в какой части клетки располагаются органоиды и ядро
В какой части клетки располагаются органоиды и ядро
Какова роль цитоплазмы в растительной клетке
Ответы 1,2 и 4 — определяют функции плазматической мембраны.
Верный ответ 3 (цитоплазма — осуществляет связь между ядром и органоидами).
1) Избирательное проникновение в клетку и из нее молекул и ионов, необходимых для выполнения специфических функций клеток;
2) Избирательный транспорт ионов через мембрану, поддерживая трансмембранную разницу электрического потенциала;
3) Специфику межклеточных контактов.
Все органоиды и ядро клетки связаны между собой с помощью
Одной из функций цитоплазмы является связь органоидов клетки.
Цитоплазма в клетке НЕ принимает участия в
Биосинтез ДНК происходит в ядре клетки, и цитоплазма в нем участие не принимает.
Плазматическая мембрана клетки не участвует в процессах
Плазматическая мембрана клетки не участвует в процессах синтеза молекул АТФ — этот процесс идет в митохондриях.
Клеточная мембрана (или цитолемма, или плазмалемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определённые условия среды.
Пожалуйста объясните подробней.
Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу через плазматическую месбрану: диффузия, осмос, активный транспорт и экзо- или эндоцитоз.
Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних — активные процессы, связанные с потреблением энергии.
Эндоцитоз — Фагоцитоз и пиноцитоз: захват и поглощение животной клеткой крупных частиц (открыл И.И.Мечников): в том месте, где поверхность клетки соприкасается с частицей или каплей жидкости, образуется углубление, мембрана окружает частицу со всех сторон. Затем часть мембраны отделяется и внутри цитоплазмы оказывается фагоцитарный (пиноцитарный) пузырек с веществом внутри.
А в процессах синтеза молекул АТФ плазматическая мембрана не участвует — этот процесс идет в митохондриях.
Органоиды клетки. Строение и функции.
Органоиды клетки и их наличие зависит от типа клетки. Современная биология делит все клетки (или живые организмы) на два типа: прокариоты и эукариоты. Прокариоты – это безъядерные клетки или организмы, к которым относятся вирусы, прокариот-бактерии и сине-зеленые водоросли, у которых клетка состоит непосредственно из цитоплазмы, в которой расположена одна хромосома – молекула ДНК (иногда РНК).
Эукариотические клетки имеют ядро, в котором находятся нуклеопротеиды (белок гистон + комплекс ДНК), а также другие органоиды. К эукариотам относятся большинство современных известных науке одноклеточных и многоклеточных живых организмов (в том числе, и растений).
Строение ограноидов эукариотов.
Цитоплазма
Внутренняя среда клетки, в которой находится ядро и другие органоиды. Имеет полужидкую, мелкозернистую структуру.
Рибосомы
Мелкие органоиды сферической или эллипсоидной формы диаметром от 15 до 30 нанометров.
Обеспечивают процесс синтеза молекул белка, их сборку из аминокислот.
Митохондрии
Органоиды, имеющие самую разнообразную форму – от сферической до нитевидной. Внутри митохондрий имеются складки от 0,2 до 0,7 мкм. Внешняя оболочка митохондрий имеет двухмембранную структуру. Наружная мембрана гладкая, а на внутренней имеются выросты крестообразной формы с дыхательными ферментами.
Эндоплазматическая сеть (ЭПС)
Система оболочек в цитоплазме, которая образует каналы и полости. Бывает двух типов: гранулированная, на которой имеются рибосомы и гладкая.
Пластиды (органоиды, свойственные только растительным клеткам) бывают трех видов:
Лейкопласты
Бесцветные пластиды, которые содержатся в клубнях, корнях и луковицах растений.
Являются дополнительным резервуаром для хранения питательных веществ.
Хлоропласты
Органоиды овальной формы, имеющие зеленый цвет. От цитоплазмы отделяются двумя трехслойными мембранами. Внутри хлоропластов находится хлорофилл.
Преобразуют органические вещества из неорганических, используя энергию солнца.
Хромопласты
Органоиды, от желтого до бурого цвета, в которых накапливается каротин.
Способствуют появлению у растений частей с желтой, оранжевой и красной окраской.
Лизосомы
Органоиды округлой формы диаметром около 1 мкм, имеющие на поверхности мембрану, а внутри – комплекс ферментов.
Пищеварительная функция. Переваривают питательные частицы и ликвидируют отмершие части клетки.
Комплекс Гольджи
Может быть разной формы. Состоит из полостей, разграниченных мембранами. Из полостей отходят трубчатые образования с пузырьками на концах.
Клеточный центр
Состоит из центросферы (уплотненного участка цитоплазмы) и центриолей – двух маленьких телец.
Выполняет важную функцию для деления клетки.
Клеточные включения
Углеводы, жиры и белки, которые являются непостоянными компонентами клетки.
Запасные питательные вещества, которые используются для жизнедеятельности клетки.
Органоиды движения
Жгутики и реснички (выросты и клетки), миофибриллы (нитевидные образования) и псевдоподии (или ложноножки).
Выполняют двигательную функцию, а также обеспечивают процесс сокращения мышц.
Ядро клетки является главным и самым сложным органоидом клетки, поэтому его мы рассмотрим отдельно.
Строение клетки. Взаимосвязь строения и функций частей и органоидов клетки – основа ее целостности
Содержание:
Строение клетки
Сначала элементарная единица строения организмов получила латинское название cellula, что в переводе означает «маленькая камера». Древнегреческое слово «цитос» переводится как «ячейка». «Цитология» — название современной науки о строении и функциях разных типов клеток.
Бактерии, многие виды грибов, водорослей, простейшие животные — одноклеточные существа. Гораздо больше на Земле видов многоклеточных живых организмов. Вирусы не имеют клеточного строения, поэтому не могут быть отнесены ни к одной из названых групп. Однако для жизнедеятельности и размножения вирионы должны попасть в живые клетки.
Длительная эволюция жизни привела в далеком геологическом прошлом к появлению одноклеточных организмов. Многоклеточные возникли позже в истории Земли. Клетки у таких живых организмов преимущественно специализированные, имеют разнообразные формы, размеры и другие морфологические особенности. Они выполняют определенные функции в составе тканей и органов.
Цитологические знания появлялись, накапливались и дополнялись в течение нескольких веков. К середине XIX века исследователи сформулировали основные положения клеточной теории. Выдающийся вклад в развитие учения внесли М. Шлейден, Т. Шванн, Р. Вирхов и другие ученые.
Согласно результатам исследований, для клеток характерны:
Средний диаметр структурных единиц человеческого организма — около 25 микрон (мк) или микрометров (мкм). Крупными размерами отличаются яйцеклетки — 0,15 мм. В целом, ткани тела человека содержат 200 типов «строительных блоков». Скопления клеток, сходных по структуре и функциям, образуют ткани. Последние составляют основу органов.
Органоиды клеток
Микроскопические автономные системы содержат много компонентов. Органоиды — постоянные части клетки (рис. 1). Включения возникают и исчезают в зависимости от возраста и процессов жизнедеятельности. Компоненты тесно взаимодействуют в микроскопически маленьком пространстве.
Плазматическая мембрана
Общая толщина составляет 6–10 нм. Плазматическая мембрана содержит двойной слой липидов и два слоя белков. Белковые молекулы расположены на поверхности и в толщине липидного слоя. Растительные клетки, помимо плазматической мембраны, имеют плотную клеточную стенку.
Цитоплазма
Под оболочкой клетки находится полужидкая масса, коллоид (промежуточное состояние между истинным раствором и взвесью). Цитоплазма содержит белки, липиды, углеводы, РНК, ионы. Имеются протеиновые структуры в виде микронитей и микротрубочек — цитоскелет. В цитоплазму погружены все компоненты клетки.
Ядро
Митохондрии
«Энергетические станции» клетки — овальные или округлые тельца размером от 0,5 до 7 мкм. Наружная мембрана гладкая, внутренняя образует складки (кристы), как на
Матрикс содержит рибосомы, молекулы ДНК и РНК, ферменты. Часть вырабатываемой энергии расходуется в рибосомах, где из аминокислот синтезируются белки.
Пластиды
Крупные полуавтономные органоиды клетки, обладающие собственным геномом. Пластиды покрыты 2–4 белково-липидными оболочками. Внутри имеются строма, пузырьки, кольцевая молекула ДНК, рибосомы.
Получены веские доказательства происхождения пластид в результате симбиоза древней прокариотической клетки и цианобактерий.
Эндоплазматическая сеть или ретикулум (ЭР)
Система мешочков и каналов между ними диаметром 25–30 нм, образует единое целое с плазматической мембраной и оболочкой ядра. Различают гладкий и шероховатый ЭР. Сеть предназначена для транспортировки веществ в клетке к месту использования.
Комплекс Гольджи
Органоид в виде системы мешочков и пузырьков размером 20–30 нм. Комплекс Гольджи находится вблизи ядра, необходим для образования лизосом. Последние нужны для удаления продуктов распада.
Лизосомы
Мешочки сферической формы, покрытые одной мембраной. Внутреннее содержимое богато ферментами.
Вакуоли
Мешочки и пузырьки, покрытые одной мембраной. Крупные вакуоли характерны для растительных клеток, мелкие — для животных. Содержат пигменты, питательные вещества, минеральные растворы. Различают пищеварительные, фагоцитарные и сократительные вакуоли.
Клеточный центр
Органоид, не имеющий собственной мембраны. Клеточный центр образован центросферой и двумя центриолями, содержит белки, липиды, углеводы, нуклеиновые кислоты.
Рибосомы
Мелкие немембранные органоиды клетки. Состоят из большой и малой субъединиц. Рибосомы расположены в цитоплазме свободно или связаны с мембранами. Богаты РНК и белками.
Включения клетки могут быть жидкими и твердыми. Первые — это гранулы различных веществ. Капли жира — жидкие включения.
Если ядра нет, то организмы относятся к прокариотам (доядерным). В эволюционном плане они более древние и примитивные. Генетический материал таких клеток не отделен мембраной от цитоплазмы. Внутри расположены рибосомы. Почти не встречаются мембранные органоиды. Многие одноклеточные организмы относятся к прокариотам. Клетки, в которых хотя бы на одной стадии развития появляется ядро, — эукариотические.
Функции клеточных структур
Плазматическая мембрана ограничивает и препятствует вытеканию цитоплазмы, защищает находящиеся в ней органоиды. Оболочка клетки обладает избирательной проницаемостью. Происходит пассивный и активный транспорт веществ через микроотверстия.
Другие функции плазматической мембраны:
Пассивный транспорт через мембрану протекает без затрат энергии, в направлении от большей концентрации к меньшей. Так происходит осмотический перенос молекул воды. Активный транспорт протекает с затратами энергии, в направлении от меньшей концентрации к большей. Пример — диффузия питательных, минеральных веществ.
Клетка активно поглощает различные соединения. Если это твердые частицы, то процесс называется фагоцитоз. Поглощение капелек жидкости — пиноцитоз. Наружу через мембрану выводятся остатки веществ.
Цитоплазма объединяет органоиды и включения. Благодаря коллоидным и прочим свойствам внутреннего содержимого клетки осуществляется взаимодействие всех частей. Цитоскелет выполняет опорную функцию, способствует сохранению определенного положения органоидов в цитоплазме.
В ядре хранится наследственная информация, зашифрованная в структуре ДНК. Хроматин нужен для создания специфических для данного организма нуклеиновых кислот. Благодаря транскрипции РНК и поступлению данных в рибосомы происходит синтез белка. Ферменты нуклеоплазмы регулируют обмен аминокислот, белков, нуклеотидов. Ядро осуществляет контроль процессов жизнедеятельности клетки. Функции ядрышка — синтез одного из видов РНК.
Внутренняя мембрана митохондрии — место прикрепления ферментов для синтеза АТФ. Макроэргическое вещество необходимо для процессов жизнедеятельности. В митохондрии протекает аэробный этап дыхания, который сопровождается образованием АТФ.
Зеленая окраска хлоропластов обусловлена основным пигментом фотосинтеза. Осуществление этого процесса — основная задача пластид зеленого цвета. Световые реакции протекают на мембранах, содержащих молекулы хлорофилла. Темновые реакции фотосинтеза происходят в строме, богатой ферментами.
Хромопласты придают окраску цветкам, содержатся в плодах. Этот тип пластид обеспечивает привлечение опылителей и распространителей семян растений. Лейкопласты служат для запасания питательных веществ — крахмала, белка, масла.
В рибосомах шероховатого эндоплазматического ретикулума происходит синтез белков. Гладкий ЭР содержит ферменты для синтеза, преобразований липидов и углеводов. Этот же тип трубочек и мешочков служит для образования лизосом, транспорта и обезвреживания токсических веществ. Растворение крупных молекул, переваривание старых клеточных структур происходит в лизосомах. Они принимают активное участие в фагоцитозе, гибели клеток.
Пищеварительные вакуоли участвуют в фагоцитозе, выделяют ненужные вещества в окружающую среду. Сократительные — обеспечивают поддержание водно-солевого баланса.
Рибосомы участвуют в сборке белковых молекул. Клеточный центр нужен для правильного распределения генетического материала при митотическом делении. Этот органоид служит для образования выростов клеток — жгутиков и ресничек (органоидов движения).
Включениями называют непостоянные компоненты клеток. Одни вещества в их составе являются запасом питания, другие — отходами жизнедеятельности.
Взаимосвязь строения и функций частей и органоидов клетки – основа ее целостности
Органоиды — относительно обособленные компоненты, обладающие специфическими функциями и особенностями строения. Основная часть генетического материала эукариотической клетки сосредоточена в ядре. Центральный органоид в одиночку не в состоянии обеспечить реализацию наследственной информации. Принимают участие цитоплазма и рибосомы. Они расположены в основном на шероховатой эндоплазматической сети.
Синтезированные белки транспортируются в комплекс Гольджи, после преобразований — в те части клетки, где они нужны. Благодаря лизосомам клетки не превращаются в «свалки отходов».
Митохондрии вырабатывают энергию, необходимую для осуществления процессов в клетке. Хлоропласты у растений служат для получения исходного материала, участвующего в энергетических превращениях.
Условно все органоиды клетки делят на три группы по характеру выполняемых функций. Митохондрии и хлоропласты осуществляют превращения энергии. Рибосомы, их скопления осуществляют синтез белков. Другие образования принимают участие в синтезе и обмене веществ.
Несмотря на существующие различия, все части клетки тесно взаимодействуют. Органоиды взаимосвязаны не только в пространстве, но и химически. Связывает все части клетки цитоплазма, в ней же происходят многочисленные реакции. В результате формируется единая структурная и функциональная система.
Строение растительной клетки
Рис.1 Растительная клетка
Отличие клеточного строения растений от животных — наличие стенки, состоящей из целлюлозы, пектина, лигнина.
Под прочной оболочкой находится плазматическая мембрана, имеющей типичное строение. Есть поры, через которые осуществляется связь между соседними клетками посредством плазмодесм, цитоплазматических мостиков. Нет центриолей, характерных для животных.
Важное отличие растительных организмов — наличие пластид. Крупные хлоропласты придают частям растений зеленый цвет. Фотосинтез в зеленых пластидах — процесс автотрофного питания. Растения создают органическое вещество из воды и углекислого газа при участии солнечного света.
Оранжевая и желтая окраска обусловлена присутствием других типов пластид, красная и синяя — возникает благодаря антоцианам. Лейкопласты и хромопласты специализируются на хранении веществ.
Крупная центральная вакуоль в растительной клетке заполнена клеточным соком. Органоиду принадлежит ведущая роль в поддержании тургора, хранении полезных веществ и разрушении старых белков, отживших свое органоидов.
Строение животной клетки
Это типичные эукариотические клетки. Под плазматической мембраной находятся цитоплазма и органоиды. Клеточной стенки нет. ДНК локализована в ядре и митохондриях.
Рис.2 Животная клетка
Вакуоли в клетках животных выполняют пищеварительные и сократительные функции. Центриоли состоят из пучков микротрубочек, принимающих участие в процессе деления. В качестве органелл движения могут присутствовать реснички и жгутики. Они важны для перемещения одноклеточных животных. В организме многоклеточных создают движение жидкостей или молекул твердых веществ вдоль неподвижных клеток.
Клетка — мельчайшая единица строения многоклеточных организмов. У одноклеточных это и есть тело. Любая клетка представляет собой сложную биохимическую систему. Части или органоиды действуют как единое целое, обеспечивают жизнедеятельность, а при размножении — передачу наследственных признаков.
Биология. 10 класс
Мембранные органоиды клетки
Мембранные органоиды клетки. Ядро. Прокариоты и эукариоты
Необходимо запомнить
Органоиды, или Органеллы, – постоянные специфические структуры цитоплазмы, выполняющие определённые функции, необходимые для поддержания жизнедеятельности клетки.
Различают органоиды общего значения и специальные органоиды. Органоиды общего значения имеются во всех клетках и выполняют общие функции. Это – митохондрии, рибосомы, эндоплазматическая сеть, комплекс Гольджи, лизосомы, пероксисомы, цитоскелет и клеточный центр.
Органоиды специального значения имеются только в клетках какого-то определённого типа и обеспечивают выполнение функций, присущих только этим клеткам.
Эндоплазматическая сеть (ЭПС) открыта К. Портером в 1945 году. ЭПС или ЭПР (эндоплазматический ретикулум) – сеть канальцев и цистерн, сложенных мембранами. Различают гранулярную (шероховатую, зернистую) и гладкую (агранулярную) ЭПС.
Гранулярная ЭПС содержит рибосомы на наружной стороне мембраны. Гладкая ЭПС не содержит рибосомы. В скелетных мышцах ЭПС носит название саркоплазматический ретикулум. ЭПС пронизывает всю клетку. Полость ЭПС сообщается с ядром и цитоплазматической мембраной.
На рибосомах гранулярной ЭПС синтезируются секреторные белки, предназначенные для выведения из клетки, а также белки лизосом и внеклеточного матрикса.
Наряду с секреторными белками на гранулярной ЭПС синтезируется большая часть полуинтегральных и интегральных белков. В гладеой ЭПС происходит также синтез мембраны липидов и осуществляется «сборка» компонентов мембраны.
Кроме того, ЭПС, как считают, участвует в образовании пероксисом. Таким образом, гранулярная ЭПС служит «фабрикой» мембран для плазмалеммы, аппарата Гольджи, лизосом и других мембранных структур клетки.
Агранулярная (гладкая) эндоплазматическая сеть представляет собой замкнутую сеть трубочек, канальцев, цистерн. На цитоплазматической поверхности гладкой ЭПС синтезируются жирные кислоты, большая часть липидов клетки, в том числе почти все липиды, необходимые для построения клеточных мембран. Поэтому гладкую ЭПС нередко называют «фабрикой липидов». Например, в клетках печени с мембранами гладкого эндоплазматического ретикулума связан фермент, обеспечивающий образование глюкозы из глюкозо-6-фосфата. Эта реакция имеет большое значение в поддержании уровня глюкозы в организме человека.
В организме человека эндоплазматическая сеть особенно хорошо развита в клетках, синтезирующих гормоны, в клетках печени.
Комплекс Гольджи (КГ, или аппарат Гольджи, – пластинчатый комплекс, расположен вблизи ядра, между ЭПС и плазмалеммой. Его структурно-функциональная единица – диктиосома – представляет собой стопку из 5–20 плоских одномембранных мешочков (цистерн), имеющих диаметр около 1 мкм, внутренние полости которых не сообщаются друг с другом. Количество таких мешочков в стопке обычно не превышает 5–20, а расстояние между ними составляет 20–25 нм.
Белки, синтезированные на шероховатой эндоплазматической сети, попадают в аппарат Гольджи. Здесь осуществляется химическая модификация транспортируемых белков и их упаковка в специальные пузырьки.
Таким образом, основными функциями комплекса Гольджи являются химическая модификация, накопление, сортировка, упаковка в секреторные пузырьки и транспорт по назначению белков и липидов, синтезированных в ЭПС.
В комплексе Гольджи образуются лизосомы и синтезируются некоторые полисахариды.
Лизосомальная система и пероксисомы
Лизосомы – мембранные органеллы клеток животных и грибов, содержащие гидролитические ферменты и осуществляющие гидролитическое расщепление макромолекул (внутриклеточное пищеварение). Лизосомы представляют собой окружённые одинарной мембраной пузырьки, размеры которых в клетках животных колеблются от 0,2 до 0,5 мкм. В лизосомах содержится не менее 60 гидролитических ферментов, которые расщепляют все основные классы органических макромолекул.
Все ферменты лизосом активны лишь в кислой среде при значениях pH, близких 5,0. Количество лизосом в разных клетках варьирует от единичных до нескольких сотен, как например, в фагоцитах.
Завершающие этапы процесса внутриклеточного переваривания веществ, поглощённых клеткой, осуществляются в лизосомах.
Лизосомы с помощью своих ферментов могут разрушать не только отдельные органеллы или клетки, но и целые органы (автолиз). Например, в процессе онтогенеза лягушки с помощью ферментов лизосом лизируются хвост и жабры головастика, а образующиеся при этом продукты распада используются для формирования органов взрослого животного.
Митохондрии – крупные мембранные органоиды клетки, которые можно различить в световой микроскоп. Митохондрии присутствуют во всех эукариотических клетках человека, кроме эритроцитов.
Они имеют обычно округлую, удлиненную или нитевидную формы. Количество митохондрий в клетке колеблется в широких пределах (от 1 до 100 тыс. и более) и зависит от потребностей клетки в энергии. Митохондрии имеют наружную и внутреннюю мембраны.
На внутренней поверхности увеличенного фрагмента кристы видны небольшие выпуклости, обращенные в митохондриальный матрикс, которые содержат ферментные системы, обеспечивающие процессы дыхания. Наружная мембрана гладкая и по своему составу сходна с плазмалеммой.
В матриксе содержатся кольцевая молекула митохондриальной ДНК (мтДНК), различные включения, а также молекулы мРНК, транспортной РНК (тРНК) и рибосомы, сходные по строению с рибосомами бактерий. Здесь же располагаются ферменты, превращающие пируват и жирные кислоты в ацетил-КоА, и ферменты реакций цикла Кребса.
Митохондриальная ДНК имеет не линейную, как в хромосомах ядра, а кольцевую форму. Главная функция митохондрий – синтез АТФ, основного источника энергии для обеспечения жизнедеятельности клетки. Поэтому митохондрии называют «энергетическими станциями» клетки.
Пластиды – это органоиды клеток растений и некоторых фотосинтезирующих простейших. У большинства животных и грибов пластид нет.
Пластиды делятся на несколько типов: хлоропласты, хромопласты, лейкопласты. Наиболее важный и известный – хлоропласт, содержащий зелёный пигмент хлорофилл, который обеспечивает процесс фотосинтеза.
Все виды пластид связаны между собой общим происхождением или возможным взаимопревращением. Пластиды развиваются из пропластид – более мелких органоидов меристематических клеток.
Пластиды относятся к двумембранным органоидам, у них есть внешняя и внутренняя мембраны.
Во многих пластидах, особенно в хлоропластах, хорошо развита внутренняя мембранная система, формирующая такие структуры, как тилакоиды, граны (стопки тилакоидов), ламелы – удлинённые тилакоиды, соединяющие соседние граны. Внутреннее содержимое пластид обычно называют стромой. В ней, помимо прочего, находятся крахмальные зёрна.
Считается, что в процессе эволюции пластиды появились аналогично митохондриям – путём внедрения в клетку-хозяина другой прокариотической клетки, способной в данном случае к фотосинтезу. Поэтому пластиды считают полуавтономными органеллами. Они могут делиться независимо от делений клетки, у них есть собственная ДНК, РНК, рибосомы прокариотического типа, т. е. собственный белоксинтезирующий аппарат. Часть генов, управляющая их функционированием, находится как раз в ядре.
Ядро – важнейшая часть эукариотической клетки. Оно состоит из ядерной оболочки, кариоплазмы, ядрышек, хроматина.
2. Кариоплазма представляет собой коллоидный раствор, содержащий белки, углеводы, соли, другие органические и неорганические вещества. В кариоплазме содержатся все нуклеиновые кислоты: практически весь запас ДНК, информационные, транспортные и рибосомальные РНК.
3. Ядрышко – сферическое образование, содержит различные белки, нуклеопротеиды, липопротеиды, фосфопротеиды. Функция ядрышек – синтез зародышей рибосом.
4. Хроматин (хромосомы). В стационарном состоянии (время между делениями) ДНК равномерно распределены в кариоплазме в виде хроматина. При делении хроматин преобразуется в хромосомы.
Функции ядра: в ядре сосредоточена информация о наследственных признаках организма (информационная функция); хромосомы передают признаки организма от родителей к потомкам (функция наследования); ядро согласует и регулирует процессы в клетке (функция регуляции).