что такое атф в спорте
АТФ в бодибилдинге
Содержание
АТФ должна пройти через несколько ступеней, чтобы дать нам энергию. Сначала при помощи специального коэнзима отделяется один из трёх фосфатов (каждый из которых даёт десять калорий), высвобождается энергия и получается аденозин дифосфат (АДФ). Если энергии требуется больше, то отделяется следующий фосфат, формируя аденозин монофосфат (АМФ). Главным источником для производства АТФ служит глюкоза, которая в клетке инициально расщепляется на пируват и цитозол.
Во время отдыха происходит обратная реакция – при помощи АДФ, фосфагена и гликогена фосфатная группа вновь присоединяется к молекуле, формируя АТФ. Для этих целей из запасов гликогена берётся глюкоза. Вновь созданный АТФ готов к следующему использованию. В сущности АТФ работает как молекулярная батарея, сохраняя энергию, когда она не нужна, и высвобождая в случае необходимости.
Структура АТФ [ править | править код ]
Молекула АТФ состоит из трёх компонентов:
1. Рибоза (тот же самый пятиуглеродный сахар, что формирует основу ДНК)
2. Аденин (соединённые атомы углерода и азота)
3. Трифосфат
Молекула рибозы располагается в центре молекулы АТФ, край которой служит базой для аденозина. Цепочка из трёх фосфатов располагается с другой стороны молекулы рибозы. АТФ насыщает длинные, тонкие волокна, содержащие протеин, называемый миозином, который формирует основу наших мышечных клеток.
Системы АТФ [ править | править код ]
Запасов АТФ достаточно только на первые 2-3 секунды двигательной активности, однако мышцы могут работать только при наличии АТФ. Для этого существуют специальные системы, которые постоянно синтезируют новые молекулы АТФ, они включаются в зависимости от продолжительности нагрузки (см. рисунок). Это три основные биохимические системы:
1. Фосфагенная система (Креатин-фосфат)
2. Система гликогена и молочной кислоты
3. Аэробное дыхание
Фосфагенная система [ править | править код ]
Когда мышцам предстоит короткая, но интенсивная активность (приблизительно 8-10 секунд), используется фосфагенная система – АДФ соединяется с креатина фосфатом. Фосфагенная система обеспечивает постоянную циркуляцию небольшого количества АТФ в наших мышечных клетках. Мышечные клетки также содержат высокоэнергетический фосфат – фосфат креатина, который используется для восстановления уровня АТФ после кратковременной, высокоинтенсивной работы. Энзим креатин киназа отнимает фосфатную группу у креатина фосфата и быстро передаёт её АДФ для формирования АТФ. Итак, мышечная клетка превращает АТФ в АДФ, а фосфаген быстро восстанавливает АДФ до АТФ. Уровень креатина фосфата начинает снижаться уже через 10 секунд высокоинтенсивной активности. Пример использования фосфагенной системы энергоснабжения – это спринт на 100 метров.
Система гликогена и молочной кислоты [ править | править код ]
Система гликогена и молочной кислоты снабжает организм энергией медленнее, чем фосфагенная система, и предоставляет достаточно АТФ примерно для 90 секунд высокоинтенсивной активности. В ходе процесса из глюкозы мышечных клеток в результате анаэробного метаболизма происходит формирование молочной кислоты.
Учитывая тот факт, что в анаэробном состоянии организм не использует кислород, эта система даёт кратковременную энергию без активации кардио-респираторной системы точно так же, как и аэробная система, но с экономией времени. Более того, когда в анаэробном режиме мышцы работают быстро, они очень мощно сокращаются, перекрывая поступление кислорода, так как сосуды оказываются сжатыми. Эту систему ещё можно назвать анаэробно-респираторной, и хорошим примером работы организма в этом режиме послужит 400-метровый спринт. Обычно продолжать работать таким образом атлетам не даёт мышечная болезненность, возникающая в результате накопления молочной кислоты в тканях.
Аэробное дыхание [ править | править код ]
Если упражнения длятся более двух минут, в работу включается аэробная система, и мышцы получают АТФ вначале из углеводов, потом из жиров и наконец из аминокислот (протеинов). Протеин используется для получения энергии в основном в условиях голода (диеты в некоторых случаях). При аэробном дыхании производство АТФ проходит наиболее медленно, но энергии получается достаточно, чтобы поддерживать физическую активность на протяжении нескольких часов. Это происходит, потому что глюкоза распадается на диоксид углерода и воду беспрепятственно, не испытывая противодействия со стороны, например, молочной кислоты, как в случае анаэробной работы.
АТФ в бодибилдинге
Содержание
АТФ должна пройти через несколько ступеней, чтобы дать нам энергию. Сначала при помощи специального коэнзима отделяется один из трёх фосфатов (каждый из которых даёт десять калорий), высвобождается энергия и получается аденозин дифосфат (АДФ). Если энергии требуется больше, то отделяется следующий фосфат, формируя аденозин монофосфат (АМФ). Главным источником для производства АТФ служит глюкоза, которая в клетке инициально расщепляется на пируват и цитозол.
Во время отдыха происходит обратная реакция – при помощи АДФ, фосфагена и гликогена фосфатная группа вновь присоединяется к молекуле, формируя АТФ. Для этих целей из запасов гликогена берётся глюкоза. Вновь созданный АТФ готов к следующему использованию. В сущности АТФ работает как молекулярная батарея, сохраняя энергию, когда она не нужна, и высвобождая в случае необходимости.
Структура АТФ [ править | править код ]
Молекула АТФ состоит из трёх компонентов:
1. Рибоза (тот же самый пятиуглеродный сахар, что формирует основу ДНК)
2. Аденин (соединённые атомы углерода и азота)
3. Трифосфат
Молекула рибозы располагается в центре молекулы АТФ, край которой служит базой для аденозина. Цепочка из трёх фосфатов располагается с другой стороны молекулы рибозы. АТФ насыщает длинные, тонкие волокна, содержащие протеин, называемый миозином, который формирует основу наших мышечных клеток.
Системы АТФ [ править | править код ]
Запасов АТФ достаточно только на первые 2-3 секунды двигательной активности, однако мышцы могут работать только при наличии АТФ. Для этого существуют специальные системы, которые постоянно синтезируют новые молекулы АТФ, они включаются в зависимости от продолжительности нагрузки (см. рисунок). Это три основные биохимические системы:
1. Фосфагенная система (Креатин-фосфат)
2. Система гликогена и молочной кислоты
3. Аэробное дыхание
Фосфагенная система [ править | править код ]
Когда мышцам предстоит короткая, но интенсивная активность (приблизительно 8-10 секунд), используется фосфагенная система – АДФ соединяется с креатина фосфатом. Фосфагенная система обеспечивает постоянную циркуляцию небольшого количества АТФ в наших мышечных клетках. Мышечные клетки также содержат высокоэнергетический фосфат – фосфат креатина, который используется для восстановления уровня АТФ после кратковременной, высокоинтенсивной работы. Энзим креатин киназа отнимает фосфатную группу у креатина фосфата и быстро передаёт её АДФ для формирования АТФ. Итак, мышечная клетка превращает АТФ в АДФ, а фосфаген быстро восстанавливает АДФ до АТФ. Уровень креатина фосфата начинает снижаться уже через 10 секунд высокоинтенсивной активности. Пример использования фосфагенной системы энергоснабжения – это спринт на 100 метров.
Система гликогена и молочной кислоты [ править | править код ]
Система гликогена и молочной кислоты снабжает организм энергией медленнее, чем фосфагенная система, и предоставляет достаточно АТФ примерно для 90 секунд высокоинтенсивной активности. В ходе процесса из глюкозы мышечных клеток в результате анаэробного метаболизма происходит формирование молочной кислоты.
Учитывая тот факт, что в анаэробном состоянии организм не использует кислород, эта система даёт кратковременную энергию без активации кардио-респираторной системы точно так же, как и аэробная система, но с экономией времени. Более того, когда в анаэробном режиме мышцы работают быстро, они очень мощно сокращаются, перекрывая поступление кислорода, так как сосуды оказываются сжатыми. Эту систему ещё можно назвать анаэробно-респираторной, и хорошим примером работы организма в этом режиме послужит 400-метровый спринт. Обычно продолжать работать таким образом атлетам не даёт мышечная болезненность, возникающая в результате накопления молочной кислоты в тканях.
Аэробное дыхание [ править | править код ]
Если упражнения длятся более двух минут, в работу включается аэробная система, и мышцы получают АТФ вначале из углеводов, потом из жиров и наконец из аминокислот (протеинов). Протеин используется для получения энергии в основном в условиях голода (диеты в некоторых случаях). При аэробном дыхании производство АТФ проходит наиболее медленно, но энергии получается достаточно, чтобы поддерживать физическую активность на протяжении нескольких часов. Это происходит, потому что глюкоза распадается на диоксид углерода и воду беспрепятственно, не испытывая противодействия со стороны, например, молочной кислоты, как в случае анаэробной работы.
АТФ в бодибилдинге
Содержание
АТФ должна пройти через несколько ступеней, чтобы дать нам энергию. Сначала при помощи специального коэнзима отделяется один из трёх фосфатов (каждый из которых даёт десять калорий), высвобождается энергия и получается аденозин дифосфат (АДФ). Если энергии требуется больше, то отделяется следующий фосфат, формируя аденозин монофосфат (АМФ). Главным источником для производства АТФ служит глюкоза, которая в клетке инициально расщепляется на пируват и цитозол.
Во время отдыха происходит обратная реакция – при помощи АДФ, фосфагена и гликогена фосфатная группа вновь присоединяется к молекуле, формируя АТФ. Для этих целей из запасов гликогена берётся глюкоза. Вновь созданный АТФ готов к следующему использованию. В сущности АТФ работает как молекулярная батарея, сохраняя энергию, когда она не нужна, и высвобождая в случае необходимости.
Структура АТФ [ править | править код ]
Молекула АТФ состоит из трёх компонентов:
1. Рибоза (тот же самый пятиуглеродный сахар, что формирует основу ДНК)
2. Аденин (соединённые атомы углерода и азота)
3. Трифосфат
Молекула рибозы располагается в центре молекулы АТФ, край которой служит базой для аденозина. Цепочка из трёх фосфатов располагается с другой стороны молекулы рибозы. АТФ насыщает длинные, тонкие волокна, содержащие протеин, называемый миозином, который формирует основу наших мышечных клеток.
Системы АТФ [ править | править код ]
Запасов АТФ достаточно только на первые 2-3 секунды двигательной активности, однако мышцы могут работать только при наличии АТФ. Для этого существуют специальные системы, которые постоянно синтезируют новые молекулы АТФ, они включаются в зависимости от продолжительности нагрузки (см. рисунок). Это три основные биохимические системы:
1. Фосфагенная система (Креатин-фосфат)
2. Система гликогена и молочной кислоты
3. Аэробное дыхание
Фосфагенная система [ править | править код ]
Когда мышцам предстоит короткая, но интенсивная активность (приблизительно 8-10 секунд), используется фосфагенная система – АДФ соединяется с креатина фосфатом. Фосфагенная система обеспечивает постоянную циркуляцию небольшого количества АТФ в наших мышечных клетках. Мышечные клетки также содержат высокоэнергетический фосфат – фосфат креатина, который используется для восстановления уровня АТФ после кратковременной, высокоинтенсивной работы. Энзим креатин киназа отнимает фосфатную группу у креатина фосфата и быстро передаёт её АДФ для формирования АТФ. Итак, мышечная клетка превращает АТФ в АДФ, а фосфаген быстро восстанавливает АДФ до АТФ. Уровень креатина фосфата начинает снижаться уже через 10 секунд высокоинтенсивной активности. Пример использования фосфагенной системы энергоснабжения – это спринт на 100 метров.
Система гликогена и молочной кислоты [ править | править код ]
Система гликогена и молочной кислоты снабжает организм энергией медленнее, чем фосфагенная система, и предоставляет достаточно АТФ примерно для 90 секунд высокоинтенсивной активности. В ходе процесса из глюкозы мышечных клеток в результате анаэробного метаболизма происходит формирование молочной кислоты.
Учитывая тот факт, что в анаэробном состоянии организм не использует кислород, эта система даёт кратковременную энергию без активации кардио-респираторной системы точно так же, как и аэробная система, но с экономией времени. Более того, когда в анаэробном режиме мышцы работают быстро, они очень мощно сокращаются, перекрывая поступление кислорода, так как сосуды оказываются сжатыми. Эту систему ещё можно назвать анаэробно-респираторной, и хорошим примером работы организма в этом режиме послужит 400-метровый спринт. Обычно продолжать работать таким образом атлетам не даёт мышечная болезненность, возникающая в результате накопления молочной кислоты в тканях.
Аэробное дыхание [ править | править код ]
Если упражнения длятся более двух минут, в работу включается аэробная система, и мышцы получают АТФ вначале из углеводов, потом из жиров и наконец из аминокислот (протеинов). Протеин используется для получения энергии в основном в условиях голода (диеты в некоторых случаях). При аэробном дыхании производство АТФ проходит наиболее медленно, но энергии получается достаточно, чтобы поддерживать физическую активность на протяжении нескольких часов. Это происходит, потому что глюкоза распадается на диоксид углерода и воду беспрепятственно, не испытывая противодействия со стороны, например, молочной кислоты, как в случае анаэробной работы.
АТФ: научный обзор
Содержание
АТФ как универсальный эргогенный фармаконутриент в спортивной медицине (научный обзор) [ править | править код ]
Метаболизм АТФ в организме [ править | править код ]
Фармакокинетика пероральной формы АТФ при однократном и курсовом введении у человека [ править | править код ]
Детальная оценка фармакокинетики АТФ в широком диапазоне доз при пероральном приеме у человека проведена международной научной группой из Голландии и Бельгии (Е.J.Coolen и соавт., 2008; Е.J.Coolen, 2011; Е.J.Coolen и соавт., 2011; I.C.Arts и соавт., 2012).
Фармакокинетика АТФ при однократном пероральном приеме у человека [ править | править код ]
I.C.Arts и соавторы (2012) выполнили рандомизированное плацебо-контролируемое перекрестное исследование (n=8) пищевых добавок АТФ при однократном назначении в дозе 5 г. Использовались три типа кишечно-растворимых таблеток (пеллеты): 1) с целевым высвобождением АТФ в проксимальном отделе тонкого кишечника; 2) с целевым высвобождением АТФ в дистальном отделе; 3) плацебо с высвобождением в проксимальном отделе. В течение 14 дней каждый испытуемый получал однократно в нулевой, 7-ой и 14-ый дни добавки в такой последовательности: 5 г АТФ проксимального назначения; 5 г АТФ дистального назначения; 5 г плацебо. Прием добавок осуществлялся в 200 мл воды с pH Фармакокинетика АТФ при курсовом пероральном приеме у человека [ править | править код ]
Таким образом, фармакокинетические исследования перорального приема АТФ в широком диапазоне доз (250-5000 мг/день) нетренированными людьми без сопутствующих физических нагрузок не показали повышения концентраций АТФ, АДФ и АМФ в цельной крови и плазме как при однократном, так и при курсовом использовании. В процессе абсорбции в кишечнике происходит деградация АТФ до аденозина. В крови нарастает концентрация мочевой кислоты примерно на 30% от исходных величин. В экспериментальных условиях имеет место многократное увеличение концентрации АТФ в портальной вене при энтеральном введении АТФ.
Изучение эргогенных свойств пероральных пищевых добавок АТФ [ править | править код ]
За период с 2010 по 2016 годы в Университете г.Тампа (Флорида, США) проведена последовательная серия исследований эргогенных свойств пероральной формы АТФ. Высокие дозы АТФ (400 мг/день в течение 15 дней) в виде динатриевой соли без покрытия специальной оболочкой повышают нижние границы максимального крутящего момента в последних двух подходах при выполнении динамометрического теста (J.A.Rathmacher и соавт., 2012) и увеличивают посттренировочный кровоток в дозе 400 мг в виде динатриевой соли АТФ при назначении в течение 12 недель (R.Jager и соавт., 2014). Полученные данные дают серьезные основания полагать, что пероральное применение АТФ может снижать мышечную усталость и включать механизмы повышения силы при повторяющихся циклах высокоинтенсивных нагрузок.
В 2012 году J.A.Rathmacher и соавторы провели рандомизированное двойное-слепое плацебо-контролируемое перекрестное исследование у 8 мужчин и 8 женщин (возраст 21-34 года). Пищевые добавки АТФ (капсулы динатриевой соли АТФ по 200 мг, Peak ATP® производства TSI Inc., Missoula, MT, США) в суточной дозе 400 мг (2 капсулы) принимались участниками 15 дней. После недели «отмывочного» периода повторялся 15-дневный цикл приема плацебо. После каждого цикла приема добавок осуществлялось тестирование на силу и выносливость, а также взятие образцов крови для исследования. Само тестирование состояло из трех циклов (сетов) по 50 разгибаний в коленном суставе на ножном динамометре, вызывающих усталость, с перерывом в 2 минуты между циклами. Участники были инструктированы осуществлять разгибания с максимальным усилием со скоростью 120 градусов в секунду. Регистрировалось максимальное значение крутящего момента. Высокое значение этого показателя – максимальная сила, генерируемая в процессе каждого из 50 разгибаний; низкое значение – самый минимальный крутящий момент из 10 последних разгибаний в цикле. Оценивались также в каждом цикле из 50 движений средняя мощность и выполненная работа. Процент усталости рассчитывался как процент снижения высокого крутящего момента к низкому, а также как процент снижения работы за первую треть цикла к снижению аналогичного показателя за последнюю треть цикла из 50 движений. Полученные результаты представлены на рис.4. На фоне АТФ не происходило изменений максимального крутящего момента при его высоких значениях (рис.4А). Главными положительными эффектами пищевых добавок АТФ было возрастание максимального крутящего момента при его низких значениях (рис.4В) и снижение усталости (рис.4С). Математический анализ показал большую эффективность АТФ во 2 и 3-ем сетах, т.е. по мере накопления усталости. При этом, однако, не происходило изменения средней мощности и общего объема выполненной работы. Биохимия и клеточный состав крови несколько отличались в группе с АТФ и плацебо, но эти различия трудно связать с изменениями других клинических показателей. На основе полученных данных авторы сделали заключение, что пищевые добавки АТФ в дозе 400 мг в день в течение 15 дней способствуют снижению мышечной усталости и повышают показатели выполнения повторяющихся циклов истощающих физических упражнений за счет улучшения выполнения низкоэффективных движений. Это может приводить к повышению общего уровня физической подготовки.
Следующей работой, которая, пожалуй, внесла решающий вклад в признание эргогенного действия перорального приема высоких доз АТФ, стало рандомизированое двойное-слепое плацебо-контролируемое и дието-контролируемое исследование в параллельных группах из 24 участников (средний возраст 24 года), проведенное J.M.Wilson и соавторами в 2013 году. Протокол 12-недельного исследования состоял из трех фаз. Первая фаза продолжалась 8 недель и включала силовые тренировки три раза в неделю по модифицированной методике W.J.Kraemer и соавторов (2009). Вторая фаза длилась две недели (9 и 10) и включала циклические возрастающие нагрузки. Третья фаза (11 и 12 недели) характеризовалась снижением нагрузок. Мышечная масса и состав тела тестировались до начала приема пищевых добавок, а также в конце 4, 8 и 12 недель. Мышечная сила и мощность вертикальных прыжков, пик мощности в Wingate-тесте, креатин-киназа, С-реактивный белок, свободный и общий тестостерон, субъективное ощущение восстановления тестировались до приема добавок, а также в конце 4, 8, 9, 10 и 12 недель после приема. Полученные результаты отражены в таблице 1 и на рисунке 5.
Таблица 1. Основные результаты рандомизированного двойного-слепого-плацебо-контролируемого исследования эргогенных свойств курсового 12-недельного перорального применения АТФ в дозе 400 мг/день (по J.M.Wilson и соавт., 2013).
Изменение силы мышц
Увеличение мышечной силы в первую фазу исследования (1-8 недели) под влиянием тренировок в обеих группах (плацебо и АТФ), однако в АТФ-группе оно было в 2-3 раза выше (по разным показателям 12,9%-16,4%), чем в группе плацебо (4,4%-8,5%). Во вторую циклическую фазу (9-10 недели)
АТФ предупреждает временное снижение мышечной силы (в
Изменение мощности мышц
Состав тела и мышечная гипертрофия
АТФ не изменял повышенные уровни креатин-киназы в ходе тренировок, но значительно снижал деградацию протеинов на 9-10 неделе тренировок (возросшие нагрузки).
АТФ не изменял гормональные сдвиги, характерные для физических нагрузок
АТФ улучшает субъективные ощущения восстановления на поздних стадиях (10-12 недели) тренировочного цикла.
Изменения клеточного и биохимического состава крови как показатель безопасности применения
Не отмечено изменений биохимии и клеточного состава крови на фоне 12-недельного приема АТФ, которые могли бы быть расценены как побочные и или нежелательные.
Подводя итог выполненным исследованиям, авторы делают заключение о несомненном наличии универсального эргогенного действия высоких доз АТФ (400 мг/день) при курсовом 12-недельном назначении в сочетании с высокоинтенсивными силовыми регулярными нагрузками. Эргогенный эффект включает повышение силы и мощности скелетных мышц, гипертрофию мышечных волокон, торможение распада белка (антикатаболическое действие) под влиянием физических нагрузок, снижение субъективного чувства усталости на поздних стадиях действия нагрузочного фактора. Применение высоких доз АТФ длительное время (14 дней – 12 недель) не только эффективно, но и безопасно.
Именно после окончания исследования J.M.Wilson и соавторов произошло окончательное маркетинговое позиционирование готовых коммерческих форм АТФ (патентованная формула PEAK ATP®, TSI США, Inc., Missoula, MT), которое выглядит примерно так: 1) увеличение мышечной силы (суммарный поднимаемый вес +55,3 кг против +22,4 кг для плацебо); 2) увеличение на 30% мощности мышц по сравнению с плацебо (796 ватт против 614 ватт для плацебо); 3) увеличение мышечной массы тела (4 кг по сравнению 2,1 кг для плацебо); 4) Увеличение толщины мышц (4,9 мм против 2,5 мм для плацебо, соответственно); 5) снижение катаболизма. Форма выпуска и дозирование: разовая доза 200 мг за 30-60 минут до начала тренировки в течение 12 недель.
Основываясь на вышеприведенных исследованиях, и сформулированной гипотезе о внеклеточном сигнальном механизме действия АТФ, M.Purpura и соавторы (2017) изучили влияние курсового приема пищевых добавок АТФ на уровни АТФ после физической нагрузки и концентрации его метаболитов, а также связанные изменения показателей работы мышц и ментальные функции в ответ на циклы повторяющихся спринтов у человека. Рандомизированное двойное-слепое плацебо-контролируемое исследование выполнено на 42 здоровых физически активных мужчинах (тренировки не менее 3-х раз в неделю на протяжении последних 6 месяцев) в возрасте от 18 до 30 лет. Участники имели фиксированную диету: 1) 15–20% протеина, 45–55% углеводов и 25–30% жиров; 2) не принимали пищевых добавок, обладающих эргогенным действием, включая аминокислоты; 3) не принимали анаболические или катаболические гормоны. Прием пищевых добавок динатриевой соли АТФ в дозе 400 мг/день (коммерческая патентованная формула PEAK ATP, TSI USA, Inc., Missoula, MT) или плацебо (400 мг на основе рисовой муки) осуществлялся в течение 14 дней за 30 минут до нагрузочного тестирования (цикл спринтов). Протокол нагрузочного спринта велся по методике, описанной в работе А.Mendez-Villanueva и соавторов (2007), при которой происходило последовательное снижение возбудимости скелетных мышц по мере выполнения десяти 6-секундных спринтов на велотренажере (велоэргометрия) с 30-секундными периодами отдыха между спринтами. Мышечная активация и возбудимость измерялись путем определения средней электрической активности мышц в мВ. Электромиографические датчики размещались над областью четырехглавой мышцы бедра. Образцы венозной крови для определения АТФ и его метаболитов брались в начале исследования (базовый показатель, день 0), через 15 дней после приема добавок АТФ (исходный уровень до нагрузки), через 30 минут после последнего приема АТФ и сразу после нагрузки. Основные результаты работы представлены суммарно в таблице 2 и рис. 6 и 7.
Таблица 2. Основные результаты исследования M.Purpura и соавторов (2017)
Концентрация метаболитов в крови
Между АТФ-группой и плацебо нет различий в концентрации метаболитов до периода приема добавок АТФ, после 15 дней приема в состоянии натощак и через 30 мин после приема АТФ в последний день. Ковариантный анализ показал, что постнагрузочные уровни АТФ, АДФ и АМФ в плазме крови были выше в АТФ-группе по сравнению с плацебо, а в плацебо-группе показатели АТФ и АДФ даже снижались по сравнению с базовыми значениями (рис.6).
Изменения мощности в Wingate-тесте
АТФ предотвращает падение показателей выполнения Wingate-теста в поздних (с 8 по 10) повторах спринта по сравнению с плацебо
Мышечная активация и мышечная возбудимость
АТФ предотвращает падение возбудимости мышц, наблюдаемое при выполнении Wingate-теста в поздних (с 8 по 10) повторах спринта по сравнению с плацебо (рис.7).
Время реакции и мощность вертикальных прыжков
Между АТФ-группой и плацебо-группой нет различий в динамике времени реакции и мощности прыжков (средние значения трех попыток)
Изученность действия высокодозной формы АТФ для приема внутрь при физических нагрузках, доказанность ее универсальных эргогенных эффектов, определили возможность комбинированного применения АТФ с другими фармаконутриентами и создания коммерческих комбинированных составов.
АТФ+НМВ [ править | править код ]
Коммерческая комбинация создана и анонсирована в апреле 2016 года на основе пищевых добавок ВСАА и АТФ. Компонент ВСАА содержит наиболее распространенное соотношение лейцина, изолейцина и валина 2:1:1 и АТФ в дозе 400 мг на одну порцию. Смесь сертифицирована компанией Klean Athlete™ в NSF-лаборатории в качестве добавки для спортивного питания. Одна порция смеси (8,6 г) содержит 2,5 г углеводов, 2 г лейцина, по 1 г изолейцина и валина, и 400 мг АТФ. Порция перед приемом растворяется в 200-250 мл воды и, как пишут производители, принимается за 30 минут до тренировки (хотя, с научной точки зрения, рекомендуемый 12-недельный курсовой прием смеси, не предполагает сиюминутного эффекта и не должен быть связан с тренировочным процессом). Оба компонента обладают эргогенным действием при курсовом назначении в отдельности. Однако в открытой печати нами не найдено исследований такой комбинации в спорте, и на сегодняшний день она имеет теоретическое обоснование.
АТФ+пропионил-L-карнитин [ править | править код ]
Готовые формы АТФ с электролитами [ править | править код ]
Заключение [ править | править код ]
АТФ (аденозин-5-трифосфат) – известное вещество в метаболизме клеток организма, включая скелетную мускулатуру, является источником энергии. Теоретически предполагается возможность использования экзогенного введения АТФ для увеличения силы, мощности и выносливости в спорте (эргогенный эффект).
Серия рандомизированных двойных-слепых плацебо- и дието-контролируемых исследований эргогенного действия пищевых добавок АТФ (кишечно-растворимые таблетки) за период 2012-2016 годов позволила сделать следующие выводы: