достаточно сопоставить эти сведения со статистическими данными собственного сайта и можно составить качественный план по распределению рекламного бюджета с указанием месяца и региона.

Вместо заключения

Сегодня, в пик высоких технологий и огромных потоков информации, у компаний появилось гораздо больше возможностей для достижения превосходных показателей в ведении бизнеса благодаря использованию Big Data.

Источник

Big data

Определение Big data обычно расшифровывают довольно просто – это огромный объем информации, часто бессистемной, которая хранится на каком либо цифровом носителе. Однако массив данных с приставкой «Биг» настолько велик, что привычными средствами структурирования и аналитики «перелопатить» его невозможно. Поэтому под термином «биг дата» понимают ещё и технологии поиска, обработки и применения неструктурированной информации в больших объемах.

что такое биг дата в маркетинге. d92068c04339cb5e74aa9ddbb0c01b23. что такое биг дата в маркетинге фото. что такое биг дата в маркетинге-d92068c04339cb5e74aa9ddbb0c01b23. картинка что такое биг дата в маркетинге. картинка d92068c04339cb5e74aa9ddbb0c01b23. Привет, Хабр! Этой статьёй я открываю цикл материалов, посвящённых работе с большими данными. Зачем? Хочется сохранить накопленный опыт, свой и команды, так скажем, в энциклопедическом формате – наверняка кому-то он будет полезен.

Экскурс в историю и статистику

Из статистических выкладок аналитических агентств в 2005 году мир оперировал 4-5 эксабайтами информации (4-5 миллиардов гигабайтов), через 5 лет объемы big data выросли до 0,19 зеттабайт (1 ЗБ = 1024 ЭБ). В 2012 году показатели возросли до 1,8 ЗБ, а в 2015 – до 7 ЗБ. Эксперты прогнозируют, что к 2020 году системы больших данных будут оперировать 42-45 зеттабайтов информации.

что такое биг дата в маркетинге. ca691e369eed31f4df47f3005d9a53d1. что такое биг дата в маркетинге фото. что такое биг дата в маркетинге-ca691e369eed31f4df47f3005d9a53d1. картинка что такое биг дата в маркетинге. картинка ca691e369eed31f4df47f3005d9a53d1. Привет, Хабр! Этой статьёй я открываю цикл материалов, посвящённых работе с большими данными. Зачем? Хочется сохранить накопленный опыт, свой и команды, так скажем, в энциклопедическом формате – наверняка кому-то он будет полезен.

До 2011 года технологии больших данных рассматривались только в качестве научного анализа и практического выхода ни имели. Однако объемы данных росли по экспоненте и проблема огромных массивов неструктурированной и неоднородной информации стала актуальной уже в начале 2012 году. Всплеск интереса к big data хорошо виден в Google Trends.

что такое биг дата в маркетинге. 38966f4bdf848e74c1534bcdb555009d. что такое биг дата в маркетинге фото. что такое биг дата в маркетинге-38966f4bdf848e74c1534bcdb555009d. картинка что такое биг дата в маркетинге. картинка 38966f4bdf848e74c1534bcdb555009d. Привет, Хабр! Этой статьёй я открываю цикл материалов, посвящённых работе с большими данными. Зачем? Хочется сохранить накопленный опыт, свой и команды, так скажем, в энциклопедическом формате – наверняка кому-то он будет полезен.

К развитию нового направления подключились мастодонты цифрового бизнеса – Microsoft, IBM, Oracle, EMC и другие. С 2014 года большие данные изучают в университетах, внедряют в прикладные науки – инженерию, физику, социологию.

Как работает технология big data?

Чтобы массив информации обозначить приставкой «биг» он должен обладать следующими признаками:

что такое биг дата в маркетинге. 861fd282b9822a618babf43262491d72. что такое биг дата в маркетинге фото. что такое биг дата в маркетинге-861fd282b9822a618babf43262491d72. картинка что такое биг дата в маркетинге. картинка 861fd282b9822a618babf43262491d72. Привет, Хабр! Этой статьёй я открываю цикл материалов, посвящённых работе с большими данными. Зачем? Хочется сохранить накопленный опыт, свой и команды, так скажем, в энциклопедическом формате – наверняка кому-то он будет полезен.

В современных системах рассматриваются два дополнительных фактора:

Принцип работы технологии big data основан на максимальном информировании пользователя о каком-либо предмете или явлении. Задача такого ознакомления с данными – помочь взвесить все «за» и «против», чтобы принять верное решение. В интеллектуальных машинах на основе массива информации строится модель будущего, а дальше имитируются различные варианты и отслеживаются результаты.

что такое биг дата в маркетинге. 4b8ec143bb0cb0aacad87044c6f1ec0d. что такое биг дата в маркетинге фото. что такое биг дата в маркетинге-4b8ec143bb0cb0aacad87044c6f1ec0d. картинка что такое биг дата в маркетинге. картинка 4b8ec143bb0cb0aacad87044c6f1ec0d. Привет, Хабр! Этой статьёй я открываю цикл материалов, посвящённых работе с большими данными. Зачем? Хочется сохранить накопленный опыт, свой и команды, так скажем, в энциклопедическом формате – наверняка кому-то он будет полезен.

Современные аналитические агентства запускают миллионы подобных симуляций, когда тестируют идею, предположение или решают проблему. Процесс автоматизирован.

К источникам big data относят:

Принципы работы с массивами данных включают три основных фактора:

Для чего используют?

Чем больше мы знаем о конкретном предмете или явлении, тем точнее постигаем суть и можем прогнозировать будущее. Снимая и обрабатывая потоки данных с датчиков, интернета, транзакционных операций, компании могут довольно точно предсказать спрос на продукцию, а службы чрезвычайных ситуаций предотвратить техногенные катастрофы. Приведем несколько примеров вне сферы бизнеса и маркетинга, как используются технологии больших данных:

Методики анализа и обработки

что такое биг дата в маркетинге. c2818a85fd65422bd9708e8115a92267. что такое биг дата в маркетинге фото. что такое биг дата в маркетинге-c2818a85fd65422bd9708e8115a92267. картинка что такое биг дата в маркетинге. картинка c2818a85fd65422bd9708e8115a92267. Привет, Хабр! Этой статьёй я открываю цикл материалов, посвящённых работе с большими данными. Зачем? Хочется сохранить накопленный опыт, свой и команды, так скажем, в энциклопедическом формате – наверняка кому-то он будет полезен.

К основным способам анализа больших массивов информации относят следующие:

Большие данные в бизнесе и маркетинге

Стратегии развития бизнеса, маркетинговые мероприятия, реклама основаны на анализе и работе с имеющимися данными. Большие массивы позволяют «перелопатить» гигантские объемы данных и соответственно максимально точно скорректировать направление развития бренда, продукта, услуги.

Например, аукцион RTB в контекстной рекламе работают с big data, что позволяет эффективно рекламировать коммерческие предложения выделенной целевой аудитории, а не всем подряд.

Какие выгоды для бизнеса:

Технологии используют в прогнозировании популярности продуктов, например, с помощью сервиса Google Trends и Яндекс. Вордстат (для России и СНГ).

что такое биг дата в маркетинге. 02004d76ecb9c3db7385de6ea06bfc46. что такое биг дата в маркетинге фото. что такое биг дата в маркетинге-02004d76ecb9c3db7385de6ea06bfc46. картинка что такое биг дата в маркетинге. картинка 02004d76ecb9c3db7385de6ea06bfc46. Привет, Хабр! Этой статьёй я открываю цикл материалов, посвящённых работе с большими данными. Зачем? Хочется сохранить накопленный опыт, свой и команды, так скажем, в энциклопедическом формате – наверняка кому-то он будет полезен.

Методики big data используют все крупные компании – IBM, Google, Facebook и финансовые корпорации – VISA, Master Card, а также министерства разных стран мира. Например, в Германии сократили выдачу пособий по безработице, высчитав, что часть граждан получают их без оснований. Так удалось вернуть в бюджет около 15 млрд. евро.

Недавний скандал с Facebook из-за утечки данных пользователей говорит о том, что объемы неструктурированной информации растут и даже мастодонты цифровой эры не всегда могут обеспечить их полную конфиденциальность.

что такое биг дата в маркетинге. 4b912fee7dcb11e7caa115ac59c67879. что такое биг дата в маркетинге фото. что такое биг дата в маркетинге-4b912fee7dcb11e7caa115ac59c67879. картинка что такое биг дата в маркетинге. картинка 4b912fee7dcb11e7caa115ac59c67879. Привет, Хабр! Этой статьёй я открываю цикл материалов, посвящённых работе с большими данными. Зачем? Хочется сохранить накопленный опыт, свой и команды, так скажем, в энциклопедическом формате – наверняка кому-то он будет полезен.

Например, Master Card используют большие данные для предотвращения мошеннических операций со счетами клиентов. Так удается ежегодно спасти от кражи более 3 млрд. долларов США.

В игровой сфере big data позволяет проанализировать поведение игроков, выявить предпочтения активной аудитории и на основе этого прогнозировать уровень интереса к игре.

что такое биг дата в маркетинге. 5b62f87cfeec97e79809bdc887e565fc. что такое биг дата в маркетинге фото. что такое биг дата в маркетинге-5b62f87cfeec97e79809bdc887e565fc. картинка что такое биг дата в маркетинге. картинка 5b62f87cfeec97e79809bdc887e565fc. Привет, Хабр! Этой статьёй я открываю цикл материалов, посвящённых работе с большими данными. Зачем? Хочется сохранить накопленный опыт, свой и команды, так скажем, в энциклопедическом формате – наверняка кому-то он будет полезен.

Сегодня бизнес знает о своих клиентах больше, чем мы сами знаем о себе – поэтому рекламные кампании Coca-Cola и других корпораций имеют оглушительный успех.

Перспективы развития

В 2019 году важность понимания и главное работы с массивами информации возросла в 4-5 раз по сравнению с началом десятилетия. С массовостью пришла интеграция big data в сферы малого и среднего бизнеса, стартапы:

Резюме

Мы изучили, что такое big data? Рассмотрели, как работает эта технология, для чего используются массивы информации. Познакомились с принципами и методиками работы с большими данными.

Рекомендуем к прочтению книгу Рика Смолана и Дженнифер Эрвитт «The Human Face of Big Data», а также труд «Introduction to Data Mining» Майкла Стейнбаха, Випин Кумар и Панг-Нинг Тан.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *