что такое в электротехнике контур
Колебательный контур
Идеальный конденсатор и катушка. Как происходят колебания, куда движутся электроны, когда нарастает и исчезает магнитное поле катушки.
Безусловно, реальный колебательный контур всегда включает в себя не только емкость С и индуктивность L, но еще и соединительные провода, непременно обладающие активным сопротивлением R, но давайте оставим сопротивление за рамками данной статьи, о нем вы сможете узнать в разделе о добротности колебательной системы. Итак, рассматриваем идеальный колебательный контур, и начнем с конденсатора.
Что это значит? Это значит, что мы переместим, при помощи источника сторонних сил, некоторую порцию отрицательного заряда Q0 (состоящего из электронов), с верхней обкладки конденсатора — на нижнюю его обкладку. В итоге, на нижней обкладке конденсатора возникнет избыток отрицательного заряда, а на верхней — недостаток именно этого количества отрицательного заряда, а значит — избыток положительного. Ведь сначала то конденсатор был не заряжен, а значит заряда одинакового знака на обеих его обкладках было точно поровну.
Итак, конденсатор зарядился, верхняя обкладка зарядилась положительно (так как там недостает электронов) относительно нижней, а нижняя — отрицательно относительно верхней. В целом, для других объектов, конденсатор электрически нейтрален, однако внутри его диэлектрика существует электрическое поле, посредством которого противоположные заряды на противоположных обкладках взаимодействуют между собой, а именно — стремятся друг к другу притянуться, но диэлектрик, в силу своей природы, не дает этому произойти. В этот момент энергия конденсатора максимальна и равна ECm.
Теперь возьмем идеальную катушку индуктивности. Путь она изготовлена из такого проводника, который вовсе не обладает электрическим сопротивлением, то есть имеет идеальную способность пропускать электрический заряд, не препятствуя ему. Соединим катушку параллельно с только что заряженным конденсатором.
Электроны с нижней обкладки рванулись через провод катушки — к верхней обкладке конденсатора (можно сказать, что одновременно с этим положительный заряд устремился к нижней обкладке), но не могут мгновенно туда проскочить.
Почему? Потому что катушка обладает индуктивностью, а движущиеся через нее электроны — это уже ток, а раз ток — значит вокруг него должно быть магнитное поле. И вот, чем больше электронов входит в катушку — тем большим током они становятся, и тем большее магнитное поле вокруг катушки возникает.
Когда все электроны с нижней обкладки конденсатора окажутся внутри катушки — ток в ней будет максимальным Im, магнитное поле вокруг нее будет наибольшим, какое только способно создать это количество движущегося заряда будучи в ее проводе. В этот момент конденсатор полностью разряжен, энергия электрического поля в диэлектрике между его обкладками равно нулю EC0, но вся эта энергия сейчас заключена в магнитном поле катушки ELm.
А дальше магнитное поле катушки начинает уменьшаться, ведь его ничему поддержать, так как других электронов в катушку не втекает и не вытекает, тока нет, и исчезающее вокруг катушки магнитное поле порождает в ее проводе вихревое электрическое поле, которое толкает электроны дальше — к верхней обкладке конденсатора, куда они так стремились. И в тот момент, когда все электроны оказались на верхней обкладке конденсатора, магнитное поле катушки стало равно нулю EL0. А конденсатор теперь заряжен противоположно по отношению к тому, как был заряжен в самом начале.
Контур электрический
Смотреть что такое «Контур электрический» в других словарях:
КОНТУР ЭЛЕКТРИЧЕСКИЙ — (контур электрической цепи) любой замкнутый путь, проходящий по нескольким ветвям электрической цепи. Иногда термин контур электрический используют как синоним термина колебательный контур … Большой Энциклопедический словарь
контур электрический — (контур электрической цепи), любой замкнутый путь, проходящий по нескольким ветвям электрической цепи. Иногда термин «контур электрический» используют как синоним термина «колебательный контур». * * * КОНТУР ЭЛЕКТРИЧЕСКИЙ КОНТУР ЭЛЕКТРИЧЕСКИЙ… … Энциклопедический словарь
КОНТУР ЭЛЕКТРИЧЕСКИЙ — (контур электрич. цепи), любой замкнутый путь, проходящий по неск. ветвям электрич. цепи. Иногда термин К. э. используют как синоним термина колебательный контур … Естествознание. Энциклопедический словарь
КОНТУР — (фр. contour, от contourner обертывать, очерчивать). Очертание, профиль, очерк. В рисовании: линия, которая определяет внешнюю форму предмета. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. КОНТУР набросок,… … Словарь иностранных слов русского языка
КОНТУР — (1) замкнутая цепь проводников, по которой течёт электрический ток; (2) очертание какого либо предмета, линия, очерчивающая систему точек на плоскости млн. форму конфигурации в пространстве … Большая политехническая энциклопедия
ЭЛЕКТРИЧЕСКИЙ ФИЛЬТР — электрическая цепь, состоящая из конденсаторов и катушек индуктивности (или активных сопротивлений), соединённых определённым образом с целью выделения только полезных сигналов и подавления колебаний др. полосы частот («частота среза»), которые… … Большая политехническая энциклопедия
Электрический конденсатор — У этого термина существуют и другие значения, см. Конденсатор (значения). См. также: варикап Основа конструкции конденсатора две токопроводящие обкладки, между которыми находится диэлектрик … Википедия
электрический контур — elektrinis kontūras statusas T sritis fizika atitikmenys: angl. electric circuit vok. elektrischer Kreis, m rus. электрический контур, m pranc. circuit électrique, m … Fizikos terminų žodynas
Электрический фильтр — Фильтр в электронике устройство для выделения желательных компонент спектра электрического сигнала и/или подавления нежелательных. Содержание 1 Типы фильтров 2 Принцип работы пассивных аналоговых фильтров … Википедия
Электрический фильтр (электрич. устройство) — Фильтр в электронике устройство для выделения желательных компонент спектра электрического сигнала и/или подавления нежелательных. Содержание 1 Типы фильтров 2 Принцип работы пассивных аналоговых фильтров … Википедия
Что такое электрическая схема, ветвь, узел, контур.
Электрическая схема представляет собой графическое изображение электрической цепи. Она показывает, как осуществляется соединение элементов в рассматриваемой электрической цепи.
Простым языком электрическая схема это упрощенное изображение электрической цепи.
Для отображение электрических компонентов (конденсаторов, резисторов, микросхем и т. д.) в электрических схемах используются их условно графические обозначения.
Для отображения электрических соединений (дорожек, проводов, соединения между радиоэлементами) применяют простую линию соединяющие два условно графических обозначения. Причём все ненужные изгибы дорожек удаляют.
В состав электрической схемы входят: ветвь и условно графические обозначение электрических элементов так же могут входить контур и узел.
Ветвь – участок цепи состоящий из одного или нескольких элементов вдоль которого ток один и тот же.
Ветви присоединённые к одной паре узлов называются параллельными.
Любой замкнутый путь, проходящий по нескольким ветвям называется контуром. На верхнем рисунке, контурами можно считать ABD; BCD; ABC.
Узел – место соединения трёх и более ветвей.
Точки К и Е не являются узлами.
Понятие электрической цепи и ее составные части
При обустройстве новой квартиры или дома, обновлении или ремонте жилья приходится сталкиваться с элементами, предназначенными для протекания электрического тока. Важно знать, что представляет собой электрическая цепь, из чего она состоит, зачем нужна схема, и какие расчеты необходимо выполнить.
Что такое электрические цепи
Электрической цепью называют совокупность устройств, необходимых для прохождения по ним электрического тока
Электрическая цепь – это комплекс различных элементов, соединенных между собой. Она предназначена для протекания электрического тока, где происходят переходные процессы. Движение электронов обеспечивается наличием разности потенциалов и может быть описано при помощи таких терминов, как напряжение и сила тока.
Внутренняя цепь обеспечивается подключением напряжения, как источника питания. Остальные элементы образуют внешнюю сеть. Для движения зарядов в источнике питания поля потребуется приложение сторонней силы. Это может быть обмотка генератора, трансформатора или гальванический источник.
Чтобы такая система правильно функционировала, ее контур должен быть замкнутый, иначе ток протекать не будет. Это обязательное условие для согласованной работы всех устройств. Не всякий контур может быть электрической цепью. Например, линии заземления или защиты не являются таковыми, поскольку в обычном режиме по ним не проходит ток. Назвать их электрическими можно по принципу действия. В аварийной ситуации по ним проходит ток, а контур замыкается, уходя в грунт.
В зависимости от источника питания напряжение в цепи может быть постоянным или переменным. Батарея элементов дает постоянное напряжение, а обмотки генераторов или трансформаторов – переменное.
Основные компоненты
Инвентор электрического тока
Все составные части в цепи участвуют в одном электромагнитном процессе. Условно их разделяют на три группы.
Основой электрической сети является схема. Это графический рисунок, который содержит условные изображения и обозначения элементов и их соединение. Они выполняются согласно ГОСТу 2.721-74 – 2.758-81
Схема простейшей линии включает в себя гальванический элемент. С помощью проводов к нему через выключатель подсоединена лампа накаливания. Для измерения силы тока и напряжения в нее включен вольтметр и амперметр.
Классификация цепей
Электроцепи классифицируют по типу сложности: простые (неразветвленные) и сложные (разветвленные). Есть разделение на цепи постоянного тока и переменного, а также синусоидального и несинусоидального. Исходя из характера элементов, они бывают линейные и нелинейные. Линии переменного тока могут быть однофазными и трехфазными.
Разветвленные и неразветвленные
Во всех элементах неразветвленной цепи течет один и тот же ток. Простейшая разветвленная линия включает в себя три ветви и два узла. В каждой ветви течет свой ток. Ветвь определяют как участок цепи, который образован последовательно соединенными элементами, заключенными между двух узлов. Узел – это точка, в которой сходятся три ветви.
Если на схеме при пересечении двух прямых поставлена точка, в этом месте есть электрическое соединение двух линий. Если узел не обозначен – цепь неразветвленная.
Линейные и нелинейные
Электрическая цепь, в которой потребители не зависят от значения напряжения и направления токов, а все компоненты линейные, называется линейной. К элементам такой цепи относятся зависимые и независимые источники токов и напряжений. В линейной сопротивление элемента не зависит от тока, например, электропечь.
В нелинейной, пассивные элементы зависят от значений направления токов и напряжения, имеют хотя бы один нелинейный элемент. Например, сопротивление лампы накаливания зависит от скачков напряжения и силы тока.
Обозначения элементов на схеме
Прежде чем приступить к монтажу оборудования необходимо изучить нормативные сопровождающие документы. Схема позволяет донести до пользователя полную характеристику изделия с помощью буквенных и графических обозначений, занесенных в единый реестр конструкторской документации.
К чертежу прилагаются дополнительные документы. Их перечень может быть указан в алфавитном порядке с цифровой сортировкой на самом чертеже, либо отдельным листом. Классифицируют десять видов схем, в электротехнике обычно используют три основные схемы.
Вертикальные засечки на линии проводки говорят о количестве проводников. Если их более трех, выполняют цифровое обозначение. Прерывистой линией обозначают управляющие цепи, сеть охранного, эвакуационного, аварийного освещения.
Выключатель на схеме выглядит как кружок с наклоненной вправо чертой. По виду и количеству черточек определяют параметры устройства.
Кроме основных чертежей есть схемы замещения.
Трехфазные электрические цепи
Трехфазная цепь в рабочем режиме
Среди электрических цепей распространены как однофазные, так и многофазные системы. Каждая часть многофазной цепи характеризуется одинаковым значением тока и называется фазой. Электротехника различает два понятия этого термина. Первое – непосредственная составляющая трехфазной системы. Второе – величина, изменяющаяся синусоидально.
Трехфазная цепь – это одна из многофазных систем переменного тока, где действуют синусоидальные ЭДС (электродвижущая сила) одинаковой частоты, которые сдвинуты во времени относительно друг друга на определенный фазовый угол. Она образована обмотками трехфазного генератора, тремя приемниками электроэнергии и соединительными проводами.
Такие цепи служат для обеспечения генерации электрической энергии, для ее передачи, распределения, и имеет следующие преимущества:
Трехфазная схема отличается значительной уравновешенностью системы. Способы соединения фаз получили структуру «звезда» и «треугольник». Обычно «звездой» соединяются фазы генерирующих электромашин, а фазы потребителей «звездой» и «треугольником».
Законы, действующие в электрических цепях
На схемах направление токов указывают стрелками. Для расчета нужно принять направления для напряжений, токов, ЭДС. При расчетах в электротехнике используют следующие основные законы:
В цепях постоянного тока направление действия электродвижущей силы указывают от отрицательного потенциала к положительному. За направление принимают движение положительных зарядов. При этом стрелка направлена от большего потенциала к меньшему. Напряжение всегда направлено в ту сторону, что и ток.
В синусоидальных цепях ЭДС, напряжение и ток обозначают, используя полупериод тока, при этом он не изменяет свое направление. Чтобы подчеркнуть разницу потенциалов, их обозначают знаками «+» и «–».
Как производится расчет электрических цепей
Путь вычисления делится на множество способов, которые используются на практике:
Основа расчета простой электрической цепи по закону Ома – это определение силы тока в отдельном участке при известном сопротивлении проводников и заданном напряжении.
По условию задачи известны сопротивления подсоединенных к цепи резисторов R1, R2, R3, R4, R5, R6 (без учета сопротивления амперметра). Необходимо вычислить силу токов J1, J2…J6.
На схеме есть три последовательных участка. Причем второй и третий имеют разветвления. Сопротивления этих участков обозначим, как R1, R’, R”. Тогда общее сопротивление равно сумме сопротивлений:
R’ – общее сопротивление параллельно подключенных резисторов R2, R3, R4.
R” – общее сопротивление резисторов R5 и R6.
Используя закон параллельного соединения, вычисляем сопротивления R’ и R”.
Определить силу тока в неразветвленной цепи, зная общее сопротивление при заданном напряжении, можно по следующей формуле:
Для вычисления силы тока в отдельно взятых ветвях, нужно определить напряжение на участках последовательных цепей по закону Ома:
U1 = IR1; U2 = IR’; U3 = IR”;
Зная напряжение конкретных участков, можно вычислить силу тока на отдельных ветвях:
I2 = U2/R2; I3 = U2/R3; I4 = U2/R4; I5 = U3/R5; I6 = U3/R6
Иногда необходимо узнать сопротивление участков по известным параметрам напряжения, силы токов, сопротивления других участков или сделать расчет напряжения по имеющимся данным сопротивления и силе тока.
Основная часть методик направлена на упрощение расчетов. Это достигается адаптацией систем уравнений, либо самой схемы. Расчет электрических цепей производится различными способами, в зависимости от класса их сложности.
Колебательный LC контур: принцип действия, расчет, определение
Сегодня нас интересует простейший колебательный контур, его принцип работы и применение.
За полезной информацией по другим темам переходите на наш телеграм-канал.
Колебания – процесс, повторяющийся во времени, характеризуется изменением параметров системы около точки равновесия.
По определению колебательный контур (или LC-контур) – это электрическая цепь, в которой происходят свободные электромагнитные колебания.
Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы.
Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы.
Принцип действия колебательного контура
Давайте рассмотрим пример, когда сначала мы заряжаем конденсатор и замыкаем цепь. После этого в цепи начинает течь синусоидальный электрический ток. Конденсатор разряжается через катушку. В катушке при протекании через нее тока возникает ЭДС самоиндукции, направленная в сторону, противоположную току конденсатора.
Разрядившись окончательно, конденсатор благодаря энергии ЭДС катушки, которая в этот момент будет максимальна, начнет заряжаться вновь, но только в обратной полярности.
Колебания, которые происходят в контуре – свободные затухающие колебания. То есть без дополнительной подачи энергии колебания в любом реальном колебательном контуре рано или поздно прекратятся, как и любые колебания в природе.
Это обусловлено тем, что контур состоит из реальных материалов (конденсатор, катушка, провода), обладающих таким свойством, как электрическое сопротивление, и потери энергии в реальном колебательном контуре неизбежны. В противном случае это нехитрое устройство могло бы стать вечным двигателем, существование которого, как известно, невозможно.
Еще одна важная характеристика LC-контура – добротность Q. Добротность определяет амплитуду резонанса и показывает, во сколько раз запасы энергии в контуре превышают потери энергии за один период колебаний. Чем выше добротность системы, тем медленнее будут затухать колебания.
Резонанс LC-контура
Электромагнитные колебания в LC-контуре происходят с определенной частотой, которая называется резонансной Подробнее про резонанс – в нашей отдельной статье. Частоту колебаний можно менять, варьируя такие параметры контура, как емкость конденсатора C, индуктивность катушки L, сопротивление резистора R (для LCR-контура).
Как рассчитать резонансную частоту колебательного контура? Очень просто! Приведем окончательную формулу:
Применение колебательного контура
Колебательный контур широко применяется на практике. На его основе строятся частотные фильтры, без него не обходится ни один радиоприемник или генератор сигналов определенной частоты.
Если вы не знаете, как подступиться к расчету LC-контура или на это совершенно нет времени, обратитесь в профессиональный студенческий сервис. Качественная и быстрая помощь в решении любых задач не заставит себя ждать!