что такое анатомо морфологические признаки
Что такое анатомо морфологические признаки
Pinus sylvestris L. – очень пластичный вид, имеющий широкую экологическую амплитуду почвенно-климатических условий произрастания. Сосна обыкновенная широко распространена в Сибири и Европе. На севере сосновые леса доходят до Лапландии, а на юге встречаются в Китае и Монголии. Широко этот вид распространен в Евразии, сосна обыкновенная встречается в Испании и Великобритании, на востоке ареал достигает р. Ардан и р. Амур в Сибири. Сосна обыкновенная образует популяции на песчаных, супесчаных, а также торфяных почвах, редко, но встречается на глинистых [1–2].
Изучая ареал сосны обыкновенной, следует отметить высокую степень приспособляемости данного вида. Объяснить такую физиологическую особенность возможно, более подробно изучая анатомо-морфологическую структуру хвои, её особенности на уровне клеточного строения. Полагаясь на результаты многолетних исследований разных авторов, следует отметить, что хвоя сосны обыкновенной характеризуется высокой степенью чувствительности, благодаря которой с легкостью перестраивается структура клеток хвои каждого уровня, изменяются показатели и признаки в зависимости от условий местопроизрастания и других физиологических особенностей вида. Отмечено, что анатомо-морфологическое особенности строения хвои определяют в целом продуктивность и устойчивость древостоев, продолжительность и интенсивность роста всех органов растения. Такая физиологическая закономерность очень чувствительно проявляется при произрастании сосны обыкновенной в географических культурах. Авторы, изучающие географические культуры, отмечали, что размеры хвои (ширина, длина) являются константными признаками, при переброске экотипов из естественных боров в новые условия, сохраняют индивидуальную приспособленность, обусловленную эволюционной адаптацией. Так северные экотипы характеризуются наибольшими размерами хвои, экотипы их южных широт – наименьшими размерами хвои [3–5].
Цель исследования: изучить анатомо-морфологические особенности структуры хвои Pinus sylvestris L., произрастающей в различных условиях местопроизрастания, а также в одинаковых условиях, но разного происхождения, с целью установления влияния генетических и экологических факторов на адаптационные способности вида.
Материалы и методы исследования
Объектом исследования явилась сосна обыкновенная (Pinus sylvestris L.), произрастающая в Брянской области (Карачевский л-з), Воронежской (Хреновское л-во), Волгоградской (Арчединский л-з) и географических культурах в Воронежском лесхозе (Брянское происхождение, Воронежское, Волгоградское) возраст 45–60 лет. Условия произрастания объектов исследования характеризуются различными природно-климатическими показателями (табл. 1).
Характеристика природно-климатических условий произрастания объектов исследований
Брянская обл. (Карачевский л-з)
Воронежская обл. (Хреновское л-во)
Зона широколиственных лесов
Зона южной лесостепи
Среднегодовая температура, °С
Количество осадков в год, мм
Гидротермический коэффициент (ГТК)
1,6 (избыточное увлажнение)
0,9 (недостаточное увлажнение)
Вегетационный период, дней
Материал для исследования был собран в летний период 2008 и 2014 гг. Закладывали пробные площади (естественное произрастание) размером 0,25 га, на которых отбирались модельные деревья по 10 экземпляров. С каждого модельного дерева брали хвою второго года в количестве по 350 шт. Хвоинки разрезали и среднюю часть поперечного разреза помещали в глицерин. Для изучения влияния генетических и экологических факторов на анатомо-морфологическую структуру хвои измеряли следующие показатели: длину, ширину, толщину хвои, размеры эпидермы, гиподермы, складчатого мезофилла, количество смоляных ходов, диаметры клеток. Исследования клеточного строения различных уровней хвои проводили микроскопом «Биолам» при увеличении 20×8. Все полученные измерения обрабатывались с помощью программы «Stadia».
Результаты исследования и их обсуждение
Особенности строения покровных тканей хвои, структура и размеры мезофилла, смоляных каналов являются одними из важных признаков адаптивной способности, характеризующих степень приспособленности, устойчивости и роста к новым условиям местопроизрастания.
В табл. 2 представлены показатели и размеры анатомической структуры хвои сосны обыкновенной, произрастающей в разных лесорастительных условиях, а также в одних условиях, но разного географического происхождения.
Показатели морфолого-анатомической структуры хвои Pinus sylvestris L. в различных условиях произрастания, мкм
Размеры тканей листа
Естественный бор (2008 г.)
Географические культуры (южная лесостепь) (2014 г.)
Брянская обл. (Карачевский л-з)
Воронежская обл. (Хреновское л-во)
Брянское происхождение (Карачевский л-з)
Воронежское происхождение (Хреновское л-во)
Волгоградское происхождение (Арчединский л-з)
Количество смоляных ходов
Диаметр смоляных ходов
Из табл. 2 видно, что анатомо-морфологическое строение хвои сосны обыкновенной, произрастающая в Брянской области (зона широколиственных лесов) характеризуется высокими показателями в сравнении с воронежскими и волгоградскими представителями. Можно с твердостью утверждать, что достаточное увлажнение и относительно теплый климат способствуют развитию хвои более крупных размеров: толщина и ширина в зоне широколиственных лесов Брянской области превышает на 20 % от более южных представителей (табл. 2).
Толщина эпидермы, выполняющая важную защитную функцию, в зоне широколиственных лесов на 11 % меньше в сравнении с южными экземплярами.
Таким образом, можно с уверенностью утверждать, что повышенная влажность и длинный относительно (185 дней) вегетационный период способствуют развитию более крупной хвои.
Благоприятные условия произрастания сказываются и на особенности формирования смоляных каналов. Смоляные каналы в хвое из Брянской области округлой формы, расположены равномерно по всему периметру в мезофильной части хвои, одной стороной прикасаясь к гиподерме (рис. 1).
Количество смоляных каналов в хвое в Брянской области на 30–45 % формируется больше, чем в Воронежской и Волгоградской областях. Средний диаметр смоляных ходов относительно Воронежского экземпляра различий практически не имеет. Что касается сухой степи, то видно, что диаметр смоляных ходов Волгоградской области на 19 % меньше, чем более северные представители.
Смоляные каналы в хвое из Воронежской области представлены не крупной формы (табл. 2), расположенные близко к гиподерме (рис. 2). Количество смоляных каналов в условиях южной лесостепи колеблется от 6 до 12 штук.
Смоляные каналы в хвое из Волгоградской области некрупные, имеют овальную форму, немного приплюснуты со стороны покровных тканей, расположенные очень близко к гиподерме (рис. 3). Количество смоляных каналов в условиях сухой степи колеблется от 6 до 12 штук, часто встречается 8 и 10 штук.
Таким образом, размеры и анатомо-морфологическая структура хвои существенно изменяется в зависимости от природно-климатических условий произрастания, т.е. прослеживается сильное влияние экологических факторов. При интродукции сосны обыкновенной из благоприятных условий в экстремальные (сухую степь, ГТК 0,6), происходит уменьшение размеры хвои и увеличении размеров тканей, выполняющих защитные функции. Остро реагируют на изменения среды произрастания и размеры ассимиляционных тканей, в более благоприятных условиях она максимальная, при интродукции в сухую степь она уменьшается на 17 %.
Совершенно иная картина прослеживается в анатомической структуре хвои сосны обыкновенной, произрастающей в условиях Воронежского лесхоза (А2), но различного происхождения (Брянский экотип, Воронежский экотип и Волгоградский экотип). Резкое различие в морфолого-анатомической структуре хвои, наблюдаемое в естественных борах различных условий произрастания, сглаживается. Структура хвои по своим признакам и показателям приближается к местным представителям (табл. 2). Однако, анализируя данные таблицы, можно отметить, что на размеры и показатели структуры хвои оказывают влияние и генетические факторы, обусловленные происхождением вида. Наблюдается закономерность уменьшения размеров хвои в той же последовательности, что и в естественных борах. Хвоя Брянского происхождения характеризуется наибольшими размерами. Хвоя Волгоградского происхождения характеризуется наименьшими размерами.
Рис. 1–3 отражают микроструктуру хвои сосны обыкновенной, произрастающей в различных условиях.
Данные, представленные в табл. 3, свидетельствуют о влиянии экологических факторов на размеры клеток покровных тканей, трансфузионной ткани, трахеид проводящих пучков, смоляных каналов.
Рис. 1. Поперечный срез хвои Pinus sylvestris L. в условиях широколиственных лесов
Что такое анатомо морфологические признаки
В настоящее время в медицинской практике как в РФ, так и за рубежом широко используются корни женьшеня настоящего (Panax ginseng C.A.Meyer), собранные на 5–6-й год жизни [2]. Широкое культивирование женьшеня в РФ в промышленных целях осуществляется как в европейской части страны (Самарская, Брянская, Тверская области), так и на Дальнем Востоке (Приморский край). Например, в Самарской области в колхозно-фермерском хозяйстве «Питомник «Женьшень» в течение 20 лет проводится работа по интродукции указанного растения.
Известно, что при сборе корней, а также при подготовке молодых растений к зимовке остается значительная фитомасса вегетирующей надземной части, извлечения из которой, по данным некоторых ученых, обладают противогипоксическим, актопротекторным, термопротекторным, стресспротекторным и адаптогенным действием [1, 6, 8]. Поэтому надземная часть женьшеня интересна в качестве источника биологически активных соединений, в том числе и с точки зрения ресурсосберегающих технологий.
Введение нового вида растительного сырья в официнальную медицину требует разработки методов диагностики с помощью морфолого-анатомического анализа [9], при этом следует отметить, что данные об анатомическом строении органов травы женьшеня и характере сложения тканей в литературе практически отсутствуют.
Перспективным методом диагностики и подтверждения подлинности растительных объектов является петиолярная анатомия – строение черешка листа. По мнению специалистов, анатомическое строение основных органов растения – корня, стебля и листьев – относительно постоянно и типично для двудольных растений, однако строение черешка листа (петиолярная анатомия) отличается большим разнообразием диагностических признаков, а также видовой специфичностью, позволяющей проводить узкоселективный анализ [7, 11, 12]. Таким образом, изучение диагностических особенностей строения черешка листа представляет как теоретический ботанический интерес, так и практический – с точки зрения определения подлинности и анализа растительного сырья в фармации [4, 5, 10].
Целью настоящего исследования являлось изучение морфолого-анатомических и гистологических особенностей строения черешка листа женьшеня настоящего.
Материалы и методы исследования
Материалом исследования служили черешки листьев женьшеня настоящего, культивируемого в Самарской области (КФК «Питомник «Женьшень», г. Жигулевск). Сбор листьев с черешками осуществляли в июне-августе 2011–2012 гг. и подвергали сушке в хорошо проветриваемом помещении без доступа прямых солнечных лучей.
Высушенные листья с черешками фиксировали в смеси спирта этилового 96 %, глицерина ректифицированного и воды очищенной в соотношении 1:1:1. Материал настаивали в течение суток, после чего проводили морфолого-анатомическое исследование.
Приготовление микропрепаратов осуществляли в соответствии с требованиями ГФ СССР ХI издания [2].
Исследование проводили с помощью цифровых микроскопов марки «Motic» (Китай): DM-111 и DM-39C-N9GO-A. Для более полной характеристики анализируемых объектов использовали гистохимические реакции с раствором сернокислого анилина 10 % и реакции с раствором Судана III 3 %. Реактивы готовили по соответствующим методикам [2, 3].
Результаты исследования и их обсуждение
Поперечное сечение черешка вписывается в овал. Контуры поперечного сечения черешка неровные, неравномерно округлые, городчатые. С адаксиальной (обращенной к стеблю) стороны имеется V-образный вырез с округлым выступом в середине. Края выреза представлены остатками нисбегающего основания листовой пластины. Они, как правило, отвернуты к нижней стороне листа (рис. 1).
Рис. 1. Поперечный срез черешка листа (х 40): 1 – фрагмент листовой пластинки; 2 – клетка верхнего эпидермиса; 3 – выступ адаксиальной части; 4 – проводящие пучки; 5 – ксилема; 6 – флоэма; 7 – паренхима сердцевины; 8 – абаксиальная сторона черешка
Эпидермальные клетки черешка листа на основной части поперечного сечения неправильной, иногда смятой формы и имеют заметно утолщенные клеточные стенки. Исходно стенки эпидермальных клеток не окрашены. Кутикула диагностируется с поверхности по розово-коричневому окрашиванию при обработке раствором Судана III. Под эпидермисом расположена колленхима уголково-пластинчатого типа, насчитывающая до 3-х слоев клеток. Форма клеток колленхимы неправильная, иногда смятая (рис. 2, б).
При рассмотрении поверхности листа эпидермальные клетки вытянутые, равновеликие, в длину достигают до 200 мкм, в ширину – до 25 мкм (рис. 3). По поверхности черешка изредка встречаются устьичные аппараты, окруженные четырьмя-пятью околоустьичными клетками, отличающимися от клеток основной эпидермы меньшими размерами (аномоцитный тип) (рис. 3, б).
Клетки эпидермиса остатков листовой пластинки округлой формы с утолщенными оболочками (рис. 4).
аб
Рис. 2. Поперечный срез черешка листа (х 400): а – без окраски; б – окраска раствором Судана III: 1 – кутикула; 2 – клетка эпидермиса; 3 – уголково-пластинчатая колленхима; 4 – клетки мезофилла; 5 – межклетник; 6 – друзы оксалата кальция
аб
Рис. 3. Черешок листа, вид с поверхности (х 400): а – эпидермис (без окраски); б – паренхима под эпидермисом (без окраски); в – эпидермис (окраска раствором Судана III: 1 – клетка эпидермы; 2 – устьице; 3 – содержимое протопласта клеток паренхимы; 4 – кутикула
аб
Рис. 4. Поперечный срез черешка листа. Край листовой пластинки (х 400): а – окраска раствором сернокислого анилина; б – без окраски: 1 – фрагменты протопласта; 2 – кутикула; 3 – эпидермис; 4 – мезофилл листа; 5 – уголково-пластинчатая колленхима
В паренхиме черешка расположены закрытые коллатеральные проводящие пучки. Количество пучков варьирует от степени развития листа и места поперечного сечения. В среднем в черешке обнаружено 7 пучков размером от 0,1 до 0,45 мм в диаметре (рис. 1). Пучки расположены по периметру. Самый крупный пучок – центральная жилка – расположен ближе к абаксиальной стороне. Строение пучков без особенностей. Сосуды ксилемы окрашиваются растворами сернокислого анилина и Судана III в желтый и розовый цвета соответственно (рис. 4). Склеренхима в пучках не выражена.
Со стороны флоэмы расположены вместилища с секретом изначально желтого цвета, который переходит в розовый под действием раствора Судана III (рис. 5, а).
аб
Рис. 5. Проводящий пучок черешка листа (х 400): а – окраска раствором Судана III; б – окраска раствором сернокислого анилина: 1 – основная паренхима; 2 – клетки флоэмы; 3 – сосуды ксилемы; 4 – вместилище с секретом
Строение черешка по всей его длине принципиально не отличается.
Мезофилл остатков листовой пластинки также представлен клетками округлой формы. Паренхима рыхлая, с большим количеством межклетников. В клетки мезофилла диагностируются фрагменты протопласта. Края листовых пластин армированы колленхимой уголково-пластинчатого типа в один слой клеток (рис. 4).
Полученные данные представляют большой теоретический интерес. По мере изучения микроскопического строения остальных органов надземной части растения, химического состава и фармакологической активности, использование травы женьшеня может быть обосновано в качестве лекарственного растительного сырья, а полученные данные настоящего исследования включены в раздел «Микроскопия» проекта фармакопейной статьи.
Таким образом, в результате проведенных исследований нами выявлен комплекс диагностических признаков черешка листа женьшеня настоящего:
Рецензенты:
Первушкин С.В., д.фарм.н., профессор, зав. кафедрой фармацевтической технологии, ГБОУ ВПО «Самарский государственный медицинский университет» Министерства здравоохранения РФ, г. Самара;
Авдеева Е.В., д.фарм.н., профессор кафедры фармакогнозии с ботаникой и основами фитотерапии, ГБОУ ВПО «Самарский государственный медицинский университет» Министерства здравоохранения РФ, г. Самара.
Работа поступила в редакцию 01.04.2014.
Что такое анатомо морфологические признаки
Желудок выполняет ряд пищеварительных и не пищеварительных функций, нарушение которых в условиях патологии может привести к расстройствам не только желудочного и кишечного пищеварения, но и к развитию анемий, к гормональному дисбалансу, нарушению кислотно-основного состояния, электролитного баланса и другим сдвигам. Основными функциями желудка являются секреторная, моторная, эвакуаторная, резервуарная, экскреторная, всасывательная и инкреторная [1, 2, 4, 5, 7, 8, 9].
Основными анатомическими отделами желудка, отличающимися своими структурными и функциональными особенностями, являются: кардиальный отдел, дно и тело желудка, пилорический отдел. Касаясь секреторной функции желудка, следует отметить способность слизистой секретировать соляную кислоту, бикарбонаты, пепсиногены, гастрин, слизь, однако в различных отделах желудка имеются особенности секреции [7, 8, 9].
Внутренняя поверхность желудка покрыта однослойным высокопризматическим эпителием, непрерывно выделяющим мукоидный секрет, или так называемую видимую слизь, а также бикарбонаты. Барьер видимой слизи составляет 0,5-1,5 мм и обеспечивает защиту подлежащих слоев слизистой от агрессивного действия кислотно-пептического фактора [1, 2, 4, 5, 7, 8, 9].
Кардиальный отдел представляет собой узкое (шириной в 1-4 см) кольцо ниже отверстия пищевода и содержит железы, вырабатывающие мукоидный секрет, здесь же обнаружены париетальные клетки, продуцирующие HCl и внутренний фактор Кастла. Основное количество париетальных или обкладочных клеток, секретирующих НCl и внутренний фактор Кастла, представлено в дне и теле желудка, составляющих 75 % всего желудка. Кроме того, в теле и дне желудка имеются главные зимогенные клетки, вырабатывающие пепсиногены, мукозные клетки, а также аргентофинные клетки. Железы пилорического отдела, составляющего 15-20 % желудка, содержат клетки, вырабатывающие слизь. Особенностью этого отдела является наличие в нем G-клеток, продуцирующих гастрин [7, 8, 9].
В различных отделах желудка выделяют так называемые промежуточные клетки, выделяющие мукоидный секрет и бикарбонаты. Эти клетки обладают высокой митотической активностью и являются камбием для всего эпителия желудка. Главные и часть париетальных клеток не обладают митотической активностью, их восполнение обеспечивается за счет пролиферации и созревания камбиальных клеток. По всей территории желудка в глубоких слоях слизистой располагаются аргентофинные клетки, продуцирующие 5-окситриптамин (предшественник серотонина) и другие биологически активные вещества. Тучные клетки соединительной ткани продуцируют гистамин, серотонин, гепарин, фактор активации тромбоцитов (ФАТ), фактор хемотаксиса эозинофилов (ФХЭ), фактор хемотаксиса моноцитов (ФХМ) и другие цитокины [4, 5, 6].
Иннервация желудка обеспечивается экстрамуральными нервами (блуждающим, чревным, диафрагмальным) и интрамуральной нервной системой [7, 8, 9].
Парасимпатическая иннервация осуществляется блуждающими нервами, содержащими преганглионарные волокна и оканчивающимися в миэнтеральном сплетении на клетках Догеля I типа – втором нейроне парасимпатической иннервации.
Симпатическая иннервация осуществляется волокнами, идущими в составе ваго-симпатических стволов блуждающих нервов и волокон чревных нервов, достигающих желудка совместно с брыжеечными нервами [7, 8, 9].
Метасимпатическая система регуляции основных функций желудка представлена подслизистым сплетением (мейснерово), слизистым, межмышечным (ауэрбахово) и субсерозным.
В свою очередь, активность метасимпатической системы желудка находится под преимущественным регулирующим влиянием n.vagus.
Характеристика фаз желудочной секреции
Различают базальную (голодную) и стимулированную (пищеварительную) секрецию. Секреция желудочного сока натощак составляет у взрослого человека 10 % того количества, которое образуется при максимальной стимуляции. Перерезка блуждающего нерва или удаление антрального отдела, содержащего G-клетки, приводит к прекращению базальной секреции, из чего следует, что она стимулируется гастрином и зависит от тонуса блуждающего нерва [1, 2, 4, 5, 7, 8, 9].
В процессе желудочной секреции выделяют три фазы:
1) сложнорефлекторную (цефалическую);
Клетки желудочных желез ежесуточно секретируют 2-3 литра желудочного сока. По своему составу желудочный сок на 99-99,5 % состоит из воды и 1-0,5 % составляет плотный остаток, представленный неорганическими (хлориды, сульфаты, фосфаты, бикарбонат натрия, ионы калия, кальция, магния) и органическими (ферменты, мукоиды) веществами. В небольшом количестве в желудочном соке находятся азотсодержащие вещества небелковой природы (мочевина, мочевая кислота, молочная кислота) [5, 7, 8, 9].
Афферентная стимуляция цефалической фазы желудочной секреции осуществляется при участии различных анализаторов – вкусового, обонятельного, зрительного, слухового.
Эфферентное звено регуляции первой фазы желудочной секреции обеспечивается холинэргическими нервными волокнами, ацетилхолином, освобождаемым интрамуральными нервными сплетениями. Латентный период первой фазы составляет 5-10 минут. В цефалическую фазу выделяется около 45 % желудочного сока, богатого ферментами.
Основными эфферентными регуляторами сложнорефлекторной фазы являются: холинергические нервные влияния, ацетилхолин, а также гастрин, высвобождающийся при активации n. vagus [5, 7, 8, 9].
Стимуляторами желудочной фазы секреции являются механические факторы (растяжение желудка поступающей в него пищей) и химические раздражения слизистой желудка, приводящие к активации холинергических влияний и усилению продукции ацетилхолина и гастрина.
Различают гастрин 17 и гастрин 34. Гастрин 17 обладает наибольшей активностью, гастрин 34 имеет более продолжительный период существования, но в шесть раз меньшую активность. Гастрин 17 в большей мере оказывает местный стимулирующий эффект на секреторную активность желудка при участии антрофундального кровотока. Гастрин 34, всасываясь в системный кровоток, регулирует оксигенацию и трофику слизистой желудочно-кишечного тракта. Гастрин 34 синтезируется клетками 12-перстной кишки и поджелудочной железы и при триптическом гидролизе расщепляется с образованием гастрина 17, 14, 13. Гастрин 14 и гастрин 13 обнаруживаются в небольших количествах, и биологическая значимость их неясна. Стимулируют инкрецию гастрина ацетилхолин, механическое растяжение антрального отдела, продукты протеолиза, катехоламины через a-адренорецепторы, ионы кальция, магния, алкоголь, кофеин [1, 2, 4, 5, 7, 8, 9].
Третья фаза желудочной секреции – кишечная – продолжается 1-3 часа развивается при переходе пищи из желудка в кишечник. Кишечная фаза поддерживается механическим растяжением тонкого кишечника и химическим раздражением хеморецепторов слизистой 12-перстной кишки продуктами гидролиза пищи и сопровождается освобождением различных биологически активных соединений – гастрина, энтерогастрона, соматостатина, секретина, холецистокинина, гастроингибирующего пептида, мотилина, нейротензина и другие [1, 2, 4, 5, 7, 8, 9].
К числу медиаторов, играющих роль первых посредников в индукции секреции желудочного сока, относятся ацетилхолин, гистамин и гастрин.
Как известно, важнейшими компонентами желудочного сока являются НСl, пепсиногены и слизь.
НСl вырабатывается париетальными клетками, расположенными в перешейке, шейке и верхнем отделе тела железы. Эти клетки характеризуются исключительным богатством митохондрий вдоль секреторных внутриклеточных канальцев. В состоянии покоя париетальных клеток секреторные канальцы выражены слабо, вместо них имеются особые пузырчатые образования – тубуловезикулы. В периоды секреторной активности в процессе пищеварения количество секреторных канальцев увеличивается, их мембрана сливается с плазматической мембраной, увеличивая тем самым ее площадь. Кислотопродуцирующие клетки желудка активно используют собственный гликоген для нужд секреторного процесса. Секреция НСl – ярко выраженный цАМФ-зависимый процесс, активация которого протекает на фоне усиления гликогенолитической и гликолитической активности. Кислотообразующая функция обкладочных клеток характеризуется наличием в них процессов фосфорилирования-дефосфорилирования, существованием митохондриальной окислительной цепи, транспортирующей ионы водорода из матриксного пространства, а также (Н-К)-АТФазы секреторной мембраны, перекачивающей протоны из клетки в просвет железы за счет энергии АТФ. Вода поступает в канальцы клетки путем осмоса [5, 7, 8, 9].
В полости желудка НСl стимулирует секреторную активность желез желудка, способствует превращению пепсиногена в пепсин, создает оптимальное рН для действия протеолитических ферментов желудочного сока, вызывает денатурацию и набухание белков. Кроме того, HCl стимулирует продукцию секретина в двенадцатиперстной кишке, обеспечивает антибактериальное действие вместе с лизоцимом и сиаломуцинами, а также стимулирует моторную функцию желудка и регулирует работу пилорического сфинктера [7, 8, 9].
При ахлоргидрии содержание микроорганизмов в 1 мл желудочного сока возрастает до 100000 (в норме в 1 мл содержится 100 микробных клеток).
Основным ферментативным процессом в полости желудка является начальный гидролиз белков до альбумоз и пептонов с образованием небольшого количества аминокислот. В желудочном соке выделено 7 видов пепсинов, продуцируемых главными клетками.
Основными пепсинами желудочного сока являются:
Пепсин А – группа ферментов, гидролизирующих белки при рН = 1,5- 2,0. Около 1 % пепсина переходит в кровяное русло, фильтруется в почках и выделяется с мочой (уропепсин).
Гастриксин, пепсин С, желудочный катепсин. Соотношение между пепсином А и гастриксином в желудочном соке от 1:1 до 1:5. Оптимум действия фермента при рН = 3,2-3,5.
Пепсин В, парапепсин, желатиназа – разжижает желатину, расщепляет белки соединительной ткани. Оптимум действия фермента при рН до 5,6.
Ренин, пепсин Д, химозин – расщепляет казеин молока в присутствии ионов Са, с образованием параказеина и сывороточного белка.
Пепсины не продуцируются железами антрального отдела желудка, гастриксин же присутствует во всех отделах желудка.
Желудочный сок содержит ряд непротеолитических ферментов – желудочную липазу, лизоцим, муколизин, карбоангидразу, уреазу. Лизоцим вырабатывается клетками поверхностного эпителия и придает бактерицидные свойства желудочному соку.
Желудочный сок обладает небольшой амилолитической и липолитической активностью. Не исключено, что амилаза и липаза рекретируются фундальными и пилорическими железами из крови. В желудочном соке обнаружены и другие непротеолитические ферменты: трансаминазы, аминопептидазы, щелочная фосфатаза, рибонуклеазы и другие [5, 7, 8, 9].
Важнейшим протективным фактором желудка от воздействия НСl и пепсинов является слизеобразование.
Желудочная слизь, или муцин, вырабатывается клетками поверхностного цилиндрического эпителия, добавочными клетками шеек желез дна и тела, мукоидными клетками кардиальных и пилорических желез.
Желудочная слизь состоит из нерастворимой видимой и растворимой слизи. Видимая слизь – высокогидратированный гель, содержит нейтральные мукополисахариды, сиаломуцины, гликопротеиды, протеогликаны, протеины. Растворенный муцин образуется из секрета желудочных желез и продуктов переваривания видимой слизи [5, 7, 8, 9].
Адсорбционная и антипептическая способность слизи, обусловленная наличием сиаловых кислот, обеспечивает защиту слизистой от самопереваривания. Гликопротеиды, входящие в состав видимого муцина, совершенно резистентны к протеолизу. Слизь обладает значительной буферной емкостью и способностью нейтрализовать кислоту за счет наличия бикарбонатов и фосфатов, которые секретируются вместе со слизью и адсорбируются на ней. Образующийся при взаимодействии муцина и бикарбоната мукозо-бикарбонатный барьер предохраняет слизистую от аутолиза, создает такую среду, в которой большинство макромолекул нерастворимы. Такой барьер непроницаем для бактериальных олигопептидов.
Кислые мукополисахариды – протеогликаны обеспечивают липотропную активность слизи, предотвращая ожирение печени. Биологическое действие фукомуцинов (нейтральных муцинов), составляющих основную массу видимой и растворимой слизи, связано с наличием в их составе групповых антигенов крови, фактора роста и антианемического фактора Кастла.
Сиаломуцины участвуют в синтезе НCl, они способны нейтрализовать вирусы и препятствовать вирусной гемаглютинации.
Выделение слизи стимулируют умеренные концентрации катехоламинов, гистамин, гастрин, серотонин, механическое раздражение слизистой. Усиливают образование слизи простациклин, а также простагландины (РgE1, PgE2), улучшающие кровоснабжение слизистой оболочки. Простагландины F2b стабилизируют мембраны лизосом эпителия, препятствуя его десквамации, и являются мембранопротекторами. АКТГ, глюкокортикоиды подавляют слизеобразование [3, 5, 6, 9].
Характер и механизмы нервных и гормональных влияний на желудочную секрецию
Ацетилхолин стимулирует деятельность главных, обкладочных и мукозных клеток через М-холинорецепторы, а также за счет стимуляции освобождения гастрина G-клетками. Кроме того, ацетилхолин подавляет активность D-клеток и продукцию соматостатина-ингибитора желудочной секреции. В ткани желудка под действием ацетилхолина и гастрина из ECL-клеток и тучных клеток выделяется гистамин, который через Н2 – рецепторы активирует аденилатциклазу с последующей стимуляцией (Н-К)-АТФ-азы. Этот фермент обеспечивает электронейтральный обмен ионов калия на ионы водорода. В равной степени гистамин стимулирует секрецию бикарбонатов и слизи. Стимулирующим влиянием на процесс желудочной секреции обладают простагландины F 2α, высвобождающиеся под влиянием ацетилхолина [1, 2, 4, 5, 7, 8, 9].
Эффекты катехоламинов на секреторную способность желудка, по данным ряда авторов, весьма противоречивы: через β1-адренорецепторы подавляется продукция НСI; через β2-адренорецепторы подавляется продукция пепсиногена. Действуя через α-адренорецепторы, катехоламины вызывают ограничение кровотока в слизистой желудка, активацию G-клеток и усиление продукции гастрина. Последнее приводит к повышению секреторной способности желудка.
В настоящее время очевидно значение ряда гормональных и гуморальных факторов, оказывающих модулирующее влияние на секреторную функцию желудка. Гормональными факторами, стимулирующими желудочную секрецию, являются АКТГ, глюкокортикоиды, СТГ, пролактин, инсулин, глюкагон, паратгормон. К гормональным и гуморальным ингибиторам желудочной секреции относятся вазопрессин, окситоцин, тиреокальцитонин, эндогенные опиоидные пептиды, ВИП, ГИП и другие факторы [1, 2, 4, 5, 7, 8, 9].
Важную роль в регуляции желудочной секреции играют биологически активные вещества и тканевые гормоны, причем гистамин, простагландины групп В, F оказывают стимулирующее воздействие на желудочную секрецию, в то время как простагландины типа Е, А и простациклин подавляют секрецию кислоты и пепсина [5, 7, 8, 9].
Что касается серотонина – важного медиатора воспалительных реакций – он оказывает неоднозначное действие на желудочную секрецию: стимулирует действие главных клеток и подавляет активность обкладочных [1, 2, 4, 5].
Ниже представлены особенности влияния ряда гормонов и гуморальных модуляторов секреторной, моторной и эвакуаторной функции желудка.
Холецистокинин – продуцируется в G-клетках тонкой кишки под влиянием пептидов, аминокислот, жирных кислот. Холецистокинин стимулирует секрецию секрецию желудочного сока, панкреатических ферментов, инсулина, моторику желчного пузыря, кишечника и тормозит эвакуаторную активность желудка.
Мотилин – является дигестивным пептидом, продуцируется энтерохромафинными клетками тонкого кишечника (ЕС2-клетками), стимулирует секрецию пепсиногена главными клетками желудка, вызывает тоническое сокращение желудка и кишечника. Мотилин потенцирует действие ацетилхолина на пилорический отдел желудка и ускоряет эвакуацию химуса.
Секретин – продуцируется S-клетками проксимального отдела тонкого кишечника. Секретин стимулирует секрецию пепсиногена главными клетками желудка, тормозит продукцию соляной кислоты париетальными клетками. Секретин стимулирует освобождение бикарбонатов и воды поджелудочной железой, печенью, дуоденальными железами, усиливает секрецию желчи и кишечного сока, потенцирует действие холецистокинина на моторику желчного пузыря.
Важнейшим регулятором желудочной секреции является соматостатин, продуцируемый D-клетками желудочно-кишечного тракта, а также нервными клетками центральной и периферической нервной системы. Стимуляция инкреции соматостатина происходит под влиянием пептонов, кислого содержимого. Реципрокные отношения отмечены между продукцией соматостатина, гастрина, ацетилхолина.
Соматостатин ингибирует секрецию СТГ, ТТГ, пролактина, инсулина, глюкагона, а также ряда дигестивных пептидов – гастрина, холецистокинина. Снижение содержания соматостатина в слизистой оболочке антрального отдела выявлено у больных с рецидивирующей язвой двенадцатиперстной кишки [1, 2, 4, 5].
У пациентов со соматостатинпродуцирующими опухолями выявлено снижение секреторной активности желудка.
Ингибирующим влиянием на секреторную активность желудка обладают:
Гастроингибирующий пептид (ГИП) – тормозный полипептид, синтезируется в эндокриноцитах (К-клетках) тонкой кишки под влиянием липидов, снижает секрецию НСI, угнетает реабсорбцию натрия и воды в ЖКТ, стимулирует секрецию инсулина, ингибирует моторику желудка. ГИП активирует секреторную деятельность толстого кишечника. Усиление секреции ГИП выявлено при диабете 2-типа, демпинг-синдроме.
Нейротензин образуется в N-клетках слизистой оболочки подвздошной кишки, в гипоталамусе и базальных ганглиях, высвобождение нейротензина в кишечнике происходит под влиянием липидов. Нейротензин ингибирует двигательную и секреторную функцию желудка, стимулирует секрецию бикарбонатов поджелудочной железой и освобождение глюкагона.
Пептид YY синтезируется эндокриноцитами толстой и тонкой кишки, угнетает секреторную функцию желудка и поджелудочной железы, тормозный медиатор для верхних отделов пищеварительной трубки.
Энтероглюкагон – синтезируется в ЕСI-клетках слизистой оболочки кишечника, особенно подвздошной и толстой кишки; его секреция возрастает под влиянием триглицеридов и углеводов. Энтероглюкагон угнетает моторику желудка, снижает образование соляной кислоты париетальными клетками. Энтероглюкагон обладает трофическим влиянием на слизистую кишечника.
Нейропептиды могут оказывать как активирующее, так и тормозное влияние на секреторную и моторную функции желудка.
Вазоактивный интестинальный пептид (ВИП) – содержится в больших нейросекреторных гранулах типа Р. Он подавляет секрецию соляной кислоты и пепсиногена клетками желудка, активирует кровоток в стенке кишечника, секрецию кишечного сока и бикарбоната поджелудочной железой. ВИП стимулирует инкрецию инсулина, усиливает гликогенолиз в печени. ВИП обладает выраженным вазодилятаторным и гипотензивным эффектом.
Бомбезин – гастринстимулирующий полипептид – GRP, продуцируется в нервных волокнах желудочно-кишечного тракта и клетках ЦНС. Стимулирует продукцию соляной кислоты, пепсиногена, гастрина, панкреатического сока. Бомбезин способствует выделению энтероглюкагона, холецистокинина, субстанции Р, панкреатического полипептида, соматостатина.
Субстанция Р – относится к нейропептидам, выделяется нервными окончаниями интрамускулярного нервного сплетения ЖКТ, а также клетками головного и спинного мозга. Субстанция Р усиливает слюноотделение, оказывает стимулирующее действие на моторику пищеварительного тракта, участвует в передаче информации о боли с периферии в центральную нервную систему.
Энкефалины и эндорфины – эндогенные опиоидные пептиды, образуются в гипоталамических структурах, слизистой двенадцатиперстной кишки, поджелудочной железе, надпочечниках. Они оказывают тормозное влияние на секреторную и моторную функции желудка и кишечника путем блокады освобождения ацетилхолина и субстанции Р клетками этих отделов.
Нейропептид Y образуется клетками центральной и периферической нервной системы, угнетает секрецию ацетилхолина в нервных окончаниях желудочно-кишечного тракта, а следовательно, секреторную и моторную функцию ЖКТ.
Тиролиберин – образуется в гипоталамусе, аденогипофизе, клетках ЖКТ, почках, печени, плаценте, сетчатке глаза. Тиролиберин угнетает образование НСI в желудке и моторику желудка.