в какой части клетки находятся антоцианы
Антоцианы
Антоцианы – группа водорастворимых пигментов, которые окрашивают фрукты и овощи в яркие тона (фиолетовый, красный, жёлтый, синий).
Природные красители сконцентрированы в генеративных органах растений (пыльце, цветках), вегетативных частях (листьях, корнях, побегах), плодах, семенах. Их количество в продукте зависит от энергии фотосинтеза и особенностей климата.
Для поддержания здоровья взрослому человеку нужно принимать 15 миллиграмм данных веществ в сутки, а в период болезни – 30 миллиграмм.
Потребность в природных пигментах возрастает при:
Однако, из–за высокой биологической активности пигментов, увеличивать дневную дозировку вещества целесообразно только под наблюдением врача.
Антоцианы не накапливаются в организме, быстро выводятся, поэтому нужно следить за количеством и регулярностью их приема. По биологическим эффектам они похожи на витамин Р: оказывают противоотечное, бактерицидное действия, укрепляют стенки капилляров, восстанавливают отток внутриглазной жидкости, улучшают строение соединительной ткани (волокон и клеток).
Общие сведения
Первые опыты по исследованию антоцианов провёл английский биохимик Роберт Бойль в 1664 году. Учёный обнаружил, что под воздействием щелочи синий окрас лепестков василька изменился на зелёный, а под влиянием кислоты цветок покраснел. Дальнейшее изучение свойств пигментов (способности изменять оттенок), привело к «прорыву» в области биохимии, поскольку помогло учёным XVII века идентифицировать химические реагенты.
Неоценимый вклад в изучение антоциановых соединений внес профессор Рихард Вильштеттер, который впервые выделил из растений пигменты в чистом виде. На сегодняшний день биохимики экстрагировали более 70 природных красителей, основными предшественниками которых являются следующие агликоны: цианидин, пеларгонидин, дельфинидин, мальвидин, пеонидин, петунидин. Интересно, что гликозиды первого типа окрашивают растения в пурпурно – красный цвет, второго – в красно – оранжевый тон, третьего – в голубой или синий оттенок.
Количественный состав антоцианов в продукте зависит от условий произрастания и сортовых особенностей растения (значения рН в вакуолях, где накапливается пигмент). При этом, один и тот же пигмент, из–за изменения кислотности клеточной жидкости, может приобретать различный оттенок. При скоплении красителей в щелочной среде растение «получает» жёлто-зелёный окрас, в нейтральной – фиолетовый, в кислой – красный.
В каких продуктах присутствуют антоцианы?
Природные красители содержатся в растениях и защищают их от вредоносного излучения, ускоряют процесс фотосинтеза, преобразуя свет в энергию.
Лидерами по количеству таких гликозидов являются ягоды тёмно – фиолетовой и бордовой окраски: черника, ежевика, голубика, черноплодная рябина, ирга, бузина, клюква, чёрная смородина, вишня, малина, виноград (тёмных сортов). Антоцианами богаты баклажаны, свёкла, помидоры, краснокочанная капуста, красный перец, салат листовой (краснолистный). Кроме того, гликозиды в малых количествах содержатся в «светлых» растениях: картофеле, горохе, грушах, бананах, яблоках.
Интересно, что накоплению природного «красителя» в плодах способствуют низкие температуры и интенсивное освещение. Поэтому, неслучайно максимальные концентрации антоцианов содержат северные и альпийские луговые растения.
Полезные свойства
Антоцианы обладают широким спектром биологической активности.
В организме человека соединения проявляют следующие свойства:
Учитывая, что антоцианы в организме не синтезируются, для профилактики функциональных расстройств важно потреблять не менее 15 миллиграмм соединения в день. Для этого пищевой рацион обогащают «цветными» продуктами питания.
Функции, выполняемые антоцианами:
Лечебное применение
Показания к использованию природных пигментов в повышенном количестве (до 500 миллиграмм в день):
Интересно, что олигомерные проантоцианиды (процианидины) по антиоксидантным свойствам в 50 раз «сильнее» витамина Е, и в 20 раз превосходят аскорбиновую кислоту.
Препараты с антоцианами
Нехватка гликозидов в организме человека вызывает нервное истощение, депрессию, упадок сил, снижение иммунитета. Для поддержания здоровья и улучшения самочувствия диетологи рекомендуют включить в ежедневный рацион антоцианы. Соединения защищают внутренние органы от неблагоприятного влияния окружающей среды, снижают психологическое напряжение, положительно влияют на организм в целом. Не бойтесь получить передозировку от гликозидов, в медицинской практике признаков избытка соединения не зафиксировано.
Многообразие полезных свойств антоцианов обуславливает их применение в фармакологических препаратах и биологически активных комплексах (БАДах).
Рассмотрим некоторые из них:
Препараты, содержащие антоцианы противопоказаны людям с гиперчувствительностью к данным компонентам. Кроме того, с осторожностью их применяют в период беременности и кормления грудью, только под контролем лечащего врача.
Вывод
Антоцианы – группа природных пигментов, раскрашивающих фрукты и овощи в яркие цвета.
Соединения благотворно влияют на человеческий организм, поскольку проявляют антиоксидантные, бактерицидные, противовоспалительные, адаптогенные и спазмолитические свойства. Природные источники пигментов: черника, бузина, чёрная смородина, ежевика, голубика черноплодная рябина.
Природные красители используют в составе комплексной терапии сахарного диабета, сезонных инфекций (гриппа, ОРВИ), онкологии, дегенеративных расстройств, офтальмологических патологий (дистрофии сетчатки, близорукости, диабетической ретинопатии, катаракты, глаукомы). Кроме того, антоцианы применяются в пищевой индустрии (при изготовлении кондитерских изделий, йогуртов, напитков), косметологии (как коллаген), электротехнической отрасли (для краски солнечных батарей).
Больше свежей и актуальной информации о здоровье на нашем канале в Telegram. Подписывайтесь: https://t.me/foodandhealthru
Антоцианы
На картинке — листья клена остролистого (Acer platanoides), уже почувствовавшего наступление осени. Красный цвет листьев обуславливается разрушением зеленого пигмента хлорофилла и накоплением красных растительных пигментов — антоцианов.
Сентябрь уже перевалил за середину, и в ближайшее время нас ждет воспетая поэтами и увековеченная художниками «унылая пора, очей очарованье». И хотя мы понимаем, что, если листья на деревьях желтеют, краснеют и начинают опадать, зима уже близко, наш глаз, как и глаз Александра Сергеевича, радуют леса, одетые в багрец и золото. Некоторые, возможно даже задумываются, какие же процессы отвечают за «пышное природы увяданье».
Всё буйство красок осени обусловлено двумя группами растительных пигментов. За золотую окраску лесов отвечает первая группа окрашенных соединений — желтые и оранжевые каротиноиды, которые также можно найти и в моркови, и в грибах-лисичках. Источником же багреца являются антоцианы, способные принимать оттенки от красного до пурпурного (см. Антоцианы: секреты цвета). Антоцианы растворимы в воде и, кроме осенней багряной листвы, встречаются в цветах и плодах растений. Высоким содержанием антоцианов могут похвастаться земляника, черника, черная и красная смородина и краснокочанная капуста. Цвет антоцианов зависит от уровня кислотности среды и содержания некоторых металлов (см., например, задачу Гортензия переменчивая). Высокая чувствительность этих пигментов к факторам окружающей среды не позволяет использовать антоцианы как красящие вещества. Все плюсы антоцианов, которые могли бы позволить применять их как натуральные пищевые красители, — растворимость в воде и высокая интенсивность окраски в малых дозах, в которых они безопасны для человека, — перечеркивается тем, что они меняют цвет при изменении рН среды и/или наличия ионов некоторых металлов.
Скелет всех молекул антоцианов представлен двумя бензольными циклами и третьим циклом, содержащим в качестве гетероатома кислород. С трициклическим скелетом антоциана связан углеводный остаток (как правило, остаток глюкозы). Вещества, обладающие тем же самым трициклическим скелетом, но не содержащие в своем составе углеводный фрагмент, называются антоцианидинами (см. Anthocyanidin) и тоже представляют собой растительные пигменты. Растительные пигменты окрашены благодаря тому, что в них чередуются одинарные и двойные связи углерод-углерод, что приводит к появлению системы сопряжения, которую относят к хромофорам — структурным элементами веществ, обуславливающим их цветность.
Схематичное строение молекулы антоциана. А и В — бензольные циклы, С — цикл, содержащий в качестве гетероатома кислород
Химическое строение растительных пигментов и их взаимосвязь друг с другом установил немецкий химик Рихард Мартин Вильштеттер, которому в 1915 году за «. исследования красящих веществ растительного мира. » была присуждена Нобелевская премия по химии. Из-за Первой мировой войны получить премию и прочитать Нобелевскую лекцию Вильштеттер смог только в 1920 году.
Вильштеттер выяснил, что все пигменты-антоцианы являются производными трех близких по строению антоцианидинов — пеларгонидина, цианидина и дельфинидина. Цианидин, связываясь с двумя остатками глюкозы, образует пигмент, который обуславливает цвет лепестков роз, васильков и маков. Окрашенное соединение, образующееся при взаимодействии цианидина с одной молекулой глюкозы, содержится в астрах и хризантемах. В герани и красном винограде содержатся производные пеларгонидина и дельфинидина соответственно.
Пеларгонидин, цианидин, дельфинидин
В своей Нобелевской лекции Вильштеттер упомянул и такой факт: он и его студенты планировали продолжить исследование растительных пигментов осенью 1914 года, но началась Великая война, и стало не до работы с растительными пигментами. Поэтому, как только астры, посаженные весной для экспериментов, зацвели, Вильштеттер и те из его сотрудников, кого не призвали в армию, отнесли охапки этих цветов раненым солдатам в госпиталя.
Антоцианы нельзя использовать в качестве пищевых красителей, но все же эти соединения интересны нам не только как вещества, дающие окраску цветам и осенней листве. Антоцианы являются сильными антиоксидантами (см. задачу Красная угроза). Как показывают медицинские исследования, эти растительные пигменты, особенно в сочетании с другими пигментами — флавоноидами — позволяют предотвратить такие неинфекционными заболеваниями, как диабет, сердечно-сосудистые заболевания и некоторые виды рака, или облегчить их протекание.
Разноцветные «чудеса» науки
Это буйство красок вызвано антоцианами — пигментами растений
Автор
Редакторы
Статья на конкурс «био/мол/текст»: Несколько столетий назад началась одна из самых интересных и красивых историй — история изучения цвета у растений. В ходе изучения растительных пигментов были сделаны важнейшие открытия современной биологии (законы Менделя, мобильные генетически элементы, явление РНК-интерференции). На сегодняшний день вопросы о биохимической природе пигментов растений, их биосинтезе и его регуляции достаточно подробно исследованы. А полученные данные активно применяются учёными для манипуляций с цветом у растений.
Конкурс «био/мол/текст»-2012
Эта работа заняла первое место в номинации «Приз зрительских симпатий» конкурса «био/мол/текст»-2012.
Спонсор конкурса — дальновидная компания Thermo Fisher Scientific.
В последнее время как в российских, так и в зарубежных СМИ появляются сообщения о «чудо-фруктах», «чудо-овощах» и «чудо-цветах» с необычной окраской, которая либо не встречается у данных видов растений, либо встречается, но очень редко. Так, например, немалый фурор среди российской общественности произвела новость о создании уральскими селекционерами сорта картофеля «Чудесник» с фиолетовой окраской мякоти (рис. 1, слева).
И хотя на российском рынке фиолетовая морковь и перец являются чем-то необычным и очень редким, за рубежом овощами с фиолетовой окраской уже никого не удивить (рис. 1, в центре). Среди «чудес» науки, которые поражают воображение многих людей, можно упомянуть голубые розы (рис. 1, справа), впервые созданные в 2004 году австралийской компанией «Флориген» (Florigene) при поддержке японского холдинга «Сантори».
Рисунок 1. Растения экзотических цветов. Слева: Клубень картофеля сорта «Чудесник», выведенного сотрудниками Уральского научно-исследовательского института сельского хозяйства. В центре: Морковь с пурпурной окраской корнеплода на рынке в Турции. Справа: Первая в мире «синяя» роза, созданная австралийскими учеными из компании «Флориген» (Florigene) при поддержке японского холдинга «Сантори».
Приведенные примеры растений с необычной для нас окраской различных органов объединяет то, что все они были искусственно созданы человеком с помощью манипуляций с окраской, которая обусловлена растительными пигментами — антоцианами. Однако без всестороннего исследования природы антоциановой окраски и генетической составляющей биосинтеза антоциановых соединений манипуляция с окраской у различных видов растений была бы невозможна.
Что такое антоцианы? Несколько слов о химии
На сегодняшний день достаточно хорошо исследованы такие растительные пигменты, как флавоноиды, каротиноиды и беталаины; они имеют различную химическую структуру и придают растениям различную окраску. И хотя каротиноиды и беталаины тоже очень интересные пигменты, в данной статье мне бы хотелось остановиться на пигментах флавоноидной природы, поскольку именно они обусловливают огромное разнообразие оттенков цветов у растений. К данной группе относятся повсеместно распространенные среди цветковых растений антоцианы, которые не только окрашивают растения в розовые, красные, оранжевые, алые, пурпурные, голубые, темно-синие цвета, но и являются очень полезными для человека биологически активными молекулами [1]. И хотя другие флавоноидные соединения также могут участвовать в образовании цвета у растений (например, ауроны обеспечивают желтую окраску, а бесцветные флавонолы стабилизируют антоциановые пигменты), основное внимание в статье будет уделено именно антоцианам.
Итак, антоцианы — это растительные пигменты, которые могут присутствовать у растений в генеративных (цветках, пыльце) и вегетативных (стеблях, листьях, корнях) органах, а также в плодах и семенах [2]. При этом данные соединения могут либо постоянно присутствовать в клетке, либо появляться на некоторое время на определенной стадии развития растений или при действии стресса. Последнее обстоятельство навело ученых на мысль, что данные соединения нужны не только для окраски цветов и плодов для привлечения насекомых-опылителей и распространителей семян, но и для борьбы с различными типами стрессов [3].
Рисунок 2. Базовая структура антоцианидинов и антоцианов. Представлена нумерация атомов углерода.
Первые опыты по изучению антоциановых соединений и их химической природы были проведены известным английским химиком Робертом Бойлем еще в 1664 г., когда он впервые обнаружил, что под действием кислот синий цвет лепестков василька изменялся на красный, под действием же щелочи лепестки зеленели [4]. В 1913–1915 гг. немецкие биохимики Р. Вильштеттер и А. Штоль опубликовали серию работ, проливших свет на вопрос о сущности природной окраски антоцианов. Из цветков различных растений они выделили индивидуальные пигменты и описали их химическое строение. Оказалось, что антоцианы в клетках находятся преимущественно в виде гликозидов. Их агликоны (базовые молекулы-предшественники), получившие название антоцианидинов, связаны преимущественно с сахарами глюкозой, галактозой, рамнозой [4].
Все антоцианы (которых известно более 500, и число это растет [5]) имеют общий С15-углеродный скелет, образованный двумя бензольными кольцами А и В, соединенными С3-фрагментом. При этом от других флавоноидных соединений антоцианы отличаются наличием положительного заряда и двойной связи в С-кольце (рис. 2). Несмотря на огромное разнообразие антоциановых соединений, все они представляют собой производные шести основных антоцианидинов: пеларгонидина, цианидина, пеонидина, дельфинидина, петунидина и мальвидина, которые отличаются боковыми радикалами R1 и R2 (рис. 2, табл. 1). Поскольку при биосинтезе (о нем речь пойдет чуть ниже) пеонидин образуется из цианидина, а петунидин и мальвидин — из дельфинидина, можно выделить три основных антоцианидина: пеларгонидин, цианидин и дельфинидин, которые, таким образом, являются предшественниками всех антоциановых соединений.
Антоцианидин | R1 | R2 | Цвет |
---|---|---|---|
цианидин (Cy) | ОН | Н | пурпурный |
пеонидин(Pn) | ОСН3 | Н | пурпурно-синий |
пеларгонидин (Pg) | Н | Н | красно-оранжевый |
мальвидин (Mv) | ОСН3 | ОСН3 | пурпурный |
дельфинидин (Dp) | ОН | ОН | синий |
петунидин (Pt) | ОСН3 | ОН | пурпурный |
Имея общее строение С15-углеродного скелета, индивидуальные соединения в классе антоцианов выделяют на основе наличия, положения и характера модификаций основного С15-углеродного скелета. В качестве примера строения индивидуального соединения антоциана с модификациями А-, В- и С-колец на рисунке 3 приведена структура так называемого «небесно-синего антоциана», который придает растениям ипомеи голубую окраску.
Рисунок 3. Структура «небесно-синего антоциана» (C08642). Соединение выделено из Ipomoea tricolor. На рисунке отмечены: синим — пеонидин (метилированное производное цианидина); зеленым — остатки кофейной кислоты; черным — остатки глюкозы.
Какую именно окраску будет иметь растение, зависит от многих факторов:
Рисунок 4. Поперечный срез корней горчицы, росших в среде с молибденом (+Мо) и без него (−Мо). Данный вид растения накапливает антоцианы в эпидермисе корня, которые с ионами молибдена образуют комплексы, меняя при этом цвет с пурпурного на синий.
Существует такая закономерность: голубой (синий) цвет имеет дельфинидин и его производные, красно-оранжевую окраску имеют производные пеларгонидина, а пурпурно-красную — цианидина. При этом голубой цвет обусловливают гидроксильные группы (табл. 1, рис. 3), метилирование которых (присоединение группы —CH3) приводит к «покраснению» [7]. Однако следует учитывать, что одно и то же антоциановое соединение в зависимости от сдвига в величине кислотности клеточного сока может приобретать различные оттенки. Так, раствор антоцианов в кислой среде имеет красный, в нейтральной — пурпурный, а в щелочной — желто-зелёный цвет (рис. 5).
Рисунок 5. Изменение окраски раствора антоцианов, выделенных из краснокочанной капусты, при изменении рН раствора от 1 до 10 (слева направо).
Итак, чем обусловлены оттенки антоциановой пигментации, почему они разные у разных видов растений, или даже у одних и тех же растений в разных условиях произрастания, становится ясно. Вооружившись уже изложенными данными, каждый читатель может сам поэкспериментировать со своими домашними растениями, понаблюдав за изменением их окраски. Однако, если в ходе этих экспериментов вы добьетесь желаемого оттенка цвета и ваше растение выживет, то уже точно оно не передаст данный оттенок своим потомкам. Чтобы эффект был стойким, необходимо разобраться еще в одном аспекте формирования цвета, а именно в генетической составляющей биосинтеза антоцианов в клетках растений.
Молекулярно-генетические основы биосинтеза антоцианов
Данный вопрос исследован на сегодняшний день достаточно полно, чему немало поспособствовали мутанты различных видов растений с нарушенным биосинтезом антоцианов. Было установлено, что на биосинтез антоцианов (а, следовательно, и на формируемый оттенок у растения) влияют мутации в трех типах генов [8]:
Благодаря методам биохимии и молекулярной генетики все стадии биосинтеза антоцианов и осуществляющие их ферменты на сегодняшний день известны и достаточно полно исследованы (рис. 6), в том числе из многих видов растений выделены структурные и регуляторные гены биосинтеза антоцианов [8]. Знание особенностей биосинтеза антоциановых пигментов у конкретного вида растения позволяет проводить манипуляции с его окраской на генетическом уровне, создавая растения с необычной пигментацией, которые будут передавать новые признаки окраски из поколения в поколение.
Рисунок 6. Биосинтез антоцианидинов: цианидина, пеларгонидина, дельфинидина. Антоцианидины далее подвергаются реакциям модификации (гликозилированию, ацилированию, метилированию), которые осуществляются гликозилтрансферазами (GT), ацилтрансферазами (AT) и метилтрансферазами (MT). Типичная окраска, которую имеют антоцианы, образующиеся из приведенных антоцианидинов, представлена на рисунке, но она зависит от многих факторов: pH, ко-пигментации с бесцветными флавоноидами, комплексами с ионами тяжелых металлов. Заметьте, что метилированию В-кольца (синие прерывистые стрелки) подвергаются антоцианы, а не антоцианидины. Аббревиатуры: халконсинтаза (CHS); халконфлаванонизомераза (CHI); дигидрофлавонол 4-редуктаза (DFR); флаванон-3-гидроксилаза (F3H); флавоноид-3′-гидроксилаза (F3′H); флавоноид-3′,5′-гидроксилаза (F3′5′H); антоцианидинсинтаза (ANS); флавон синтаза (FNS); флавонол синтаза (FLS).
[7], рисунок с модификациями
Подходы и «горячие точки» для модификации цвета у растений
В связи с вышеизложенным «горячими точками» для модификации цвета у растений в основном являются структурные и регуляторные гены. Гены, кодирующие транспортеры, также используются для изменения цвета, но не так часто, как две другие группы генов.
Подходы, с помощью которых можно модифицировать окраску растений, делятся на два типа. К первому типу относятся подходы на основе методов селекции, позволяющие ввести гены от доноров — растений близкородственного вида, имеющих нужный признак. По славам авторов «Чудесника», именно методом селекции был создан этот сорт (рис. 1, слева). Ещё один яркий пример — это пшеница с пурпурным и голубым цветом зерна, обусловленным антоцианами (рис. 7).
Рисунок 7. Пурпурное (слева), голубое (справа) и неокрашенное (в центре) зерно пшеницы.
В дикой природе пшеница с пурпурным зерном впервые была обнаружена в Эфиопии (где, по всей видимости, и появился данный признак), а потом гены, которые обусловливают этот признак, были введены методами селекции в возделываемые сорта мягкой пшеницы [10]. Пшеница с голубым зерном в природе не встречается, но зато голубое зерно имеет родственник пшеницы — пырей. Скрещивая пырей и пшеницу и ведя отбор по данному признаку, селекционеры получили пшеницу с голубым зерном, как у пырея [10]. В вышеназванных примерах в геном пшеницы были введены регуляторные гены. То есть, пшеница и так имеет функциональный аппарат биосинтеза антоцианов (все ферменты необходимые для биосинтеза в порядке), а, вводя методами селекции регуляторные гены от родственных видов, у пшеницы запускают машину биосинтеза антоцианов именно в зерне.
Схожий пример, но уже с использованием второй группы методов манипуляции с окраской — методов генетической инженерии: были получены томаты с повышенным содержанием антоцианов [11]. В норме спелые томаты содержат каротиноиды, в том числе жирорастворимый антиоксидант ликопин; из флавоноидов в них есть небольшое количество нарингенина халкона (2′,4′,6′,4-тетрагидроксихалкон, см. рис. 6) и рутина (гликозированный 5,7,3′,4′-тетрагидрооксифлавонол). Вводя в растения томата генетическую конструкцию, содержащую регуляторные гены биосинтеза антоцианов львиного зева Ros1 и Del под управлением промотора E8, активного в плодах томата, авторам удалось получить томаты с высоким содержанием антоцианов (рис. 8). Таким образом, запустить «машину» биосинтеза антоцианов в определенной ткани можно посредством манипуляции с регуляторными генами, которую проводят либо методами селекции, либо методами генетической инженерии.
Рисунок 8. Томаты с повышенным содержанием антоцианов в плодах, полученные методом генетической инженерии
Пример использование генетической инженерии, для манипуляций с окраской за счет структурных генов биосинтеза антоцианов — пионерская работа, проведенная на петунии [12]. В этой работе впервые в истории были применены методы генетической инженерии с целью изменения окраски растений. В норме растения петунии вовсе не содержат пигментов, производных от пеларгонидина (рис. 6). Это связано с тем, что для фермента DFR (дигидрофлавонол 4-редуктазы) петунии самым предпочтительным субстратом является дигидромирицетин, менее предпочтительным — дигидрокверцетин, а дигидрокемпферол вовсе не используется в качестве субстрата (рис. 6).
Совершенно другая картина субстратной специфичности фермента DFR наблюдается у кукурузы, DFR которой предпочтительнее использует дигидрокемпферол в качестве субстрата [13]. Вооружившись этими знаниями, Мейер с коллегами использовали мутантную линию петунии, у которой отсутствовали функциональные ферменты F3′Н и F3′5′H. Глядя на рисунок 6, нетрудно заметить, что данная мутантная линия накапливала дигидрокемпферол, который не является субстратом для DFR петунии, но зато является субстратом для DFR кукурузы. Введя в мутантную линию генетическую конструкцию, содержащую ген Dfr кукурузы, Мейер получил петунию с несвойственной для неё кирпично-красной окраской цветков (рис. 9).
Рисунок 9. Петунии. а — Мутантная линия петунии с бледно-розовой окраской венчика из-за присутствия следовых количеств антоцианов — производных цианидина и дельфинидина. б — Генетически модифицированная петуния, накапливающая антоцианы — производные пеларгонидина.
Однако не всегда у исследователей под руками есть такие удобные мутанты с отсутствием какой-либо ферментативной активности, поэтому наиболее часто при модификации окраски растений приходится её «выключать» и «включать» другую, требуемую активность. Именно такой подход был реализован при создании первой в мире розы с синей окраской бутонов (рис. 1, справа), схема создания которой приведена на рисунке 10.
Рисунок 10. Схема создания синей розы.
У роз, созданных усилиями селекционеров, окраска лепестков варьирует от ярко-красных и нежно-розовых до жёлтых и белоснежных. Интенсивное изучение биосинтеза антоцианов у роз позволило установить, что они не имеют F3′5′H-активности, а фермент DFR розы использует в качестве субстратов дигидрокверцетин и дигидрокемпферол, но не дигидромирицетин (рис. 6). Поэтому при создании синей розы учёные выбрали следующую стратегию.
При этом, чтобы F3′5′H анютиных глазок и F3′H розы не конкурировали друг с другом за субстрат (оба фермента используют в качестве субстрата дигидрокемпферол, рис. 6), для создания синей розы был выбран доступный генотип с отсутствием F3′H активности.
Еще одни яркий пример использования накопленных данных о биосинтезе флавоноидных пигментов с целью создания растений с несвойственной для них окраской — это получение методами генетической инженерии растений торении с жёлтой окраской цветков (рис. 11).
Рисунок 11. Схема биосинтеза антоцианов и ауронов. Снизу приведены цветки обычной, накаливающие антоцианы (слева), и трансгенной торении, накапливающие ауроны (справа). THC — тетрагидроксихалкон, PHC — пентагидроксихалкон.
[14], рисунок с модификациями
Известно, что жёлтую окраску имеют два типа пигментов: ауроны (класс пигментов флавоноидной природы, которые обусловливают яркую жёлтую окраску цветков львиного зева и георгин), и каротиноиды (пигменты цветков томатов и тюльпанов). В ходе анализа биосинтеза ауронов у львиного зева было установлено, что данные пигменты синтезируются из халконов посредством двух ферментов — 4′CGT (4′-халконгликозилтрансферазы) и AS (ауреузидинсинтазы) (рис. 11). Введение генетических конструкций с генами 4′Cgt и As львиного зева в растения торении, в норме имеющие синюю окраску цветков, совместно с ингибированием биосинтеза антоциановых пигментов привело к накоплению ауровнов и, следовательно, к яркой жёлтой окраске цветков (рис. 11). (Читатель самостоятельно может предположить, на уровне работы каких ферментов может быть заблокирован биосинтез антоцианов в этом случае.) Разработанная специалистами стратегия может быть использована для получения желтой окраски цветков не только у торении, но и у герани и фиалки [14].
Приведенные примеры — это лишь малая доля того, какие манипуляции ученые проводят с тем, что им очень хорошо известно — с биосинтезом антоцианов.
Заключение
Как видно, огромному успеху в манипуляции с окраской у растений способствует интенсивное исследование биохимической природы пигментов, а также особенностей их биосинтеза у различных видов растений — как на уровне ферментов, так и на молекулярно-генетическом уровне. Накопленный к настоящему времени багаж знаний об антоциановых соединениях открыл неисчерпаемые возможности для создания декоративных растений с необычной окраской, а также культурных видов растений с повышенным содержанием антоциановых пигментов. И хотя достижения селекции — необычно окрашенные овощи и фрукты — уже сейчас доступны покупателям в ряде стран, декоративные растения, созданные методами генетической инженерии, в большинстве своем на рынке являются ещё достаточно редкими. Дело в том, что из-за ряда нерешенных трудностей — таких, например, как стабильность наследования модифицированной окраски, — они ещё не коммерциализированы (за исключением некоторых сортов петунии, синей розы, лиловой гвоздики). Однако работа в этом направлении продолжается. Будем надеяться, что в скором времени появятся радующие глаз «чудеса» науки, которые будут доступны всем любителям прекрасного.