что такое реверсивный счетчик
Счетчики (суммирующие, вычитающие и реверсивные): принципы построения и работа счетчиков, счетчики с произвольным коэффициентом пересчета
Содержание
Классификация
Счетчики классифицируются по следующим параметрам:
по типу формирования переноса внутри счетчика
Последовательные суммирующие счетчики
Счетчики с последовательным переносом
Рис.2 Временные диаграммы
Рис.3 Суммирующий счетчик с последовательным переносом
Счетчики с параллельным переносом
Рис.4 Суммирующий счетчик с параллельным переносом
|
Счетчики с комбинированным переносом
Последовательные вычитающие счетчики
Рис.5 Вычитающий счетчик
Рис.6 Временные диаграммы вычитающего счетчика
Переключение i-ого разряда осуществляется тогда, когда все разряды от 0-ого до (i-1)-ого равны нулю.
Рис.7 Вычитающий счетчик
Сигнал снимается с инверсного выхода.
Реверсивные счетчики
Реверсивный счетчик складывает(по фронту) и вычитает(по спаду) одновременно. Для сброса в нулевое состояние используется универсальный триггер.
Рис.8 Реверсивный счетчик
Схема счетчика с предустановкой
Рис.9 Счетчик с сигналом предустановки
Построение счетчиков с произвольным модулем пересчета
Рис.10 Счетчик, считающий по mod10
Рис.11 Временные диаграммы
Кольцевые счетчики
Рис.12 Кольцевой счетчик, считающий по mod3
Счетчики на JK-триггерах
Добавление дополнительных состояний
Рис. 13 Добавление нового состояния
С приходом n-ого импульса счетчик переключается в 0, а добавленный триггер в 1. С приходом следующего импульса счетчик не переключается, а добавленный триггер
Счетчики с произвольным порядком пересчета
Построенные на основе D-триггеров
Рис.14 Структурная схема
Рис.15 Счетчик с произвольным порядком пересчета и его граф состояний
Рис.16 Граф состояний
Q2 | Q1 | Q0 | f2 | f1 | f0 |
---|---|---|---|---|---|
1 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 |
Каждый разряд булевой функции определяет значение счетчика.
Построенные на основе T-триггеров
Рис.17 Структурная схема
Рис.18 Счетчик с произвольным порядком пересчета
Реверсивный счётчик, принцип работы.
Реверсивный счётчик с последовательным переносом
Реверсивные счетчики могут работать как в режиме сложения, так и в режиме вычитания. Если за период времени T поступит К импульсов при работе счетчика в режиме суммирования и N импульсов при работе счетчика в режиме вычитания, то состояние счетчика будет равно K-N ( при условии, что число импульсов K и N может однозначно подсчитываться счетчиком). Число K-N может быть как положительным, так и отрицательным.
В режиме вычитания входные импульсы подаются на вход «-1», при этом на вход «+1» подаётся лог. 0. В режиме сложения входные импульсы подаются на вход «+1», а на вход «-1» следует подать лог. 0.
Описанные выше счетчики однонаправленные и считают на увеличение, однако на практике часто необходимо менять направление счета в процессе работы. Счетчики, которые в процессе работы могут менять направление счета называются реверсивными.
Первый эксперимент касается оценки частотных, заметьте не нелинейных, а частотных, искажений, возникающих в усилителе с помощью генератора прямоугольных импульсов.
Посмотрим, как реагируют на прохождение прямоугольных импульсов разные электрические RC цепи (это же относится и к LC, и к LR, и к LCR цепям).
Для этого в программе Qucs мы будем пользоваться источником прямоугольных импульсов и такими компонентами, как резисторы, конденсаторы и индуктивности. Если в вашем арсенале приборов есть осциллограф, генератор прямоугольных импульсов или функциональный генератор, то было бы очень полезно повторить эти простые опыты на макетной плате.
На рисунке представлена обычная интегрирующая RC цепочка из резистора R1 и конденсатора C1. Сопротивление R2 — это сопротивление нагрузки, скажем, входное сопротивление осциллографа. Когда мы говорили о частотных свойствах усилителей, рассматривалиамплитудно-частотныехарактеристики каскадов усилителя, то каждый из них можно было рассматривать как идеальный, нечастотно-зависимыйусилитель, к которому добавляется подобная эквивалентная RC цепь.
Для решения различных измерительных задач, для исследования импульсных характеристик микросхем и электронных приборов, для испытаний логических схем и устройств требуются источники электрических сигналов со строго определенными параметрами. Наиболее широко применяются импульсные генераторы, которые выдают видеоимпульсы прямоугольной формы в широком временном, частотном и амплитудном диапазонах: от долей наносекунд до единиц секунд, от долей герц до сотен мегагерц, от долей милливольт до десятков вольт.
Элементы формы реального прямоугольного импульса определены стандартом (рис. 2.5).
Рис.2.5 – Параметры прямоугольного импульсного сигнала.
Искажения формы сигнала связаны с ограничением полосы пропускания канала У. Ограничение со стороны низких частот влекут за собой осцилляции и спад на вершине. Ограничение со стороны высоких частот вызывает увеличение tф и tср, и появление выбросов на плоской части импульса.
При исследовании импульсных сигналов большое значение приобретает переходная характеристика осциллографа, которая представляет собой изображение единичного скачка напряжения (рис. 2.6).
Рис. 2.6 – Переходная характеристика осциллографа.
Параметром является время нарастания tн – интервал времени, в течение которого луч проходит путь от уровня 0,1 до уровня 0,9 от установившегося значения. Если плоская часть переходной характеристики имеет выброс d или осцилляции, то используется дополнительный параметр tу – время установления, отсчитываемое от момента уровня сигнала 0,1 до момента уменьшения осцилляций до заданного уровня.
При измерении параметров прямоугольных импульсов длительность фронта включает в себя время нарастания переходной характеристики. Когда они соизмеримы, время нарастания необходимо исключить.
При длительности фронта, во много раз превышающей время нарастания переходной характеристики, на изображении импульса никаких выбросов не наблюдается.
Генера́тор (лат. generator «производитель») — устройство, производящее какие-либо продукты, вырабатывающее электроэнергию или преобразующее один вид энергии в другой.
Основными динамическими параметрами, представленными на осциллограмме рис. 12.13, являются:
время задержки включения ИС t 1,0зд
время задержки выключения ИС t 0,1зд
время задержки распространения сигнала при включении ИС t 0,1 зд р
время задержки распространения сигнала при выключении ИС t 1,0 зд р
Измерение передаточной характеристики. Передаточную характеристику элемента И можно получить, как показано на рис. 12.14. Напряжение от генератора линейно изменяющегося напряжения 61 подается на ИС и на Х-пластины ЭЛТ. На вертикально отклоняющие пластины подается напряжение с выхода устройства. По получающейся на экране характеристике можно определить:
выходные напряжения логического нуля U°вых и логической единицы U 1 вых, рабочие точки типовых режимов U1 и U2; пороговые напряжения; ширину активной области; запас статической помехоустойчивости; необходимые напряжения сигналов, переводящие схему из состояния нуля в единицу и наоборот.
Измерение выходной характеристики интегральной микросхемы.
Входное напряжение (рис. 12.15) изменяется от значения логического нуля до значения логической единицы, при этом определяют I 0 вх и I 1 вх
Коэффициент разветвления по выходу, определяющий возможность использования данной ИС в комплексе с другими, т. е. их нагрузочную, способность, может быть определен по данным Iвх и Iвых:
I = I 0 вых/I 0 вх, К = I’вых/I 1 вх
Из значений К 0 и К 1 выбирается минимальное.
Измерение динамических параметров цифровых интегральных микросхем.
Причины ложных срабатываний логических элементов
Рассмотрим логическую конструкцию Y = .
При построении этой функции на элементах И-НЕ ее необходимо преобразовать, представив в виде инверсии конъюнкций.
Y =
Схема, реализующая эту функцию, показана рис. 1.31.
Рис. 1.31 Схема прохождения сигнала двумя путями
Диаграмма переключений приведена на рис. 1.32.
Рис. 1. 32 Диаграмма переключения схемы (рис. 1.31)
Пусть входной сигнал перешел от «0» к «1». В момент
сигнал
достигнет
порогового уровня
и начнется переключение элемента DD1. Сигнал на его выходе
станет
в момент
, отстоящий от
на
. Поэтому в течение времени
на входы DD2 поступают сигналы, превышающие
, то есть соответствующие логическим единицам. Следовательно, DD2 одновременно с DD1 начнет переключаться с 1 на 0. В момент
создадутся условия для обратного переключения элемента DD2. Через время
на выходе
уровень напряжения достигнет
, следовательно на выходе устройства восстановится логическая «1».
Из диаграммы видно, что за время единичный уровень на выходе изменился на нулевой, то есть правильность выполнения логической операции нарушилась, так как на выходе Y =
всегда должна быть логическая «1». Это явление получило название «состязаний» или «гонок».
В триггерах также возможны «состязания» между внешними сигналами и сигналами обратной связи. Устранения ошибок от ложных срабатываний в логических цепях можно добиться путем временного разделения сигналов, исключающих подобные явления. Вырабатываемое логическим устройством напряжение в этом случае передается на последующие устройства не непрерывно и не в произвольные моменты времени, а только в такие моменты, когда искажение правильных значений выходного сигнала за счет «состязаний» заведомо исключено.
Конъюнкция
Это отражает аналогию с арифметическим умножением: умножение любого числа и набора чисел на 0 в результате вернёт всегда 0. Эта логическая операция коммутативна: порядок, в котором она получает входные параметры, никак не повлияет на конечный результат вычисления. Другим свойством этой функции является ассоциативность, или сочетательность. Это свойство позволяет при вычислении последовательности бинарных операций не учитывать порядок вычисления. Поэтому для 3 и более последовательных операций логического умножения нет необходимости учитывать скобки. В программировании эта функция используется зачастую для того, чтобы убедиться в том, что специфические команды выполнятся только при выполнении совокупности определённых условий. Дизъюнкция
Счетчики импульсов: схемы, назначение, применение, устройство
Что такое счетчик импульсов?
Счетчик импульсов — это последовательностное цифровое устройство, обеспечивающее хранение слова информации и выполнение над ним микрооперации счета, заключающейся в изменении значения числа в счетчике на 1. По существу счетчик представляет собой совокупность соединенных определенным образом триггеров. Основной параметр счетчика — модуль счета. Это максимальное число единичных сигналов, которое может быть сосчитано счетчиком. Счетчики обозначают через СТ (от англ. counter).
Классификация счетчиков импульсов
Суммирующий счетчик импульсов
Рассмотрим суммирующий счетчик (рис. 3.67, а). Такой счетчик построен на четырех JK-триггерах, которые при наличии на обоих входах логического сигнала «1» переключаются в моменты появления на входах синхронизации отрицательных перепадов напряжения.
Временные диаграммы, иллюстрирующие работу счетчика, приведены на рис. 3.67, б. Через Кси обозначен модуль счета (коэффициент счета импульсов). Состояние левого триггера соответствует младшему разряду двоичного числа, а правого — старшему разряду.
В исходном состоянии на всех триггерах установлены логические нули. Каждый триггер меняет свое состояние лишь в тот момент, когда на него действует отрицательный перепад напряжения.
Таким образом, данный счетчик реализует суммирование входных импульсов. Из временных диаграмм видно, что частота каждого последующего импульса в два раза меньше, чем предыдущая, т. е. каждый триггер делит частоту входного сигнала на два, что и используется в делителях частоты.
Трехразрядный вычитающий счетчик с последовательным переносом
Рассмотрим трехразрядный вычитающий счетчик с последовательным переносом, схема и временные диаграммы работы которого приведены на рис. 3.68.
На входы J и К каждого триггера поданы логические 1, поэтому по приходу заднего фронта импульса, подаваемого на его вход синхронизации С, каждый триггер изменяет предыдущее состояние. Вначале сигналы на выходах всех триггеров равны 1. Это соответствует хранению в счетчике двоичного числа 111 или десятичного числа 7. После окончания первого импульса F первый триггер изменяет состояние: сигнал Q1 станет равным 0, a ¯ Q1 − 1.
После первого импульса F счетчик хранит состояние 11О. Дальнейшее изменение состояния счетчика происходит аналогично изложенному выше. После состояния 000 счетчик вновь переходит в состояние 111.
Трехразрядный самоостанавливающийся вычитающий счетчик с последовательным переносом
Рассмотрим трехразрядный самоостанавливающийся вычитающий счетчик с последовательным переносом (рис. 3.69).
После перехода счетчика в состояние 000 на выходах всех триггеров возникает сигнал логического 0, который подается через логический элемент ИЛИ на входы J и К первого триггера, после чего этот триггер выходит из режима Т-триггера и перестает реагировать на импульсы F.
Трехразрядный реверсивный счетчик с последовательным переносом
Рассмотрим трехразрядный реверсивный счетчик с последовательным переносом (рис. 3.70).
В режиме вычитания входные сигналы должны подаваться на вход Тв. На вход Тс при этом подается сигнал логического 0. Пусть все триггеры находятся в состоянии 111. Когда первый сигнал поступает на вход Тв, на входе Т первого триггера появляется логическая 1, и он изменяет свое состояние. После этого на его инверсном входе возникает сигнал логической 1.
При поступлении второго импульса на вход Тв на входе второго триггера появится логическая 1, поэтому второй триггер изменит свое состояние (первый триггер также изменит свое состояние по приходу второго импульса). Дальнейшее изменение состояния происходит аналогично. В режиме сложения счетчик работает аналогично 4-разрядному суммирующему счетчику. При этом сигнал подается на вход Тс. На вход Тв подается логический 0.
В качестве примера рассмотрим микросхемы реверсивных счетчиков (рис: 3.71) с параллельным переносом серии 155 (ТТЛ):
Направление счета определяется тем, на какой вывод (5 или 4) подаются импульсы. Входы 1, 9, 10, 15 — информационные, а вход 11 используется для предварительной записи. Эти 5 входов позволяют осуществить предварительную запись в счетчик (предустановку). Для этого нужно подать соответствующие данные на информационные входы, а затем подать импульс записи низкого уровня на вход 11, и счетчик запомнит число.
Вход 14 — вход установки О при подаче высокого уровня напряжения. Для построения счетчиков большей разрядности используются выходы прямого и обратного переноса (выводы 12 и 13 соответственно). С вывода 12 сигнал должен подаваться на вход прямого счета следующего каскада, а с 13 — на вход обратного счета.
Реверсивный счетчик. Реверсивный счетчик – это счетчик у которого существует 2 цепи переноса:
Реверсивный счетчик – это счетчик у которого существует 2 цепи переноса:
Инкрементная цепь формируется с помощью прямых выходов разрядов счетчика, а декрементная с помощью инверсных выходов разрядов счетчика. Выбор между сигналами переносов разрядов счетчика определяется с помощью мультиплексоров, число которых равно n-1, а адресные входы мультиплексоров – объединены и их значение соответствуют режиму работы счетчика.
Существует 2 типа схем:
Чтобы получить 2-ю схему надо добавить к 1-й дизъюнкцию выделенной пунктиром области.
Если реверсивный счетчик работает не в полном диапазоне, то у него будет 3 условия сброса:
— R внешний сброс, переводящий счетчик в начальное значение;
— сброс при достижении конечного состояния, приводящий счетчик в начальное состояние;
— сброс при достижении начального состояния (при вычитании), который переводит счетчик в конечное состояние.
Дизъюнкция 1 и 2 условия образует сигнал сброса R1, выполнение 3 условия – образуют сигнал сброса R2.
Данные сигналы R1 и R2 разводятся на разряды счетчика следующим образом. Если соответствующие разряды начального и конечного состояний счетчика одинаковы, то на дизъюнкции формируется сигнал общего сброса из R1 и R2. Он подается на вход S, если значение разрядов равно 1 или на вход R, если значение разрядов равно 0. Если начальное и конечное значение разряда различны, то на вход R подается тот сигнал (R1 или R2), который требует установки разряда счетчика в 0, а на вход S, тот R1 или R2, который требует установки разряда счетчика в 1.