Что такое цветная реакция
Цветные реакции на белки
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Белок и всё о нём в биологии и химии < belok-s.narod.ru >
Цветные реакции на белки
Цветные реакции применяются для установления белковой природы веществ, идентификации белков и определение их аминокислотного состава в различных биологических жидкостях. В клинической лабораторной практике эти методы используются для определения количества белка в плазме крови, аминокислот в моче и крови, для выявления наследственных и приобретенных патологий обмена у новорожденных.
Ход определения. В пробирку вносят 5 капель р-ра яичного белка, 3 капли NaOH, 1 каплю Cu ( OH )2, перемешивают. Содержимое пробирки приобретает сине-фиолетовое окрашивание.
Реактивы: 1) яичный белок, 1% р-р; 2) нингидрин, 0,5% водный р-р.
Ход определения. В пробирку вносят 5 капель р-ра яичного белка, затем 5 капель нингидрина, нагревают смесь до кипения. Появляется розово-фиолетовое окрашивание, переходящее с течением времени в сине-фиолетовое.
Реакция выявляет наличие в белке циклических аминокислот.
Реакция Адамкевича. Аминокислота триптофан в кислой среде, взаимодействуя с альдегидами кислот, образует продукты конденсации красно-фиолетового цвета.
Реактивы: 1) неразбавленные яичный белок; 2) конц. (ледяная) уксусная к-та; 3) конц. серная к-та.
Ход определения. К одной капле белка прибавляют 10 капель уксусной к-ты. Наклонив пробирку, осторожно по стенке добавляют по каплям 0,5 мл серной к-ты так, чтобы жидкости не смешивались. При стоянии пробирки на границе жидкостей появляется красно-фиолетовое кольцо.
Ход определения. К 5 каплям р-ра белка прибавляют 5 капель реактива Фоля и кипятят 2-3 мин. После отстаивания 1-2 мин появляется черный или бурый осадок.
Лабораторная работа №1
Лабораторная работа №1
ХИМИЯ ПРОСТЫХ БЕЛКОВ.
ЦВЕТНЫЕ РЕАКЦИИ НА БЕЛКИ И АМИНОКИСЛОТЫ
Белки представляют собой высокомолекулярные полимерные органические соединения, построенные из остатков различных α-аминокислот, соединенных ковалентной пептидной связью.
Присутствие белка в растворах можно обнаружить с помощью цветных реакций, обусловленных наличием в белке аминокислот, их специфических групп и пептидных связей. Существуют универсальные цветные реакции, т. е. на все белки (биуретовая и нингидриновая), и специфические, т. е. на определенные аминокислоты (ксантопротеиновая, Миллона, Фоля и др.).
На основании некоторых цветных реакций разработаны методы количественного определения белков и аминокислот, которые широко используются в биохимических лабораториях.
Цель: Ознакомиться с универсальными цветными реакциями на белки и специфическими реакциями на отдельные аминокислоты, содержащиеся в белковых растворах.
Работа 1. Биуретовая реакция на пептидную связь (Пиотровского)
Биуретовая реакция обусловлена наличием в белке пептидных связей, которые в щелочной среде образуют с сернокислой медью комплексы фиолетового цвета с красным или синим оттенком. Группа, образующая пептидную связь, в щелочной среде присутствует в своей таутомерной енольной форме:
При избытке щелочи происходит диссоциация ОН-группы, появляется отрицательный заряд, с помощью которого кислород взаимодействует с медью. Возникает солеобразная связь. Кроме того, медь образует дополнительные координационные связи с атомами азота, участвующими в пептидной связи, путем использования их электронных пар. Возникающий таким образом комплекс очень стабилен. Интенсивность окраски комплекса зависит от концентрации белка и количества медной соли в растворе.
Исследуемый материал: раствор яичного белка, раствор растительного белка, 1% раствор желатина.
Реактивы: 10% раствор NaOH, 1% раствор CuSO4.
Оборудование: пробирки, капельницы.
Ход работы. К 5 каплям водного раствора белка добавляют 5 капель 10% раствора NaOH и 2 капли 1% раствора CuSO4. Содержимое перемешивают. Оно приобретает сине-фиолетовый цвет. Нельзя добавлять избыток CuSO4, так как синий осадок маскирует характерное фиолетовое окрашивание биуретового комплекса.
Работа 2. Нингидриновая реакция на α-аминокислоты
Белки, полипептиды и свободные α-аминокислоты дают синее или фиолетовое окрашивание с нингидрином. При нагревании белка с водным раствором нингидрина аминокислоты окисляются и распадаются, образуя СО2, NH3 и соответствующий альдегид. Нингидрин, являясь сильным окислителем, вызывает окислительное дезаминирование α-аминокислоты, приводящее к образованию аммиака, двуокиси углерода, соответствующего альдегида и восстановленной формы нингидрина. Нингидрин восстанавливается и связывается со второй молекулой нингидрина посредством молекулы аммиака, образуя продукты конденсации, окрашенные в синий, фиолетовый, красный, а в случае пролина – в желтый цвет.
Цветные реакции белков
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
Описание слайда:
Цветные реакции белков
Качественные реакции на остатки аминокислот
Описание слайда:
Указатель реакций
Биуретовая
Уравнение реакции
Проведение опыта
Нингидриновая
Ксантопротеиновая
Уравнение реакции
Проведение опыта
Миллона
Гопкинса-Коле
Диазореакция Паули
Описание слайда:
Функция качественных реакций
Для аминокислот, постоянно встречающихся в составе белков, разработано множество цветных (в том числе именных) реакций. Многие из них высокоспецифичны, что позволяет определять ничтожные количества той или иной аминокислоты.
Надо помнить, что все качественные реакции – это реакции не собственно на белки, а на определенные аминокислоты, входящие в их состав.
Описание слайда:
Аминокислоты
Основной структурной единицей белков служат a-аминокислоты. В состав большинства природных белков входит около 20 a-аминокислот.
Качественные реакции служат как для определения принадлежности вещества к классу белков, так и для идентификации входящих в его состав аминокислот
Наиболее распространенные аминокислоты см. таблицу
Описание слайда:
Описание слайда:
Биуретовая реакция
Определяет наличие пептидной связи в растворе исследуемого соединения.
пептидная связь
Описание слайда:
Биуретовая реакция
Реакция обусловлена образованием биуретового комплекса в результате соединения меди с пептидной группировкой белка.
В пептидах и белках пептидная связь обычно находится в амидной форме (или кетоформе), но в щелочной среде она переходит в иминольную (енольную):
Описание слайда:
Биуретовая реакция
Биуретовая реакция протекает так:
+CuSO4
+NaOH
Вернуться
Описание слайда:
Описание слайда:
Аминокислота с нингидрином образует продукт конденсации типа азометина
Описание слайда:
Нингидриновая реакция
путем перегруппировки
и гидролиза
образуется 2-аминоиндандион
Описание слайда:
Нингидриновая реакция
2-аминоиндандион реагирует с нингидрином и дает краситель.
Вернуться
Описание слайда:
Описание слайда:
Описание слайда:
Ксантопротеиновая реакция
При действии концентрированной НNО3 на раствор белка образуется нитросоединение, окрашенное в желтый цвет.
Вернуться
Описание слайда:
Реакция Миллона
Это реакция на аминокислоту тирозин
Описание слайда:
Реакция Миллона
Реактив Миллона (раствор HgNO3 и Hg(NO2)2 в разбавленной HNO3, содержащей примесь HNO2) взаимодействует с тирозином с образованием ртутной соли нитропроизводного тирозина, окрашенной в розовато-красный цвет:
+HgNO3
+Hg(NO2)2
+HNO3
+HNO2
Вернуться
Описание слайда:
Рекомендации к проведению опыта
К 2 мл концентрированного раствора тирозина прибавляют
1 мл реактива Миллона
встряхивают
осторожно нагревают пробирки на пламени спиртовки.
Образуется красное окрашивание.
Описание слайда:
Реакция Гопкинса–Коле
Эта реакция определяет аминокислоту триптофан.
Описание слайда:
Реакция Гопкинса–Коле
Из глиоксиловой кислоты под действием концентрированной серной кислоты сначала получается формальдегид:
СО2
Описание слайда:
Реакция Гопкинса–Коле
формальдегид затем конденсируется с триптофаном:
Продукт конденсации окисляется до бис-2-триптофанилкарбинола, который в присутствии минеральных кислот образует соли, окрашенные в сине-фиолетовый цвет:
Описание слайда:
Рекомендации к проведению опыта
Охладить до 0 °С насыщенного раствора щавелевой кислоты
К 2 г порошка магния (слегка увлажненного) добавить щавелевую кислоту
Полученный осадок оксалата магния отфильтровать и декантировать небольшим количеством воды.
Фильтрат подкислить уксусной кислотой и довести до объема 200 мл (полученный раствор хранить в холодильнике!). Это и есть глиоксиловая кислота.
1 мл 0,005%-го раствора триптофана смешать с равным объемом глиоксиловой кислоты и к смеси прибавляют 10 капель раствора сульфата меди(II).
Небольшими порциями добавляют 2–3 мл концентрированной серной кислоты, охлаждая пробирку после приливания очередной порции кислоты током холодной воды (или в ванночке со льдом).
Полученную смесь оставляют на 10 мин при комнатной температуре, после чего ставят на 5 мин в кипящую водяную баню.
Наблюдается образование сине-фиолетового окрашивания
Описание слайда:
Реакция Паули (Диазореакция Паули)
Эта реакция аминокислоту гистидин.
Описание слайда:
Реакция Паули (Диазореакция Паули)
при взаимодействии кислого раствора сульфаниловой кислоты с нитритом натрия образуется диазобензолсульфоновая кислота:
Описание слайда:
Реакция Паули (Диазореакция Паули)
Диазобензолсульфоновая кислота, взаимодействуя с гистидином, дает соединение вишнево-красного цвета:
Вернуться
Описание слайда:
Рекомендации к проведению опыта
В пробирку наливают 1 мл 1%-го раствора сульфаниловой кислоты в 5%-м растворе соляной кислоты.
Прибавляют 2 мл 0,5%-го раствора нитрита натрия
Сильно встряхивают
Немедленно приливают 2 мл 0,01%-го раствора гистидина
После перемешивания содержимого пробирки сразу приливают 6 мл 10%-го раствора соды.
Появляется интенсивная вишнево-красная окраска.
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Цветные реакции
КАЧЕСТВЕННЫЕ РЕАКЦИИ НА АМИНОКИСЛОТЫ И БЕЛКИ
Цель работы:изучить качественные реакции, используемые для обнаружения белков и определения их аминокислотного состава
Цветные реакции
Для обнаружения белка применяют цветные реакции, которые делят на два типа: общие или универсальные и специфические. К универсальным реакциям относятся биуретовая (на пептидную связь) и нингидрировая (на α-аминокислоты). С их помощью можно обнаружить любой белок. К специфическим относятся реакции на отдельные аминокислоты, которые позволяют обнаружить специфические функциональные группы в составе радикалов аминокислот.Цветные реакции на белки лежат в основе методов установления белковой природы веществ, изучения аминокислотного состава и количественного содержания белков.
Работа 1. Биуретовая реакция (реакция Пиотровского).
В щелочной среде белки, а также продукты их гидролиза (полипептиды) дают фиолетовое или красно-фиолетовое окрашивание с сульфатом меди. Реакция обусловлена присутствием в балках пептидных связей, которые образуют окрашенные солеобразные комплексные соединения. Интенсивность окраски зависит от количества пептидных связей в молекуле и количества медной соли.
Свое название реакция получила от производного мочевины – биурета, который дает эту реакцию. Биурет образуется при нагревания мочевины с отщеплением от нее аммиака:
Две молекулы диенольной формы биурета взаимодействуют с образующимся в щелочной среде гидроксидом меди (II). Продуктом реакции является комплексное соединение (окрашенная медно-натриевая соль биурета), в котором координационные связи образованы за счет электронных пар атомов азота иминных групп:
Подобным образом построены окрашенные медно-натриевые соли пептидов и белков.
Биуретовую реакцию дает также аспарагин (амид аспарагиновой кислоты) и аминокислоты гистидин, серии, треонин.
Ход работы. В одну пробирку наливают 10-12 капель раствора яичного или растительного белка, в другую насыпают 20-30 мг мочевины и нагревают на спиртовке до исчезновения запаха аммиака и охлаждают. В обе пробирки добавляют по 10 капель 10-процентного раствора гидроксида натрия и по 1-2 капли 1-процентного раствора сульфата меди (II). В обеих пробирках появляется сине-фиолетовое или красно-фиолетовое окрашивание.
Работа 2. Нингидриновая реакция.
Белки, полипептиды и аминокислоты при нагревании с нингидрином дают синее и сине-фиолетовое окрашивание. Нингидриноваяреакция обусловлена наличием α-аминокислот и является одной из наиболее чувствительных для обнаружения α-аминогрупп.
Сущность реакции заключается в том, что α-аминокислоты и пептиды, реагируя с нингидрином, подвергаются окислительному дезаминированию и декарбоксилированию:
Восстановленный нингидрин взаимодействует с аммиаком и второй молекулой нингидрина, в результате чего образуется сложное окрашенное соединение мурексидного строения:
Ход работы. В две пробирки наливают: в одну 10 капель раствора яичного или растительного белка, в другую 10 капель 0,1-процентного раствора глицина. В каждую из них добавляют по 2-3 капли 0,1-процентного раствора нингидрина и нагревают. Через 1-2 мин появляется розовое, затем красное, а затем синее окрашивание.
Работа 3. Ксантопротеиновая реакция (реакция Мульдера)
При нагревании растворов большинства белков с концентрированной азотной кислотой образуется желтое окрашивание, переходящее в щелочном растворе в оранжевое.
Реакция обусловлена присутствием циклических аминокислот, которые при взаимодействии с азотной кислотой образуют нитропроизводные желтого цвета, например:
Продукты нитрования циклических аминокислот, реагируя с едким натром или гидроксидом аммония, образуют соответствующие соли, имеющие оранжевую окраску:
Ход работы. В пробирку наливают 8-10 капель яичного или растительного белка, добавляют З-5 капель концентрированной азотной кислоты и нагревают. В пробирке появляется желтое окрашивание. После охлаждения к смеси добавляют избыток концентрированного раствора аммиака или 30-процентного раствора гидроксида натрия. Желтая окраска переходит в оранжевую.
Работа 4. Реакция на тирозин (реакция Миллона)
Нагревание большинства белков с реактивом Миллона (раствор нитратов и нитритов ртути (I) и (II) в азотной кислоте) приводит к образованию красного осадка.
Реакция обусловлена присутствием в белке аминокислоты тирозина, которая при взаимодействии с реактивом Миллона дает нитрозопроизводное, ртутное соединение которого окрашено в красный цвет:
Ход работы.К 8-10 каплям раствора белка добавляют 2-3 капли реактиваМиллона и осторожно нагревают. Жидкость окрашивается в красный цвет и выпадает красно-коричневый осадок.
Работа 5. Диазореакция на гистидин и тирозин (реакция Паули)
При добавлении к щелочному раствору белка диазореактива жидкость приобретает оранжево-красное окрашивание.
Реакция обусловлена присутствием в белке аминокислот гистидина и тирозина, которые, реагируя с диазобензолсульфокислотой,образуют азокраситель красного цвета:
Ход работы.К свежеприготовленномудиазореактиву (3 капли 1-процентного раствора сульфаниловой кислоты в 2-процентном растворе соляной кислоты и 3 капли 5-процентного раствора нитрита натрия) добавляют 6-8 капель раствора белка и после перемешивания 3-5 капель 10-процентного раствора карбоната натрия. Развивается интенсивная красная окраска.
Работа 6. Реакции на триптофан
Реакции основаны на способности триптофана в кислой среде вступать во взаимодействие с альдегидами, образуя при этом окрашенные продукты конденсации.
а) Реакция Адамкевича. Взаимодействие триптофана с глиоксиловой кислотой (которая всегда присутствует в ледяной уксусной кислоте) приводит к образованию соединения красно-фиолетового цвета:
Ход работы. К 5-6 каплям раствора белка добавить 5 капель концентрированной уксусной кислоты, слегка подогреть и подслоить (осторожно. по стенке наклоненной пробирки) равный объем концентрированной серной кислота. На границе двух слоев жидкости появляется красно-фиолетовое кольцо.
б) Реакция Шульца-Распайля. Триптофан, взаимодействуя с оксиметилфурфуролом (образующимся при гидролизе сахарозы и обезвоживании моносахаридов под действием концентрированной серной кислоты) образует комплекс вишнево-красного цвета.
Ход работы.К 5-6 каплям раствора белка приливают 1 каплю 10- процентного раствора сахарозы и подслаивают 1 мл концентрированной серной кислоты. На границе раздела жидкостей появляется вишнево-красное окрашивание.
Работа 7. Реакция Фоля на содержащие серу аминокислоты
Нагревание белка со щелочью и плюмбитом приводит к появлению бурого или черного осадка. Реакция обусловлена наличием в белке содержащих серу аминокислот, которые под действием щелочи разрушаются с образованием сульфида щелочного металла; последний с плюмбитом дает осадок сульфида свинца:
Ход работы.К 5-6 каплям раствора белка добавляют 10 капель 30-процентного раствора гидроксида натрия и 1каплю 5-процентного раствора ацетата свинца. При длительном нагревании выпадает черный осадок сульфида свинца.
Что такое цветная реакция
Биуретовая реакция (реакция Пиотровского). В щелочной среде белки, а также продукты их гидролиза — полипептиды дают фиолетовое или красно-фиолетовое окрашивание с солями меди. Реакция обусловлена наличием пептидных связей. Положительная биуретовая реакция проявляется у соединений, содержащих не менее двух
пептидных групп. Интенсивность окраски зависит от длины пептида и варьирует от сине-фиолетовой до краснофиолетовой и красной.
Биуретовую реакцию дают также аспарагин (амид аспарагиновой кислоты) и аминокислоты гистидин, треонин и серин.
Свое название реакция получила от биурета — соединения, которое образуется при нагревании мочевины. Эта реакция сопровождается отщеплением молекулы аммиака
Комплексной медно-натриевой соли пептидов и белков приписывают следующее строение:
Реактивы: а) раствор яичного белка (без добавления хлористого натрия); б) раствор растительного белка (приготовление — см. с. 6); в) едкий натр, 10%-ный раствор; г) сернокислая медь, 1%-ный раствор.
В одну пробирку наливают 2 мл раствора яичного белка, в другую — столько же растительного, затем в каждую из них прибавляют равный объем раствора едкого натра и по 1—2 капли раствора сернокислой меди. Появляется красно-фиолетовое или сине-фиолетовое окрашивание.
Нингидриновая реакция.
Нингидриновая реакция обусловлена наличием аминокислот, имеющих аминогруппы в a-положении. Белки, полипептиды и аминокислоты образуют с нингидрином соединение синего или сине-фиолетового цвета (при нагревании). Нингидриновая реакция является одной из наиболее чувствительных для обнаружения а-аминогрупп.
Сущность реакции заключается в том, что а-аминокислоты и пептиды, реагируя с нингидрином, подвергаются окислительному дезаминированию и декарбоксилированию:
Восстановленный нингидрин взаимодействует с аммиаком и второй молекулой нингидрина, в результате чего образуется окрашенное соединение (пурпурный Руэманна)
Реактивы: а) раствор белка (без хлористого натрия). Приготовление — см. с. 6; б) глицин, 0,1%-ный водный раствор; в) нингидрин, 0,1%-ный спиртовой раствор. В одну пробирку наливают 1-2 мл раствора глицина, в другую — столько же раствора белка. В обе пробирки добавляют раствор нингидрина (в первую 5—6 капель, во вторую — 10—12), нагревают около минуты. В пробирке с глицином быстро появляется фиолетово-синее или фиолетовое окрашивание, в пробирке с белком окрашивание развивается медленно и имеет красновато-фиолетовый оттенок (или даже желтовато-фиолетовый в случае наличия иминокислоты пролина).
Реакция Лоури.
Это одна из наиболее чувствительных реакций на белки. Ее дают циклические аминокислоты. Реагируя с реактивом Фолина, они образуют комплексы, окрашенные в синий цвет. Интенсивность окраски зависит от концентрации белков, поэтому реакция Лоури может быть использована и для количественного определения.
Реактивы: а) раствор яичного белка для цветных реакций и реакций осаждения (см. с. 6), разведенный дистиллированной водой в 100 раз; б) глицин, 0,02%-ный раствор; в) фенилаланин, 0,02%-ный раствор; г) реактив А: 2%-ный раствор углекислого натрия в 0,1 н растворе едкого натра; д) реактив В: 0,5%-ный раствор сернокислой меди
в 1%-ном растворе двузамещенного виннокислого калия
или натрия (
); с)реактив С: к 50 мл реактива А пипеткой приливают 1 мл реактива В; ж) реактив Фолина: в колбе из термоустойчивого стекла в 700 мл дистиллированной воды растворяют 100 г вольфрамовокислого натрия (вольфрамата натрия,
) и 25 г молибденовокислого натрия (молибдата натрия,
). К раствору приливают 50 мл концентрированной ортофосфорной кислоты (
-ной) и 100 мл
концентрированной соляной кислоты после чего к колбе присоединяют обратный холодильник, переносят ее в вытяжной шкаф и кипятят 10 ч, не допуская бурного кипения жидкости. Затем в колбу добавляют 150 г сернокислого лития
дистиллированной воды, 5 капель брома и кипятят (без холодильника) в течение 15 мин. для освобождения от избытка брома. После того как раствор остынет до комнатной температуры, его доводят дистиллированной водой до объема 1 л, фильтруют и хранят в склянке темного стекла с притертой пробкой. Реактив ярко-желтого цвета, устойчив при хранении. Перед употреблением готовят рабочий раствор реактива, разводя его дистиллированной водой в отношении 1:1. Концентрация кислоты в растворе должна составлять 1 г-экв. Ее проверяют титрованием 1 н раствором едкого натра (индикатор — фенолфталеин).
В три пробирки вносят соответственно растворы яичного белка, глицина и фенилаланина (по 2,5 мл), добавляют по 5 мл раствора С и оставляют на 10 мин., после чего приливают по 5 мл рабочего раствора реактива Фолина. Через 30 мин. наблюдают окрашивание жидкости: в пробирках с белком и фенилаланином развивается интенсивная синяя окраска, в пробирке с глицином сохраняется желтый цвет реактива.
Ксантопротеиновая реакция.
Характерна для некоторых ароматических аминокислот (фенилаланина, тирозина, триптофана). При нагревании белков и полипептидов с концентрированной азотной кислотой образуется нитросоединение желтого цвета.
Реакция протекает в две стадии. На протяжении первой аминокислота, например тирозин, взаимодействуя с концентрированной азотной кислотой, подвергается нитрованию. При этом образуется динитротирозин (желтого цвета).
Примечание. В зависимости от количества прибавленной азотной кислоты может образоваться и смесь динитро- и нитротирозина.
Во второй стадии продукты нитрования тирозина (ди-нитро- и нитротирозин) реагируют с едким натром или гидроокисью аммония с образованием натриевой или аммонийной соли, имеющей желто-оранжевое окрашивание.
Ксантопротеиновую реакцию, кроме белков, пептидов и циклических аминокислот, дают также многие простые ароматические соединения (бензол, фенол и др.).
Реактивы: а) раствор яичного или растительного белка (приготовление — см. с. 6); б) раствор желатина, -ный; в) азотная кислота, концентрированная; г) натрий едкий, 20%-ный раствор, или аммиак, концентрированный раствор
фенол,
-ный раствор.
К 2-3 мл раствора фенола осторожно (по стенке пробирки) приливают 1-2 мл концентрированной азотной кислоты. Осторожно нагревают, появляется желтое окрашивание.
В другую пробирку наливают 1-2 мл раствора яичного или растительного белка, прибавляют 8—10 капель концентрированной азотной кислоты и осторожно нагревают. Выпадает осадок, который окрашивается в желтый цвет.
После охлаждения в пробирку осторожно (по стенке) приливают избыток концентрированного раствора аммиака или едкого натра — жидкость принимает оранжевое или желто-оранжевое окрашивание.
Реакцию следует проводить под тягой!
Те же реакции проводят с раствором желатина: желтого окрашивания не наступает, так как желатин не содержит ароматических аминокислот (иногда может появиться очень слабое желтоватое окрашивание, обусловленное примесью других белков).
Реакция Миллона.
С помощью реакции Миллона открывают наличие аминокислоты тирозина. Тирозин образует с реактивом Миллона ртутную соль нитротирозина красного цвета. Эта реакция характерна также почти для всех фенолов.
Реактивы: а) раствор яичного или растительного белка (см. с. 6); б) раствор желатина, 1%-ный; в) фенол, 0,1%-ный раствор; г) реактив Миллона: 40 г ртути растворяют в 57 мл концентрированной азотной кислоты вначале при комнатной температуре, затем слабо подогревая на водяной бане. Раствор разбавляют двумя объемами воды и после отстаивания сливают с осадка.
Все работы производят под тягой!
К 1 мл раствора фенола в пробирке приливают 0,5 мл реактива Миллона осторожно нагревают. Появляется розовое окрашивание.
В пробирку наливают 1-2 мл раствора яичного или растительного белка и 5—6 капель реактива Миллона, осторожно нагревают.
Жидкость окрашивается в красный цвет, и затем выпадает осадок кирпично-красного цвета.
То же проделывают и с раствором желатина: красного окрашивания не наступает или оно проявляется очень слабо (если желатин не очищен от примеси других белков),
Реакции на триптофан.
Триптофан, реагируя в кислой среде с альдегидами, образует окрашенные продукты конденсации. Например, с глиоксиловой кислотой (являющейся примесью к концентрированной уксусной кислоте) реакция протекает по уравнению
По аналогичной схеме протекает также реакция триптофана с оксиметилфурфуролом или формальдегидом.
В указанных реакциях принимает участие серная кислота, являющаяся водоотнимающим средством.
Реакция Адамкевича. Реактивы: а) свежий яичный белок (неразбавленный); б) желатин, 1%-ный раствор; в) уксусная кислота, концентрированная; г) серная кислота, концентрированная.
В пробирку наливают несколько капель неразбавленного яичного белка, прибавляют 1-2 мл концентрированной уксусной кислоты (лучше ледяной) и осторожно нагревают до растворения выпавшего осадка, после чего охлаждают и (осторожно!) по стенке пробирки, наклонив ее, наслаивают 1 мл концентрированной серной кислоты, следя, чтобы не произошло смешения жидкостей. На границе двух слоев через некоторое время появляется красно-фиолетовое кольцо.
Эту же реакцию проделывают с раствором желатина — окрашивания не наступает, так как триптофан не входит в состав желатина.
Реакция с оксиметилфурфуролом (Шульце — Распайля). От фруктозы в присутствии концентрированной серной кислоты отщепляется три молекулы воды, она превращается в оксиметилфурфурол, который образует с триптофаном окрашенные продукты конденсации. Реакцию можно производить как с фруктозой, так
и с сахарозой, при гидролитическом расщеплении которой освобождаются равные количества глюкозы и фруктозы.
Реактивы: а) раствор яичного или растительного белка (приготовление — см. с. 6); б) сахароза, 5%-ный раствор; в) серная кислота, концентрированная.
К 1-2 мл раствора белка добавляют 2—4 капли раствора сахарозы и по стенке пробирки осторожно наслаивают 1 мл концентрированной серной кислоты. На границе жидкостей появляется кольцо темно-красного (вишневого) цвета.
Реакция с формальдегидом. Реактивы: а) раствор яичного или растительного белка; б) формалин, 5%-ный раствор; в) серная кислота, концентрированная.
К 1 мл раствора белка в пробирке добавляют 2 капли раствора формалина и затем осторожно (по стенке пробирки) наслаивают 1 мл концентрированной серной кислоты, следя, чтобы жидкости не перемешивались. На границе соприкосновения жидкостей появляется кольцо фиолетового или фиолетово-красноватого цвета.
Реакция на аргинин (Сакагучи).
Производные гуанидина, как, например, аминокислота аргинин (гуанидина-миновалериановая кислота), метилгуанидин, гликоциамин (гуанидинуксусная кислота), реагируя с гипобромитом натрия (NaBrO) и а-нафтолом, образуют продукт конденсации кирпично-красного или малинового цвета. Метилгуанидин и глнкоциамин не входят в состав белковых веществ, и поэтому реакцию Сакагучи можно использовать для открытия аминокислоты аргинина.
Гипобромит является окислителем. Окисленный аргинин,
потеряв одну иминогруппу реагирует с а-нафтолом с образованием окрашенного соединения.
Реактивы: а) раствор яичного или растительного белка; б) а-нафтол. Готовят 1%-ный раствор в 96%-ном этиловом спирте. Перед употреблением 10 мл раствора разбавляют спиртом в мерной колбе емкостью натр едкий, 15%-ный раствор; г) раствор гипобромита натрия. 150 г едкого натра добавляют небольшими порциями к 500 мл воды, перемешивают до полного растворения (осторожно: растворение сопровождается обильным выделением теплоты!). К остывшему раствору осторожно (под тягой!) прибавляют при постоянном перемешивании 8 мл чистого брома. Раствор сохраняют в темной склянке с притертой пробкой (в вытяжном шкафу). Срок годности до трех месяцев.
Примечание. Раствор гипобромита натрия готовится лаборантом.
К 1 мл раствора белка прибавляют 2—3 капли раствора едкого натра, капли раствора а-нафтола и хорошо перемешивают, после чего в пробирку добавляют 1—2 капли раствора гипобромита. Появляется малиновокрасное окрашивание.
Реакция на аминокислоты, содержащие серу (цистеин, цистин).
Известны три серусодержащие аминокислоты: цистеин, цистин и метионин.
В молекулах цистеин а и цистин а сера связана относительно слабо и легко отщепляется при щелочном гидролизе в виде сероводорода, который реагирует со щелочью, образуя сульфиды натрия или калия. Сульфиды взаимодействуют с уксуснокислым свинцом (вернее, с плюмбитом) с образованием осадка сернистого свинца черного или буро-черного цвета. Реакции протекают по следующим уравнениям:
Реактивы: а) раствор яичного или растительного белка (см. с. 6); б) желатин, 1%-ный раствор; в) едкий натр, 15-20%-ный раствор; г) уксуснокислый свинец, 1%-ный раствор.
В одну пробирку наливают 2 мл раствора яичного или растительного белка, в другую — столько же раствора желатина. В обе пробирки добавляют по 1-1,5 мл раствора щелочи и осторожно нагревают до кипения, кипятят 1—2 мин., после чего в каждую пробирку прибавляют по 2—3 капли раствора уксуснокислого свинца.
В пробирке с яичным (или растительным) белком появляется буровато-черное или черное окрашивание, интенсивность которогозависит от концентрации раствора белка и содержания в нем цистеина и цистина. Раствор желатина окрашивания не дает. Это свидетельствует о том, что в состав желатина не входят серусодержащие аминокислоты.