В процессе такого перемещения скорость тела периодически изменяется, поэтому для описания данного процесса применяют понятия средней и мгновенной скоростей.
Мгновенная скорость – это скорость движения тела, которая фиксируется в конкретный момент времени в заданной точке пути. Другими словами, мгновенной скоростью \(v\) есть предел стремления средней скорости тела \(v_<ср>\) при бесконечно малом промежутке времени:
Известно, что предел отношения приращения функции к приращению аргумента, в случае стремления последнего к нулю, – это главная производная функции по аргументу.
Рассмотрим пример скатывания шарика по наклонной поверхности. При этом мы наблюдаем, что шарик движется неравномерно: расстояния, которые он проходит за одинаковые последовательные интервалы времени, постоянно увеличиваются. То есть, темп его движения постоянно растёт. Данное движение, как и скачивание любого предмета, является классикой прямолинейного равноускоренного перемещения.
Еще одним примером такого движения является перемещение транспорта, когда он разгоняется, а так же когда тормозит. То есть равноускоренным движением может считаться не только ускоренное, но и замедленное движение.
Дело в том, что понятие «ускорение» в физическом смысле более широкое, нежели мы привыкли использовать в ежедневной жизни. Слово ускорение в широком потреблении понимается как увеличение скорости, но физически под ускорением понимается передвижение тела с постоянным изменением скорости, при этом неважно увеличивается она или уменьшается.
Сложно разобраться самому?
Попробуй обратиться за помощью к преподавателям
Понятие прямолинейного равноускоренного движения достаточно широко используется при изучении законов механики.
Стоит отметить, что при влиянии постоянной силы тело будет перемещаться равноускорено.
Равномерное движение
Равномерное движение – это такое механическое перемещение тела, когда за равные промежутки времени оно преодолевает равные расстояния.
Для равномерного перемещения характерно постоянное значение скорости:
где \(v\) – скорость равномерного перемещения, м/с;
\(l\) – расстояние, преодоленное объектом, м;
\(δt\) – промежуток времени перемещения, с.
При равномерном перемещении скорость предмета остаётся равной на каждом промежутке пути.
Если перемещение тела не только равномерное, а также прямолинейное, то его путь равен модулю его перемещения. Значит, аналогично предыдущему выражению, определяем скорость равномерного прямолинейного перемещения:
где \(\overline \) – скорость равномерного прямолинейного перемещения, м/с;
\(\overline\) – перемещение тела, м;
\(δt\) – промежуток времени перемещения, с.
Скорость равномерного прямолинейного перемещения является векторной величиной. То есть её направление также имеет значение, как и модуль.
Равноускоренное движение тела
При равноускоренном перемещении скорость постоянно изменяется. Если речь идет об убыстрении, скорость постоянно растет. То есть ускорение остаётся величиной постоянной, а темп постоянно растет.
Помимо равноускоренного движения еще выделяют равнозамедленное, где темп постоянно уменьшается с одинаковой быстротой.
Различают одномерное и многомерное ускорение. Первое происходит вдоль одной оси координат, а второе – в плоскости или в пространстве.
Не нашли что искали?
Просто напиши и мы поможем
Ускорение тела
Формулы равномерного движения для расчета ускорения могут применяться без учёта времени в разных плоскостях. Например, при расчёте свободного падения жестких тел, можно определять их местоположение. Это бывает полезно при различных геометрических расчётах.
Неравномерное перемещение тела, так же как и равноускоренное, характеризуется изменением скорости. Но в чём же тогда их отличие? При равноускоренном – скорость тела не просто изменяется, она равно ускоряется.
Понятие ускорения часто ассоциируют с ростом скорости. Поскольку скорость растет одинаково, говорят о равном возрастании скорости. Как же определить, скорость растет равномерно или нет? Для этого засекают время, оценивают приращение скорости за равные промежутки времени, если при этом приращение одинаково на каждом новом участке, передвижение считается равноускоренным.
Ускорение – это физическая величина, показывающая на сколько возрастает скорость.
Замедленным движением есть перемещение с уменьшающейся скоростью. Поскольку в физике любое перемещение с меняющейся скоростью называется ускоренным, то неважно разгоняется автомобиль либо тормозит, в любом случае он передвигается с ускорением.
Значит, ускорение описывает быстроту изменения скорости. Оно показывает на сколько меняется скорость за одну секунду. Чем больше величина ускорения, тем стремительнее тело набирает скорость либо сбрасывает её. Ускорение обозначается буквой a и определяется соотношением изменения скорости δv к промежутку времени δt, за которое оно осуществлено:
Когда мы идем в школу или на работу, автобус подъезжает к остановке или сладкий корги гуляет с хозяином, мы имеем дело с механическим движением.
Механическим движением называется изменение положения тел в пространстве относительно других тел с течением времени.
«Относительно других тел» — очень важные слова в этом определении. Для описания движения нам нужны:
В совокупности эти три параметра образуют систему отсчета.
В механике есть такой раздел — кинематика. Он отвечает на вопрос, как движется тело. Дальше мы с помощью кинематики опишем разные виды механического движения. Не переключайтесь 😉
Прямолинейное равномерное движение
Движение по прямой, при котором тело проходит равные участки пути за равные промежутки времени называют прямолинейным равномерным. Это любое движение с постоянной скоростью.
Например, если у вас ограничение скорости на дороге 60 км/ч, и у вас нет никаких препятствий на пути — скорее всего, вы будете двигаться прямолинейно равномерно.
Мы можем охарактеризовать это движение следующими величинами.
Скалярные величины (определяются только значением)
Векторные величины (определяются значением и направлением)
Проецирование векторов
Векторное описание движения полезно, так как на одном чертеже всегда можно изобразить много разнообразных векторов и получить перед глазами наглядную «картину» движения.
Однако всякий раз использовать линейку и транспортир, чтобы производить действия с векторами, очень трудоёмко. Поэтому эти действия сводят к действиям с положительными и отрицательными числами — проекциями векторов.
Если вектор сонаправлен с осью, то его проекция равна длине вектора. А если вектор противоположно направлен оси — проекция численно равна длине вектора, но отрицательна. Если вектор перпендикулярен — его проекция равна нулю.
Скорость может определяться по вектору перемещения и пути, только это будут две разные характеристики.
Скорость — это векторная физическая величина, которая характеризует быстроту перемещения, а средняя путевая скорость — это отношение длины пути ко времени, за которое путь был пройден.
Скорость
→ → V = S/t
→ V — скорость [м/с] → S — перемещение [м] t — время [с]
Средняя путевая скорость
V ср.путевая = S/t
V ср.путевая — средняя путевая скорость [м/с] S — путь [м] t — время [с]
Задача
Найдите, с какой средней путевой скоростью должен двигаться автомобиль, если расстояние от Санкт-Петербурга до Великого Новгорода в 210 километров ему нужно пройти за 2,5 часа. Ответ дайте в км/ч.
Решение:
Возьмем формулу средней путевой скорости V ср.путевая = S/t
Подставим значения: V ср.путевая = 210/2,5 = 84 км/ч
Ответ: автомобиль будет двигаться со средней путевой скоростью равной 84 км/ч
Уравнение движения
Основной задачей механики является определение положения тела в данный момент времени. Для решения этой задачи помогает уравнение движения, то есть зависимость координаты тела от времени х = х(t).
Уравнение движения
x(t) = x0 + vxt
x(t) — искомая координата [м] x0 — начальная координата [м] vx — скорость тела в данный момент времени [м/с] t — момент времени [с]
Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v
Уравнение движения при движении против оси
x(t) — искомая координата [м] x0 — начальная координата [м] vx — скорость тела в данный момент времени [м/с] t — момент времени [с]
Графики
Изменение любой величины можно описать графически. Вместо того, чтобы писать множество значений, можно просто начертить график — это проще.
В видео ниже разбираемся, как строить графики кинематических величин и зачем они нужны.
Прямолинейное равноускоренное движение
Чтобы разобраться с тем, что за тип движения в этом заголовке, нужно ввести новое понятие — ускорение.
Ускорение — векторная физическая величина, характеризующая быстроту изменения скорости. В международной системе единиц СИ измеряется в метрах, деленных на секунду в квадрате.
СИ — международная система единиц. «Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение — килограмм с приставкой «кило».
Итак, прямолинейное движение — это движение с ускорением по прямой линии. Движение, при котором скорость тела меняется на равную величину за равные промежутки времени.
Уравнение движения и формула конечной скорости
Основная задача механики не поменялась по ходу текста — определение положения тела в данный момент времени. У равноускоренного движения в уравнении появляется ускорение.
Уравнение движения для равноускоренного движения
x(t) = x0 + v0xt + axt^2/2
x(t) — искомая координата [м] x0 — начальная координата [м] v0x — начальная скорость тела в данный момент времени [м/с] t — время [с] ax — ускорение [м/с^2]
Для этого процесса также важно уметь находить конечную скорость — решать задачки так проще. Конечная скорость находится по формуле:
Формула конечной скорости
→ → v = v0 + at
→ v — конечная скорость тела [м/с] v0 — начальная скорость тела [м/с] t — время [с] → a — ускорение [м/с^2]
Задача
Найдите местоположение автобуса через 0,5 часа после начала движения, разогнавшегося до скорости 60 км/ч за 3 минуты.
Решение:
Сначала найдем ускорение автобуса. Его можно выразить из формулы конечной скорости:
Так как автобус двигался с места, v0 = 0. Значит a = v/t
Время дано в минутах, переведем в часы, чтобы соотносилось с единицами измерения скорости.
3 минуты = 3/60 часа = 1/20 часа = 0,05 часа
Подставим значения: a = v/t = 60/0,05 = 1200 км/ч^2 Теперь возьмем уравнение движения. x(t) = x0 + v0xt + axt^2/2
Начальная координата равна нулю, начальная скорость, как мы уже выяснили — тоже. Значит уравнение примет вид:
Ускорение мы только что нашли, а вот время будет равно не 3 минутам, а 0,5 часа, так как нас просят найти координату в этот момент времени.
Подставим циферки: x = 1200*0,5^2/2 = 1200*0,522= 150 км
Ответ: через полчаса координата автобуса будет равна 150 км.
Графики
Мы уже знаем, что такое графики функций и зачем они нужны. Для прямолинейного равноускоренного движения графики будут отличаться. Об этом — в видео ниже
Движение по вертикали
Движение по вертикали — это частный случай равноускоренного движения. Дело в том, что на Земле тела падают с одинаковым ускорением — ускорением свободного падения. Для Земли оно приблизительно равно 9,81 м/с^2, а в задачах мы и вовсе осмеливаемся округлять его до 10 (физики просто дерзкие).
Вообще в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают значение: g = 9,8 м/с2. В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с2.
Частным случаем движения по вертикали (частным случаем частного случая, получается) считается свободное падение — это равноускоренное движение под действием силы тяжести, когда другие силы, действующие на тело, отсутствуют или пренебрежимо малы.
Помните о том, что свободное падение — это не всегда движение по вертикали. Если мы бросаем тело вверх, то начальная скорость, конечно же, будет.
Равномерное и равноускоренное прямолинейное движение. Материальная точка.
Равномерное и равноускоренное прямолинейное движение. Материальная точка.
В данной статье рассмотрены наиболее популярные задания ЕГЭ по физике 2020, которые могут встретиться в КИМах. Они помогут вам более глубоко и подробно ознакомиться с темами ЕГЭ из раздела механики, данные темы рассмотрены в соответствии с кодификатором элементов содержания и требований к подготовке выпускников.
Итак, перейдём к рассмотрению. Довольно часто в ЕГЭ по физике встречаются задачи на движение, поэтому просим заранее запоминать необходимые определения и формулы.
Равномерное прямолинейное движение – движение, имеющее постоянную скорость. При таком движении тело должно передвигаться по прямой, за одинаковые промежутки времени пройдёт равные пути.
Неравномерное движение – это движение, в котором за одинаковый промежуток времени сделают разные перемещения. В таком движении скорость будет изменяться с отпрядённым течением времени.
Равнопеременное движение – движение, при котором скорость тела изменится за одинаковое время. То есть такой вид движения включает в себя постоянное ускорение.
Равноускоренное движение – движение, в соответствии с которым скорость постоянно увеличивается.
Равнозамедленное – движение, в соответствии с которым скорость уменьшается.
Рассмотрим прямолинейное движение. Для его описания требуется в начале движения измерить координаты тела в разные промежутки времени.
Для описания прямолинейного движения в определённой системе отсчёта нужно в начале движения воспользоваться часами и измерить координаты тела.
Материальная точка
Также распространённой темой в ЕГЭ по физике является материальная точка, дополнительно рассмотрим здесь её траекторию, перемещение, путь и сложение перемещений.
Механическое движение считается более простым. Дадим определение механическому движению – это процесс, когда тело меняет своё положение по отношению к другим телам.
Рассмотрим основные характеристики движения тела в разное время:
— Путь, который пройден;
— И другие характеристики, используемые в целях решения заданий, если такие задания связаны с движением тел в пространстве.
Рассмотрим пример. При запускании спутника на другую планету, ученые рассчитывают расстояние до местонахождения исследуемой планеты по отношению к Земле. Также выясняют скорость планеты, её направление и траекторию движения. Положение точек определяют с помощью координатной прямой ил системы координат. Посмотрим пример (рис. 1):
Здесь возникает вопрос как же изобразить объёмное тело с множеством точек, имеющих координаты. Рассмотрим рисунок (рис. 2):
На этом этапе возникают и другие немаловажные вопросы, такие как: что является скоростью планеты, если она одновременно вращается вокруг своей оси. Это обусловлено тем, что скорость различных точек отличается по своему направлению и модулю. Следует учитывать, что чем меньше расстояние точки к оси, тем меньше будет её скорость.
Обычно разные тела рассматривают в качестве материальных точек, при условии, что расстояние, которое проходят данные точки больше размера самих тел.
Формулы, которые необходимо использовать при решении задач на данную тему:
Рассмотрим пример решения задачи.
Условие задачи: По прямой движется материальная точка. Скорость в соответствии с временем равна: v ( t ) = t^3 – 2t.
Найти ускорение, при t = 3.
v ( t ) = t^2 – 2t = 3 * t^2 – 2.
Обратим внимание на то, что материальных точек не существует. Это понятие введено в целях решения задач с наиболее точными результатами.
Радиусом-вектором материальной точки является вектор, который соединяет координатную плоскость с самой материальной точкой. Рассмотрим пример (рис. 3).
Траектория – это невидимая линия, которую можно представить на графике, она будет описывать точку в процессе движения.
Путь – длина невидимой линии.
Перемещением является вектор, который соединяет положение тела в начале и в конце движения.
Нужно помнить, что перемещение может быть нулевое, даже при прохождении большого пути. Примером будет служить поход в школу (10 км), далее – в магазин (15 км) и обратно домой – 20 км. Пройденный путь составляет 45 км, но перемещение = 0. Это объясняется тем, что путь домой совпадает с началом и концом движения. Вектор, который соединяет начало и конец движения равен нулю.
В случае, когда мы знаем координаты точек, для определения их перемещения применяем формулы:
Обратите внимание на то, что путь является скалярной величиной, а вектор с перемещением – векторной.
Если мы с объектом в разных системах отсчёта, воспользуемся ещё одной формулой: r (t) = r (t) + R (t).
Скорость материальной точки
Если движение рассматриваемой в условии задачи точки является прямолинейным, следует применять формулу: u = s / t. В случае, когда скорость изменяет направление движения, то она постоянна в определённом времени.
u = ds / dt = s, ds – расстояние, dr – перемещение.
Путь – s, который пройден за промежуток времени t = t2 – t1, будет равен интегралу u по t.
U – вектор, который направлен к траектории. Расстояние и величина перемещения, которые пройдены за небольшой промежуток времени равны, то есть ds = dr.
Формула скорости в векторном виде: u = dr / dt.
Средняя скорость движения высчитывается по формуле: u ср = r / t.
При описании движения материальных точек используют координаты х, у, z. В начале вычисляют проекции на осях: ux = dx / dt = x1, uy = dy / dt = y1, uz = dz / dt = z1.
Ускорение материальной точки
Часто в ЕГЭ по физике встречаются задачи на ускорение, оно показывает, как быстро меняется скорость материальной точки. Применяем формулу: а = du / dt, где du – изменение скорости за небольшое время. Также можно вывести формулу тангенциального ускорения: а = at + an. Такой вид ускорения возникает в случае изменения величины скорости, оно будет равно производной скорости и времени: aт = du / dt = u. При движении со скоростью аt = 0: an = u^2 / p, р – кривизна в точке, её радиус.
В случае, когда траекторией точки является окружность, радиус будет такой же как у окружности, то есть p = R.
Тангенциальное ускорение всегда направляется к траектории с помощью касательной.
Также в процессе подготовки к сдаче экзамена рекомендуем прочесть методические рекомендации ЕГЭ по физике 2020 и просмотреть демонстрационные варианты, размещённые в открытом доступе. С помощью них вы сможете ознакомить со структурой КИМов, количеством содержащихся заданий, их формулировками и уровнем сложности. Задания из демонстрационных вариантов, как правило, не попадаются на ЕГЭ, встречаются обычно похожие, с разными условиями задач.
В завершение отметим, что ознакомившись с данной статьёй, материалами, изложенными в ней, а также дополнительными рекомендациями, вы будете готовы к ЕГЭ по физике. Встретив в КИМах задания подобных планов, вам не составит труда решить их. Таким образом, мы рассмотрели и разобрали тему и решение задач, наиболее часто встречающихся на едином государственном экзамене.
Механика — это раздел физики, изучающий механическое движение тел.
Кинематика — это раздел механики, в котором изучается механическое движение тел без учета причин, вызывающих это движение.
Материальная точка — тело, обладающее массой, размерами которого в данной задаче можно пренебречь, если
Система отсчета — это тело отсчета, связанная с ним система координат и прибор для измерения времени. Траектория — это линия, которую описывает тело при своем движении. Путь — это скалярная величина, равная длине траектории. Перемещение — это вектор, соединяющий начальное положение тела с его конечным положением за данный промежуток времени.
Важно! В процессе движения путь может только увеличиваться, а перемещение как увеличиваться, так и уменьшаться, например, когда тело поворачивает обратно. При прямолинейном движении в одном направлении путь равен модулю перемещения, а при криволинейном — путь больше перемещения. Перемещение на замкнутой траектории равно нулю.
Основная задача механики — определить положение тела в пространстве в любой момент времени.
Механическое движение и его виды
Механическое движение — это изменение положения тела в пространстве относительно других тел с течением времени.
Механическое движение может быть: 1. по характеру движения
2. по виду траектории
Относительность механического движения
Относительность движения — это зависимость характеристик механического движения от выбора системы отсчета.
Правило сложения перемещений
Перемещение тела относительно неподвижной системы отсчета равно векторной сумме перемещения тела относительно подвижной системы отсчета и перемещения подвижной системы отсчета относительно неподвижной системы отсчета:
где \( S \) — перемещение тела относительно неподвижной системы отсчета; \( S_1 \) — перемещение тела относительно подвижной системы отсчета; \( S_2 \) — перемещение подвижной системы отсчета относительно неподвижной системы отсчета.
Правило сложения скоростей
Скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела относительно подвижной системы отсчета и скорости подвижной системы отсчета относительно неподвижной системы отсчета:
где \( v \) — скорость тела относительно неподвижной системы отсчета; \( v_1 \) — скорость тела относительно подвижной системы отсчета; \( v_2 \) — скорость подвижной системы отсчета относительно неподвижной системы отсчета.
Относительная скорость
Важно! Чтобы определить скорость одного тела относительно другого, надо мысленно остановить то тело, которое мы принимаем за тело отсчета, а к скорости оставшегося тела прибавить скорость остановленного, изменив направление его скорости на противоположное.
Пусть \( v_1 \) — скорость первого тела, а \( v_2 \) — скорость второго тела. Определим скорость первого тела относительно второго \( v_ <12>\) :
Определим скорость второго тела относительно первого \( v_ <21>\) :
Следует помнить, что траектория движения тела и пройденный путь тоже относительны.
Если скорости направлены перпендикулярно друг к другу, то относительная скорость рассчитывается по теореме Пифагора:
Если скорости направлены под углом \( \alpha \) друг к другу, то относительная скорость рассчитывается по теореме косинусов:
Скорость
Скорость — это векторная величина, характеризующая изменение перемещения данного тела относительно тела отсчета с течением времени.
Обозначение — \( v \) , единицы измерения — м/с (км/ч).
Средняя скорость — это векторная величина, равная отношению всего перемещения к промежутку времени, за которое это перемещение произошло:
Средняя путевая скорость — это скалярная величина, равная отношению всего пути, пройденного телом, к промежутку времени, за которое этот путь пройден:
Важно! Чтобы определить среднюю скорость на всем участке пути, надо время разделить на отдельные промежутки и все время представить в виде суммы этих промежутков. Чтобы определить среднюю скорость за все время движения, надо путь разделить на отдельные участки и весь путь представить как сумму этих участков.
Мгновенная скорость — это скорость тела в данный момент времени или в данной точке траектории. Мгновенная скорость направлена по касательной к траектории движения.
Ускорение
Ускорение – это векторная физическая величина, характеризующая быстроту изменения скорости.
где \( v \) – конечная скорость; \( v_0 \) – начальная скорость; \( t \) – промежуток времени, за который произошло изменение скорости.
Тангенциальное ускорение сонаправлено с вектором линейной скорости, а значит, направлено вдоль касательной к кривой:
Нормальное ускорение перпендикулярно направлению вектора линейной скорости, а значит, и касательной к кривой:
Ускорение характеризует быстроту изменения скорости, а скорость – векторная величина, которая имеет модуль (числовое значение) и направление.
Важно! Тангенциальное ускорение характеризует быстроту изменения модуля скорости. Нормальное ускорение характеризует быстроту изменения направления скорости. Если \( a_ <\tau>\) ≠ 0, \( a_n \) = 0, то тело движется по прямой; если \( a_ <\tau>\) = 0, \( a_n \) = 0, \( v \) ≠ 0, то тело движется равномерно по прямой; если \( a_ <\tau>\) = 0, \( a_n \) ≠ 0, тело движется равномерно по кривой; если \( a_ <\tau>\) = 0, \( a_n \) = const, то тело движется равномерно по окружности; если \( a_ <\tau>\) ≠ 0, \( a_n \) ≠ 0, то тело движется неравномерно по окружности.
Равномерное движение
Равномерное движение – это движение, при котором тело за любые равные промежутки времени совершает равные перемещения.
Скорость при равномерном движении – величина, равная отношению перемещения к промежутку времени, за которое это перемещение произошло:
Проекция вектора скорости на ось ОХ:
Проекция вектора скорости на координатную ось равна быстроте изменения данной координаты:
График скорости (проекции скорости)
График скорости (проекции скорости) представляет собой зависимость скорости от времени:
График скорости при равномерном движении – прямая, параллельная оси времени. График 1 лежит над осью \( t \) , тело движется по направлению оси ОХ. Графики 2 и 3 лежат под осью \( t \) , тело движется против оси ОХ.
Перемещение при равномерном движении – это величина, равная произведению скорости на время:
Проекция вектора перемещения на ось ОХ:
График перемещения (проекции перемещения)
График перемещения (проекции перемещения) представляет собой зависимость перемещения от времени:
Координата тела при равномерном движении рассчитывается по формуле:
График координаты представляет собой зависимость координаты от времени: \( x=x(t) \) .
График координаты при равномерном движении – прямая. График 1 направлен вверх, тело движется по направлению оси ОХ:
График 2 параллелен оси ОХ, тело покоится. График 3 направлен вниз, тело движется против оси ОХ:
Прямолинейное равноускоренное движение
Прямолинейное равноускоренное движение – это движение по прямой, при котором тело движется с постоянным ускорением:
При движении с ускорением скорость может как увеличиваться, так и уменьшаться.
Скорость тела при равноускоренном движении рассчитывается по формуле:
При разгоне (в проекциях на ось ОХ):
При торможении (в проекциях на ось ОХ):
График ускорения (проекции ускорения) при равноускоренном движении представляет собой зависимость ускорения от времени:
График ускорения при равноускоренном движении – прямая, параллельная оси времени. График 1 лежит над осью t, тело разгоняется, \( a_x \) > 0. График 2 лежит под осью t, тело тормозит, \( a_x \) \( v_ <0x>\) > 0, \( a_x \) > 0.
График 2 направлен вниз, тело движется равнозамедленно в положительном направлении оси ОХ, \( v_ <0x>\) > 0, \( a_x \) \( v_ <0x>\) \( a_x \) \( t_2-t_1 \) . Для этого необходимо определить площадь фигуры под графиком (заштрихованной фигуры).
Перемещение при равноускоренном движении рассчитывается по формулам:
Перемещение в \( n \) -ую секунду при равноускоренном движении рассчитывается по формуле:
Координата тела при равноускоренном движении рассчитывается по формуле:
Свободное падение (ускорение свободного падения)
Свободное падение – это движение тела в безвоздушном пространстве под действием только силы тяжести.
Все тела при свободном падении независимо от массы падают с одинаковым ускорением, называемым ускорением свободного падения. Ускорение свободного падения всегда направлено к центру Земли (вертикально вниз).
Движение тела по вертикали
Тело падает вниз, вектор скорости направлен в одну сторону с вектором ускорения свободного падения:
Если тело падает вниз без начальной скорости, то \( v_0 \) = 0. Время падения рассчитывается по формуле:
Тело брошено вверх:
Если брошенное вверх тело достигло максимальной высоты, то \( v \) = 0. Время подъема рассчитывается по формуле:
Движение тела, брошенного горизонтально
Движение тела, брошенного горизонтально, можно представить как суперпозицию двух движений:
Скорость тела в любой момент времени:
Угол между вектором скорости и осью ОХ:
Движение тела, брошенного под углом к горизонту (баллистическое движение)
Движение тела, брошенного под углом к горизонту, можно представить как суперпозицию двух движений:
Скорость тела в любой момент времени:
Угол между вектором скорости и осью ОХ:
Время подъема на максимальную высоту:
Максимальная высота подъема:
Максимальная дальность полета:
Важно! При движении вверх вертикальная составляющая скорости будет уменьшаться, т. е. тело вдоль вертикальной оси движется равнозамедленно. При движении вниз вертикальная составляющая скорости будет увеличиваться, т. е. тело вдоль вертикальной оси движется равноускоренно. Скорость \( v_0 \) , с которой тело брошено с Земли, будет равна скорости, с которой оно упадет на Землю. Угол \( \alpha \) , под которым тело брошено, будет равен углу, под которым оно упадет.
При решении задач на движение тела, брошенного под углом к горизонту, важно помнить, что в точке максимального подъема проекция скорости на ось ОУ равна нулю:
Это облегчает решение задач:
Движение по окружности с постоянной по модулю скоростью
Движение по окружности с постоянной по модулю скоростью – простейший вид криволинейного движения.
Траектория движения – окружность. Вектор скорости направлен по касательной к окружности. Модуль скорости тела с течением времени не изменяется, а ее направление при движении по окружности в каждой точке изменяется, поэтому движение по окружности – это движение с ускорением. Ускорение, которое изменяет направление скорости, называется центростремительным. Центростремительное ускорение направлено по радиусу окружности к ее центру.
Движение тела по окружности с постоянной по модулю скоростью является периодическим движением, т. е. его координата повторяется через равные промежутки времени. Период – это время, за которое тело совершает один полный оборот. Обозначение – \( T \) , единицы измерения – с.
где \( N \) – количество оборотов, \( t \) – время, за которое эти обороты совершены. Частота вращения – это число оборотов за единицу времени. Обозначение – \( \nu \) , единицы измерения – с –1 (Гц).
Период и частота – взаимно обратные величины:
Линейная скорость – это скорость, с которой тело движется по окружности. Обозначение – \( v \) , единицы измерения – м/с. Линейная скорость направлена по касательной к окружности:
Направление угловой скорости можно определить по правилу правого винта (буравчика). Если вращательное движение винта совпадает с направлением движения тела по окружности, то поступательное движение винта совпадает с направлением угловой скорости. Связь различных величин, характеризующих движение по окружности с постоянной по модулю скоростью:
Важно! При равномерном движении тела по окружности точки, лежащие на радиусе, движутся с одинаковой угловой скоростью, т. к. радиус за одинаковое время поворачивается на одинаковый угол. А вот линейная скорость разных точек радиуса различна в зависимости от того, насколько близко или далеко от центра они располагаются:
Если рассматривать равномерное движение двух сцепленных тел, то в этом случае одинаковыми будут линейные скорости, а угловые скорости тел будут различны в зависимости от радиуса тела:
Мгновенная скорость нижней точки \( (m) \) равна нулю, мгновенная скорость в верхней точке \( (n) \) равна удвоенной скорости \( v_1 \) , мгновенная скорость точки \( (p) \) , лежащей на горизонтальном радиусе, рассчитывается по теореме Пифагора, а мгновенная скорость в любой другой точке \( (c) \) – по теореме косинусов.