в каком классе проходят углы и градусы
Класс: 5
Презентация к уроку
I. Организационный момент
II. Вступительное слово учителя
Мы познакомимся с измерительным прибором (как он называется, вы узнаете немного позже), научимся с его помощью измерять, а затем и строить углы. Вы покажите свои знания, докажите насколько внимательны.
Будем учиться не только математике, но и умению общаться, уважению друг к другу.
Для того чтобы достичь наших целей, вы должны быть волевыми, настойчивыми, целеустремленными, поэтому эпиграфом нашего урока будут слова:
III. Устная работа
Какие из углов, изображенных на рисунке, являются:
а) острыми;
б) тупыми;
в) есть ли среди этих углов прямые?
О каком угле мы с вами еще не вспомнили? [О развернутом]
Какой угол называется развернутым? Острым? Прямым? Тупым?
Мы знаем, что два угла можно сравнивать друг с другом.
Какой способ для этого мы использовали? [Наложение]
Но углы, также как и отрезки, можно сравнивать не только наложением, но и с помощью измерения.
IV. Изучение нового материала
Для построения и измерения углов используют специальный прибор. Как он называется, вы узнаете, отгадав кроссворд.
1. Результат деления.
2. Лучи образующие угол.
3. Точка, из которой выходят лучи образующие угол.
4. Угол, который образуют два дополнительных друг другу луча.
5. Результат сложения.
6. Угол, который составляет половину развернутого угла.
7. Инструмент, который используют для построения прямого угла.
8. Угол, меньше прямого.
9. Угол, больше прямого, но меньше развернутого.
10. Результат умножения.
11. Результат вычитания.
Учитель демонстрирует учащимся транспортир или показывает на плакате:
– Для измерения углов применяют транспортир. Положите перед собой транспортиры. Вы видите, какие они разные, но у всех есть нечто общее, о чем мы сейчас будем говорить.
Слайд 5. Итак, шкала транспортира. Она расположена на полуокружности и пронумерована
от 0 до 180. Бывают шкалы двойные: нумерация идет слева направо и справа налево.
Слайд 6. Также есть круглые транспортиры, шкала идет по кругу от 0 до 360, но она также разделена на две полуокружности.
Центр этой полуокружности отмечен на транспортире точкой или черточкой. Найдите на своем транспортире центр и покажите его.
Штрихи шкалы транспортира делят полуокружность на 180 равных частей. Лучи, проведенные из центра полуокружности через эти штрихи, образуют 180 углов, каждый из которых равен доле развернутого угла. Такие углы называют градусами.
Слайд 7. Итак, градусом называют долю развернутого угла. Градусы обозначают знаком °. Каждое деление шкалы транспортира равно 1°.
Историческая справка
Слово «градус» – латинское, означает «шаг», «ступень». Измерение углов в градусах появилось более 3 тыс. лет назад в Вавилоне. В расчетах там использовались шестидесятеричная система счисления, шестидесятеричные дроби.
С этим связано, что вавилонские математики и астрономы, а вслед за ними греческие и индийские, полный оборот (окружность) делили на 360 частей – градусов (шесть раз по шестьдесят), каждый градус – на 60 минут, а минуту – на 60 секунд:
Объяснение учителя (с демонстрацией на доске), как с помощью транспортира можно измерить угол.
– Как измеряют углы с помощью транспортира?
1) Нужно вершину угла совместить с центром транспортира.
2) Одна сторона угла должна проходить через нулевую отметку (0° по шкале).
3) Вторая сторона угла должна пересекать шкалу. Нужно посмотреть, через какую
отметку проходит вторая сторона угла. Это и есть величина этого угла.
Если у транспортира есть две шкалы, то надо смотреть на отметку той шкалы, через ноль которой проходит одна из сторон угла.
V. Практическая работа
Каждому ученику выдается набор углов: острый, прямой, тупой и развернутый.
а) развернутого угла;
б) прямого угла;
в) острого угла;
г) тупого угла.
Вывод:
– развернутый угол равен 180°; – прямой угол равен 90° (половина развернутого угла); – острый угол меньше 90°; – тупой угол больше 90°, но меньше 180°. |
Задание: Начертите в тетради угол любой величины. Предложите соседу по парте его измерить.
VII. Работа по карточкам
У всех учеников карточки с одинаковым заданием.
Задание: Измерьте углы и запишите результаты измерений в тетрадях.
Задание: Выполняется устно с использованием модели часов.
Какой угол образуют часовая и минутная стрелки часов:
а) в 3 ч; в) в 10 ч; д) в 2 ч 30 мин;
б) в 5 ч; г) в 6 ч; е) в 5 ч 30 мин?
Задача №1652
Луч ОС лежит внутри угла АОВ, причем АОС = 37°,
ВОС = 19°?.
Математика. 5 класс
Конспект урока
Углы. Измерение углов
Перечень рассматриваемых вопросов:
— понятие «угол», «величина угла»;
— измерение величины угла.
Угол – геометрическая фигура, образованная двумя лучами (сторонами угла), выходящими из одной точки, которая называется вершиной угла.
Градус – единица измерения углов, составляющая часть развёрнутого угла.
Градусная мера угла – число, которое показывает, сколько единиц измерения (градусов) содержится между сторонами этого угла.
Никольский С. М. Математика. 5 класс. Учебник для общеобразовательных учреждений. // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017. – 272 с.
1. Чулков П. В. Математика: тематические тесты. 5 класс. // П. В. Чулков, Е. Ф. Шершнёв, О.Ф. Зарапина. – М.: Просвещение, 2009. – 142 с.
2. Шарыгин И. Ф. Задачи на смекалку: 5-6 классы. // И. Ф. Шарыгин, А. В. Шевкин. – М.: Просвещение, 2014. – 95 с.
Теоретический материал для самостоятельного изучения
«Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Всё вокруг – геометрия», – сказал в своё время французский архитектор Ле Корбюзье, и трудно с ним не согласиться. Геометрические фигуры постоянно встречаются в творениях природы и человека.
Сегодня мы рассмотрим ещё одну геометрическую фигуру – угол, разберём его виды и опишем процесс построения и измерения углов.
Для начала определим, что называют углом.
Углом называют геометрическую фигуру, образованную двумя лучами, выходящими из одной точки.
Построим угол. Для этого отметим на плоскости точку О и проведём два луча – ОК и ОМ. Получим геометрическую фигуру, образованную точкой О и двумя лучами, исходящими из этой точки. Такую геометрическую фигуру и называют углом.
Лучи ОК и ОМ называют сторонами угла, точку О – общее начало этих лучей – называют вершиной угла.
Обозначается угол чаще всего тремя буквами. Например, ∠КОМ или ∠МОК. В середине пишется буква, которой обозначена вершина угла. Также угол можно обозначать и одной буквой, поставленной у вершины угла. Например, ∠О.
Начертим два луча, исходящих из точки О и принадлежащих одной прямой.
Лучи ОС и OК вместе с точкой О дополняют друг друга до прямой – это дополнительные лучи. Угол называют развёрнутым, если его стороны являются дополнительными лучами.
Угол СОК – развёрнутый.
Построим развёрнутый угол АОВ и полуокружность с центром в точке О. Полуокружность разделим на 180 равных частей. Если построим углы с вершиной в точке О, стороны которых проходят через точки деления полуокружности, то таких углов будет 180. Один такой угол будет составлять часть развёрнутого угла.
Меру угла, составляющего часть развёрнутого угла, принимают за единицу измерения углов и называют градусом. Обозначают: 1º.
Градусной мерой угла называют число, которое показывает, сколько единиц измерения (градусов) содержится между сторонами этого угла.
Например, градусная мера угла КOВ равна 25 градусам, так как в нём единица измерения градус содержится двадцать пять раз. Записывают: ∠КОВ = 25º.
Стоит отметить, что для более точного измерения угла используют доли градуса:
– минуты, которые обозначают одной чёрточкой сверху над цифрой справа,
– секунды, которые обозначаются двумя чёрточками над цифрой справа.
В одном градусе содержится 60 минут, а в одной минуте – 60 секунд.
Например, если угол А равен 10 градусам 5 минутам, записывают: ∠А = 10º5′.
Градусная мера развёрнутого угла равна 180º.
Для измерения углов в градусах пользуются прибором, который называется транспортиром. На транспортире имеется шкала – полуокружность, разделённая на 180 равных частей. На линейке транспортира чёрточкой отмечен центр полуокружности транспортира.
Чтобы найти градусную меру угла, например, угла АВС, нужно совместить центр транспортира с вершиной угла, в данном случае точкой В; расположить линейку транспортира так, чтобы одна из сторон угла прошла через начало отсчёта шкалы транспортира – ноль градусов (в данном случае сторона АВ), и найти на шкале транспортира деление, через которое проходит другая сторона угла – в данном случае сторона ВС.
Это деление шкалы покажет градусную меру угла. В нашем случае – это 120º.
Транспортир применяется также для построения угла, мера которого известна. Построим, например, угол KNM, равный 60º. Для этого:
— совместим центр транспортира с точкой N;
— расположим линейку транспортира так, чтобы луч NM прошёл через начало отсчёта шкалы транспортира;
— найдём на шкале транспортира деление, соответствующее шестидесяти градусам, и отметим напротив него точку К;
— проведём луч NK. Мы построили угол KNM, равный 60º.
Ответить на вопрос, равны ли углы, и, если не равны, то какой из них больше или меньше, можно, сравнивая их градусные меры. Углы с равными градусными мерами равны. Из двух углов больше тот, который имеет большую градусную меру; а меньше тот, который имеет меньшую градусную меру.
Углы можно сравнить также наложением. Если при этом они совпадают, то равны.
Помимо развёрнутого, углы можно разделить на следующие виды: прямой, острый и тупой.
Угол называют прямым, если его градусная мера равна 90º.
Острым – если его градусная мера меньше 90º.
Тупым – если его градусная мера больше 90º и меньше 180º.
Рассмотрим ещё два вида углов, которые встречаются в геометрических задачах: это вертикальные углы, то есть пара углов с общей вершиной, которые образованы при пересечении двух прямых так, что стороны одного угла являются продолжением сторон другого. Например, угол один и два.
И смежные углы – это два угла, у которых одна сторона общая, а две другие являются дополнительными полупрямыми.
Например, угол САВ и угол САD.
Вместе смежные углы составляют развёрнутый угол. Следовательно, сумма величин смежных углов составляет 180º.
Итак, сегодня мы познакомились с разными видами углов и научились строить их с помощью транспортира.
Для определения величины углов используется прибор, который называют транспортир. Но существуют и более высокоточные приборы.
Так, гониометр использовался для определения положения судна в море или океане.
Теодолит – прибор для измерения горизонтальных и вертикальных углов при геодезических работах, в строительстве и т. п.
Секстант применялся для измерения высоты Солнца над горизонтом с целью определения географических координат той местности, в которой производится измерение, и на судах.
Посох Якова, служащий для измерения углов, – один из первых инструментов для астрономических наблюдений.
Математика. 5 класс
Конспект урока
Углы. Измерение углов
Перечень рассматриваемых вопросов:
— понятие «угол», «величина угла»;
— измерение величины угла.
Угол – геометрическая фигура, образованная двумя лучами (сторонами угла), выходящими из одной точки, которая называется вершиной угла.
Градус – единица измерения углов, составляющая часть развёрнутого угла.
Градусная мера угла – число, которое показывает, сколько единиц измерения (градусов) содержится между сторонами этого угла.
Никольский С. М. Математика. 5 класс. Учебник для общеобразовательных учреждений. // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017. – 272 с.
1. Чулков П. В. Математика: тематические тесты. 5 класс. // П. В. Чулков, Е. Ф. Шершнёв, О.Ф. Зарапина. – М.: Просвещение, 2009. – 142 с.
2. Шарыгин И. Ф. Задачи на смекалку: 5-6 классы. // И. Ф. Шарыгин, А. В. Шевкин. – М.: Просвещение, 2014. – 95 с.
Теоретический материал для самостоятельного изучения
«Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Всё вокруг – геометрия», – сказал в своё время французский архитектор Ле Корбюзье, и трудно с ним не согласиться. Геометрические фигуры постоянно встречаются в творениях природы и человека.
Сегодня мы рассмотрим ещё одну геометрическую фигуру – угол, разберём его виды и опишем процесс построения и измерения углов.
Для начала определим, что называют углом.
Углом называют геометрическую фигуру, образованную двумя лучами, выходящими из одной точки.
Построим угол. Для этого отметим на плоскости точку О и проведём два луча – ОК и ОМ. Получим геометрическую фигуру, образованную точкой О и двумя лучами, исходящими из этой точки. Такую геометрическую фигуру и называют углом.
Лучи ОК и ОМ называют сторонами угла, точку О – общее начало этих лучей – называют вершиной угла.
Обозначается угол чаще всего тремя буквами. Например, ∠КОМ или ∠МОК. В середине пишется буква, которой обозначена вершина угла. Также угол можно обозначать и одной буквой, поставленной у вершины угла. Например, ∠О.
Начертим два луча, исходящих из точки О и принадлежащих одной прямой.
Лучи ОС и OК вместе с точкой О дополняют друг друга до прямой – это дополнительные лучи. Угол называют развёрнутым, если его стороны являются дополнительными лучами.
Угол СОК – развёрнутый.
Построим развёрнутый угол АОВ и полуокружность с центром в точке О. Полуокружность разделим на 180 равных частей. Если построим углы с вершиной в точке О, стороны которых проходят через точки деления полуокружности, то таких углов будет 180. Один такой угол будет составлять часть развёрнутого угла.
Меру угла, составляющего часть развёрнутого угла, принимают за единицу измерения углов и называют градусом. Обозначают: 1º.
Градусной мерой угла называют число, которое показывает, сколько единиц измерения (градусов) содержится между сторонами этого угла.
Например, градусная мера угла КOВ равна 25 градусам, так как в нём единица измерения градус содержится двадцать пять раз. Записывают: ∠КОВ = 25º.
Стоит отметить, что для более точного измерения угла используют доли градуса:
– минуты, которые обозначают одной чёрточкой сверху над цифрой справа,
– секунды, которые обозначаются двумя чёрточками над цифрой справа.
В одном градусе содержится 60 минут, а в одной минуте – 60 секунд.
Например, если угол А равен 10 градусам 5 минутам, записывают: ∠А = 10º5′.
Градусная мера развёрнутого угла равна 180º.
Для измерения углов в градусах пользуются прибором, который называется транспортиром. На транспортире имеется шкала – полуокружность, разделённая на 180 равных частей. На линейке транспортира чёрточкой отмечен центр полуокружности транспортира.
Чтобы найти градусную меру угла, например, угла АВС, нужно совместить центр транспортира с вершиной угла, в данном случае точкой В; расположить линейку транспортира так, чтобы одна из сторон угла прошла через начало отсчёта шкалы транспортира – ноль градусов (в данном случае сторона АВ), и найти на шкале транспортира деление, через которое проходит другая сторона угла – в данном случае сторона ВС.
Это деление шкалы покажет градусную меру угла. В нашем случае – это 120º.
Транспортир применяется также для построения угла, мера которого известна. Построим, например, угол KNM, равный 60º. Для этого:
— совместим центр транспортира с точкой N;
— расположим линейку транспортира так, чтобы луч NM прошёл через начало отсчёта шкалы транспортира;
— найдём на шкале транспортира деление, соответствующее шестидесяти градусам, и отметим напротив него точку К;
— проведём луч NK. Мы построили угол KNM, равный 60º.
Ответить на вопрос, равны ли углы, и, если не равны, то какой из них больше или меньше, можно, сравнивая их градусные меры. Углы с равными градусными мерами равны. Из двух углов больше тот, который имеет большую градусную меру; а меньше тот, который имеет меньшую градусную меру.
Углы можно сравнить также наложением. Если при этом они совпадают, то равны.
Помимо развёрнутого, углы можно разделить на следующие виды: прямой, острый и тупой.
Угол называют прямым, если его градусная мера равна 90º.
Острым – если его градусная мера меньше 90º.
Тупым – если его градусная мера больше 90º и меньше 180º.
Рассмотрим ещё два вида углов, которые встречаются в геометрических задачах: это вертикальные углы, то есть пара углов с общей вершиной, которые образованы при пересечении двух прямых так, что стороны одного угла являются продолжением сторон другого. Например, угол один и два.
И смежные углы – это два угла, у которых одна сторона общая, а две другие являются дополнительными полупрямыми.
Например, угол САВ и угол САD.
Вместе смежные углы составляют развёрнутый угол. Следовательно, сумма величин смежных углов составляет 180º.
Итак, сегодня мы познакомились с разными видами углов и научились строить их с помощью транспортира.
Для определения величины углов используется прибор, который называют транспортир. Но существуют и более высокоточные приборы.
Так, гониометр использовался для определения положения судна в море или океане.
Теодолит – прибор для измерения горизонтальных и вертикальных углов при геодезических работах, в строительстве и т. п.
Секстант применялся для измерения высоты Солнца над горизонтом с целью определения географических координат той местности, в которой производится измерение, и на судах.
Посох Якова, служащий для измерения углов, – один из первых инструментов для астрономических наблюдений.
Математика. 5 класс
Углы. Измерение углов
Виды углов
Необходимо запомнить
Угол называют прямым, если его градусная мера равна 90º.
Угол называют острым, если его градусная мера меньше 90º.
Угол называют тупым, если его градусная мера больше 90º и меньше 180º.
Острый
Прямой
Тупой
Углы с равными градусными мерами равны.
Больший угол имеет большую градусную меру.
Развёрнутый угол – угол, у которого стороны являются дополнительными лучами.
Вертикальные углы – это пара углов с общей вершиной, которые образованы при пересечении двух прямых так, что стороны одного угла являются продолжением сторон другого.
Смежные углы – это два угла, у которых одна сторона общая, а две другие являются дополнительными полупрямыми.
Измерение углов
Вы уже знаете, что для определения углов существует прибор, который называют транспортир. Но он не единственное такое устройство. Есть и более высокоточные приборы.
Гониометр использовался для определения положения судна в море или океане.
Теодолит – прибор для измерения горизонтальных и вертикальных углов при геодезических работах, в строительстве и т. п.
Секстант применялся для измерения высоты Солнца над горизонтом с целью определения географических координат той местности, в которой производится измерение, и на судах.
Посох Якова, служащий для измерения углов, – один из первых инструментов для астрономических наблюдений.