что такое пушка гаусса
О пушках Гаусса и не только
В этой статье мы постараемся рассмотреть ускорители (пушки) Гаусса, а также предложить ряд действий, для улучшения их работы. В процессе мы не будем сильно акцентироваться на схемотехнике, так как этот вопрос достаточно подробно разобран в других работах. Вместо этого мы остановимся на моментах, требующих приложения усилий и которые могут существенно поднять эффективность этих устройств.
Для наибольшего эффекта импульс тока в соленоиде должен быть кратковременным и мощным. Как правило, для получения такого импульса используются электролитические конденсаторы большой ёмкости и с высоким рабочим напряжением.
Часто, для ускорения снаряда в стволе – используются многоступенчатые схемы, в которых для ускорения снаряда используется более 1 катушки.
Параметры ускоряющих катушек, снаряда и конденсаторов должны быть согласованы таким образом, чтобы при выстреле к моменту подлёта снаряда к соленоиду индукция магнитного поля в соленоиде была максимальна, но при дальнейшем приближении снаряда резко падала. Стоит заметить, что возможны разные алгоритмы работы ускоряющих катушек.
В них образуется «бегущая волна», т.е. катушки включаются одна за другой, по мере входа в них снаряда:
Первая и основная трудность — низкий КПД установки. Лишь 1-7 % заряда конденсаторов переходят в кинетическую энергию снаряда. Отчасти этот недостаток можно компенсировать использованием многоступенчатой системы разгона снаряда, но в любом случае КПД редко достигает 27 %. В основном в любительских установках энергия, запасённая в виде магнитного поля, никак не используется, а является причиной использования мощных ключей (часто применяют тиристоры) для размыкания катушки.
Вторая трудность — большой расход энергии (из-за низкого КПД).
Третья трудность (следует из первых двух) — большой вес и габариты установки при её низкой эффективности.
Четвёртая трудность — достаточно длительное время накопительной перезарядки конденсаторов, что заставляет вместе с пушкой Гаусса носить и источник питания (как правило, мощную аккумуляторную батарею), а также высокая их стоимость. Можно, теоретически, увеличить эффективность, если использовать сверхпроводящие соленоиды, однако это потребует мощной системы охлаждения, что приносит дополнительные проблемы, и серьёзно влияет на область применения установки. Или же использовать заменяемые батареи-конденсаторы.
Пятая трудность — с увеличением скорости снаряда время действия магнитного поля, за время пролёта снарядом соленоида, существенно сокращается, что приводит к необходимости не только заблаговременно включать каждую следующую катушку многоступенчатой системы, но и увеличивать мощность её поля пропорционально сокращению этого времени. Обычно этот недостаток сразу обходится вниманием, так как большинство самодельных систем имеет или малое число катушек, или недостаточную скорость пули.
Кроме того, зачастую, используемые для строительства винтовки Гаусса компоненты, — выбираются по принципу не «оптимальности», а «того, что было под рукой», — ввиду того, что «каждая копейка на счёту». Это, в свою очередь, — ведёт к соответствующему снижению общей эффективности.
Для проектирования винтовки Гаусса её строители обычно используют широко известную программу FEMM и ряд скриптов для неё.
Ряд советов и вариантов моделирования можно глянуть тут.
ВНИМАНИЕ! Любая работа в области проектирования и создания рассмотренных устройств несёт повышенный риск, и автор не несёт ответственности за возможные инциденты! Вся информация даётся только «в познавательных целях» и не призывает к чему-либо!
ПУТИ УСОВЕРШЕНСТВОВАНИЯ ВИНТОВКИ ГАУССА
▍ 1. Изменение способа силовой коммутации катушек
После проведённого анализа в сети Интернет было выявлено, что большое количество самодельных устройств используют для силовой коммутации катушек – тиристоры (как было уже сказано выше), что является устаревшим подходом. И только небольшое количество самоделок – построено на IGBT-транзисторах. Как отмечают сами авторы самоделок, по большей части, это обусловлено их гораздо большей ценой.
Здесь уместно рассмотреть, что же такое IGBT-транзисторы.
Биполярный транзистор с изолированным затвором (БТИЗ, англ. Insulated-gate bipolar transistor, IGBT) — трёхэлектродный силовой полупроводниковый прибор, сочетающий два транзистора в одной полупроводниковой структуре: биполярный (образующий силовой канал) и полевой (образующий канал управления). Используется, в основном, как мощный электронный ключ в импульсных источниках питания, инверторах, в системах управления электрическими приводами.
До 1990-х годов в качестве силовых полупроводниковых приборов, помимо тиристоров, использовались биполярные транзисторы. Их эффективность была ограничена несколькими недостатками:
В диапазоне токов до десятков ампер и напряжений до 500 В целесообразно применение обычных МОП- (МДП-) транзисторов, а не БТИЗ, так как при низких напряжениях полевые транзисторы обладают меньшим сопротивлением.
▍ 2. Увеличение КПД за счёт предварительного разгона снаряда
Причём вот это «КПД перекачки энергии магнитного поля в кинетическую энергию снаряда очень быстро растёт по мере разгона снаряда» — это общий момент и для пушки Гаусса и для рельсотрона.
В этих целях можно было бы использовать какие-либо системы предварительного разгона, в качестве которых можно было бы попробовать использовать существующие пневматические винтовки и пистолеты ( заряжаемые цилиндрическим снарядом). В таком случае, пушка Гаусса выглядела бы как дополнительное устройство, на конце ствола пневматической винтовки или пистолета. Нечто вроде саундмодератора для пневматики (который иногда называют по ошибке «глушителем»).
▍ 3. Использование рекуперации, накопленной в катушке энергии.
Так как катушка индуктивности является накопителем энергии, имеет некоторый смысл в «сливе» её – обратно в питающий конденсатор. Это было бы полезно для целей увеличения КПД в целом.
Хороший анализ целесообразности подобного проведён здесь.
И выводы следующие (оттуда же):
▍ 4. Использование сложного программного алгоритма управления скоростью движения снаряда в стволе.
«с увеличением скорости снаряда время действия магнитного поля, за время пролёта снарядом соленоида, существенно сокращается, что приводит к необходимости не только заблаговременно включать каждую следующую катушку многоступенчатой системы, но и увеличивать мощность её поля пропорционально сокращению этого времени. Обычно этот недостаток сразу обходится вниманием, так как большинство самодельных систем имеет или малое число катушек, или недостаточную скорость пули».
Несмотря на проведённый достаточно тщательный анализ самоделок в сети Интернет, не удалось найти ни одной самоделки, которая бы использовала возможности настоящего момента: а именно использование микроконтроллеров для реализации сложного программного алгоритма для управления ускорением снаряда в стволе.
Это, на мой взгляд, по большей части обусловлено тем, что большинство гаусс-строителей идут по проторённому пути и стараются достичь результата наиболее коротким путём. Поэтому, они повторяют путь других, не обращая внимания на возможности, которые упускаются многими.
А именно: большинство самодельных конструкций построено с использованием оптических датчиков, которые запускают соответствующие катушки, после прерывания их луча — проходящим снарядом.
Хотя, для анализа скорости движения снаряда, его местоположения, оптимально подходит анализ индуктивности катушки/катушек (как подсказывает нам википедия, — «катушка индуктивности может применяться как датчик перемещения: изменение индуктивности катушки может изменяться в широких пределах при перемещении ферромагнитного сердечника относительно обмотки»). Это позволит постоянно иметь обратную связь и данные о скорости и местоположении снаряда, что, вкупе с быстродействующими IGBT-транзисторами, может позволить применить ШИМ-контроль, для оптимального разгона снаряда.
При таком подходе, можно обеспечить практически любую кривую ускорения заряда, в рамках имеющихся физических возможностей:
То есть, можно было бы:
▍ 5. Использование шаровидных зарядов, вместо продолговатых.
Так как большинство любителей используют пушку Гаусса для развлекательной стрельбы, изготовление зарядов для неё является делом достаточно трудоёмким и проблемным для большинства.
В сети приходилось видеть утверждения некоторых людей, которые считали, что разогнать такой заряд невозможно, так как он быстро уйдёт в насыщение и т.д.
Однако, совсем недавно, в 2018 году, на youtube появилось интересное устройство, возможно даже единственное в мире, которое смогло достигнуть скоростей в 130 м в секунду на стандартных шаровых зарядах для пневматических винтовок:
Конечно, точность шариков является весьма посредственной и годится только для развлекательной стрельбы по бутылочкам – «плинкинга».
Использование таких зарядов для развлекательной стрельбы является, на мой взгляд, достаточно рациональным и недорогим, в отличие от классических «гвоздей», на которых сосредоточено творчество большинства гаусс-строителей:
В КАЧЕСТВЕ ГИПОТЕЗЫ – ДЛЯ РАЗМЫШЛЕНИЯ…
Чтобы отвлечься от темы Гаусс-ганов, хотел бы предложить на обсуждение парочку своих идей, аналоги которых мне не приходилось видеть в сети.
▍ 1. Пулемёт внутреннего сгорания?!
Что если я скажу вам, что прямо у вас «под носом» находится практически готовое устройство, которое позволяет реализовать высокоскоростную стрельбу неким зарядом, с хорошей точностью и мощностью? Скорость стрельбы может достигать 6000 выстрелов в минуту и более.
Если мы посмотрим на обычный двухтактный двигатель внутреннего сгорания (и в принципе на любой двигатель), — то он является устройством, которое служит для совершения полезной работы путём отбора необходимой мощности от вращающегося вала. А что если, отбор мощности производить не от вала, а напрямую, от цилиндра?
Каким образом: в цилиндр монтируется быстродействующий клапан, который открывается на короткое время, в момент сгорания смеси, когда давление в цилиндре является максимальным (обычный двухтактный двигатель внутреннего сгорания, который используется в бензокосах или триммере для стрижки газонов, развивает давление в 60 атмосфер,- в цилиндре, в момент вспышки смеси).
Алгоритм работы такого клапана следует ещё подобрать, например, он может работать через 2 такта: чтобы один оборот вала двигателя использовался для поддержания вращения, а следующий оборот и, соответственно, вспышка, использовалась для отбора части газов высокого давления из цилиндра, — для метания некоего заряда.
Отбор мощности надо вести так и в таких объёмах, чтобы это позволило выполнять работу по метанию заряда, и, в то же время, не нарушало нормальную работу двигателя как такового!
В качестве такого быстродействующего клапана можно было бы попробовать использовать подобие электромагнитного клапана, который некоторые компании сейчас разрабатывают для своих автомобилей:
Таким образом, получается, что имеется неограниченный источник газов высокого давления, которые будут позволять вести скоростную стрельбу очередями или совершать одиночные выстрелы. Запас выстрелов, по сути, ограничен только запасом метаемых зарядов, так как топливо закончится гораздо позднее (кстати, заряды – могут подаваться за счёт работы некоего подающего устройства, приводящегося в движение от вращающегося вала)!
Знающие люди скажут: «да нууу, всего то 60 бар! Даже в CO2-баллончике 70 бар…». Дело не только в давлении, но и в площади, на которую оно воздействует. В двух словах: меньше пуля – нужно больше давление. Больше пуля — нужно меньше давления.
Тут будет уместен такой исторический экскурс:
Пневматическая винтовка Жирардони.
Источник картинки: www.drive2.ru
Источник картинки: www.drive2.ru
Баллон конической формы соединялся с казёнником на резьбе, герметизировалось соединение пропитанной водой кожаной манжетой приклада-баллона. Воздух накачивался в баллон ручным насосом (для этого требовалось около 1500 качаний), давление в нём достигало 33 атмосфер, чего вполне хватало, чтобы придать 10-граммовой пуле начальную скорость около 200 м/с (дульная энергия — 200 Дж). Одного баллона хватало на 20 достаточно убойных выстрелов, хотя баллистика, конечно, изменялась от выстрела к выстрелу — первые 10 пуль летели до 150 шагов, следующие падали ближе.
Таким образом, становится понятно, что 60 атмосфер – это очень серьёзно, когда даже 33 атмосферы могут «наделать делов»…
▍ 2. Электрогидравлическое оружие
Это устройство также не приходилось видеть в сети, однако его идея является достаточно привлекательной.
Вот в этой статье, я достаточно подробно разобрал интересный эффект, который успешно используется в разных сферах, но не нашёл ещё своё применение в рамках создания образцов оружия: эффект Юткина.
«В основе электрогидравлического эффекта лежит ранее неизвестное явление резкого увеличения гидравлического и гидродинамического эффектов и амплитуды ударного действия при осуществлении импульсного электрического разряда в ионопроводящей жидкости при условии максимального укорочения длительности импульса, максимально крутом фронте импульса и форме импульса, близкой к апериодической.
Отсюда следует, что основными факторами, определяющими возникновение электрогидравлического эффекта, являются амплитуда, крутизна фронта, форма и длительность электрического импульса тока. Длительность импульса тока измеряется в микросекундах, поэтому мгновенная мощность импульса тока может достигать сотен тысяч киловатт. Крутизна фронта импульса тока определяет скорость расширения канала разряда. При подаче напряжения на разрядные электроды в несколько десятков киловольт амплитуда тока в импульсе достигает десятков тысяч ампер.
Основными действующими факторами электрогидравлического эффекта являются высокие и сверхвысокие импульсные гидравлические давления, приводящие к появлению ударных волн со звуковой и сверхзвуковой скоростями; значительные импульсные перемещения объёмов жидкости, совершающиеся со скоростями, достигающими сотен метров в секунду; мощные импульсно возникающие кавитационные процессы, способные охватить относительно большие объёмы жидкости; инфра- и ультразвуковые излучения; механические резонансные явления с амплитудами, позволяющими осуществлять взаимное отслаивание друг от друга многокомпонентных твёрдых тел; мощные электромагнитные поля (десятки тысяч эрстед); интенсивные импульсные световые, тепловые, ультрафиолетовые, а также рентгеновские излучения; импульсные гамма- и (при очень больших энергиях импульса) нейтронные излучения; многократная ионизация соединений и элементов, содержащихся в жидкости».
Такой подход весьма интересен, так как:
Появление высокотемпературных сверхпроводников и компактных источников энергии с высокой плотностью её хранения, — наверняка заставит по-новому взглянуть на неё в будущем.
Однако, помимо пушки Гаусса, существует ещё ряд любопытных приёмов, которые могут быть использованы в качестве базы для «пушкостроя». У каждого из них есть как свои очевидные плюсы, так и свои минусы, что потребует соответствующего учёта.
Пушка Гаусса
Хомяки приветствуют обитателей третьей от солнца планеты.
Классическая Пушка Гаусса состоит из пяти основных блоков. Пойдём по порядку: источник питания, в нашем случае аккумулятор запитывает преобразователь, который в свою очередь заряжает высоковольтную сборку из электролитических конденсаторов. Дальнейшая задача, разрядить весь накопленный заряд в катушку через мощный ключ. В результате, созданное магнитное поле, передаст железной пуле определенное ускорение.
Скорострельность такого устройства зависит от мощности преобразователя. Чем он будет мощней, тем быстрей сможет заряжать сборку конденсаторов.
Сердцем преобразователя служит трансформатор с Ш-образным ферритовым сердечником. Мотать катушку будем медным 0,35 миллиметровым проводом. Вначале мотаем вторичную обмотку двойным проводом, это нужно для увеличения выходного тока. Количество витков примерно 60. Каждый намотанный слой изолируем полиэстеровой изолентой.
Первичную обмотку мотаем тем же 0,35 миллиметровым проводом только в 6 жил. Чтобы они не распутывались, закручиваем их в скрутку. Так мы увеличили площадь сечения провода. В общем, на шпильку катушки вместилось ровно 9 витков. Это означает, что соотношение витков первичной и вторичной обмоток получилось примерно 1:6.
Важная деталь, чтобы трансформатор сохранял свои характеристики, его нужно пропитать эпоксидом, после этого он не будет издавать свистов и писков во время работы.
Однотактный трансформатор готов, управлять им будет такой же однотактный инвертор на микросхеме uc3845. Дальнейшая работа заключается в разводке платы под все комплектующие схемы. Своя плата всегда технологичней, по крайней мере хочется в это верить.
Если все сделано правильно, то такая схема будет потреблять около 3.7 А при напряжении питания 12 V. Перемножив первое на второе, получим 44 Вт потребляемой мощности. Сигнал при этом будет в виде меандра с заполнением 50 процентов, именно так работает драйвер uc3845. При правильной настройке радиатор на транзисторе будет практически холодным. Единственное что будет греться это резистор снаббера по выходу схемы.
Также в схеме есть ограничение заряда по напряжению, что защищает конденсатор от перезаряда, который может привести к взрыву или деградации ёмкости. Выставляется этот порог с помощью подстроечного резистора обратной связи схемы. Значение может варьироваться от 200 и до 500 вольт. Нам так много не нужно, потому выставим значение 397 вольт, 3 вольта дадим запаса.
Теперь переходим непосредственно к конденсаторам. Как и говорил, ёмкость тут немного выше, 1000 uF. В нашей пушке будет задействовано 10 таких банок, включены они будут параллельно для увеличения общей емкости. Для удобства установки конденсаторов была сделана небольшая плата с достаточно толстыми дорожками. В конечном результате сборка вышла компактной и увесистой. Измерения показали общую емкость банок в 8950 uF, что нормально, учитывая разбросы ёмкостей, и всем давно понятно, что разбросы не в нашу сторону…
При попытке разрядить заряженные ёмкости через лампочку, вместо того чтобы дотронуться проводом к массивному контакту, рука промахнулась и дотронулась к дорожке. Это моментально привело к громкому взрыву, который спровоцировал перестрелку между бандами соседних районов. Дорожка за считанные секунды куда-то испарилась.
Решением было нарастить толщину дорожек с помощью двойного медного провода с сечением в 3 квадрата каждый. Его будет трудно паять, в связи с большой теплоемкостью. Но если у вас в хозяйстве есть газовая горелка, то это будет нипочем.
Настало время проверить насколько быстро инвертор способен зарядить подобную сборку. Таймер запущен. Ждем срабатывания ограничителя по заряду и останавливаем таймер. Время от начала процесса и до конца заняло 36 секунд. Пулемёт конечно из такой пушки не получить, но чем богаты, тому и рады. Едем дальше.
Теперь всю накопленную энергию нужно разрядить в катушку. Катушка должна быть из толстого провода, в этом примере использована медь диаметром 1.7 мм. Форма, количество витков и слоев были взяты с потолка. Перед испытанием были намотаны несколько образцов, чтобы проверить эффективность полей, влияющих на металлический образец находящийся внутри. Каждый образец придавал железной пуле разное ускорение. Лучше всего показала себя катушка №1, намотанная в 200 витков и имеющая 5 слоев.
Сила в ней что надо, но при разряде, каждый виток с появлением магнитного поля пытается оттолкнуться от своего соседа, что при выстреле давало незначительную деформацию с хорошим хлопком. Избавиться от такого эффекта можно с помощью эпоксидной смолы, она пропитает слои и скрепит их намертво.
Мы забыли упомянуть одну важную деталь. А именно элемент, который коммутирует всю накопленную энергию в конденсаторах на катушку. В качестве ключа для таких целей используют мощные тиристоры. Они бывают разных конструкций, всё зависит от их характеристик и направления использования.
В дальнейших экспериментах приходилось палить тиристор за тиристором, дабы понять какой из них окажется самым крепким. Т143-800 оказался самым мощным, а цифра 800 означает максимально допустимый ток.
Подобные современные тиристоры стоят целые состояния, потому ищем советские. Единственная проблема такого корпуса в том, что у него нет контактов крепления, кроме управляющего электрода конечно. Такие экземпляры крепятся специальными прижимными механизмами, у которых большая площадь соприкосновения, чтоб увеличить пропускную способность больших токов. Нужно сделать что-то похожее из подручных средств.
Для этого был найден стальной лист из нержавейки толщиной в 3 мм. Резать его было одно удовольствие. Чтобы пропилить 25 см этой породы, понадобилось около часа и 3 ножовочных полотна. В итоге получился такой бутерброд.
Очень важно изолировать крепежные шурупы, которые будут соединять пластины, надев термоусадку со стороны шляпки. В общем, нужно полностью исключить контакт с железом с одной стороны, иначе будет короткое замыкание анода и катода на тиристоре.
Схема готова к работе, но прежде чем произвести выстрел, нужно знать какое напряжение накопилось на конденсаторах.Для этих целей вполне можно использовать копеечный вольт-амперметр, но у него есть один недостаток. Предел измеряемого напряжения у него ограничивается планкой в сто вольт. Но у нас планка в 4 раза выше, что делать?!
Всё просто, необходим делитель напряжения. Сделать его можно из двух резисторов, первый будет на 100 кОм, второй на 10 кОм, в средней точке между ними получим напряжение в 10 раз меньше того, которое нужно измерить. Обычно резистор с меньшим сопротивлением делают переменным, это дает возможность более точной настройки. Теперь вольтметр способен показывать значение постоянного напряжения до 1000 V. Когда на индикаторе показывает 20.0 V, это означает 200 V, а по желанию можно вообще отключить точку разделяющую цифры, чтобы не запутаться.
Поначалу снаряды будут длиной 30 мм. Края металлической болванки тоже нужно обработать, они должны быть максимально гладкими, чтобы как по маслу скользить в канале ствола.
Любопытно, какая же сила воздействует на этот кусок металла?! Для начала посмотрим на форму сигнала импульса тока в катушке. Для этих целей лучше всего подходит цифровой осциллограф, так как он способен записать сигнал в момент его появления. Производим выстрел и сигнал тока записан.
Заранее хочу отметить, что такую операцию желательно производить с развязкой по цепи, иначе можно спалить дорогостоящий прибор. Развязать цепь можно обычным ферритовым кольцом, надетым на силовую линию. На кольцо наматываем один виток провода, и шунтируем его небольшим резистором, скажем в 10 Ом. А уже с него снимаем возникший в цепи сигнал.
Замеры показали, что средняя длительность импульса порядка 6 мкс. Для примера в одной секунде миллион микросекунд. Это означает, что конденсаторы способны отдать всю свою накопленную энергию за очень короткое время.
На данном этапе всю эту кучу железа трудно назвать Пушкой Гаусса. Для правильного восприятия и устрашения, на листе бумаги были сделаны первые эскизы будущего корпуса, который состоял из кусков ДСП.
Дальше переносим туда размеры и начинаем работу по дереву…
Самый грязный процесс позади, переходим к следующему этапу. В качестве источника питания будем использовать высокотоковые аккумуляторы формата 18650. Фирма LG, маркировка LGDBHG 21865. Ёмкость у такого 3 А*ч. Максимальный ток, который способен выдавать элемент 20 А. Лучшие аккумуляторы на сегодняшний день по цене — качеству.
Итак, что у нас вышло. Сбоку находится кнопка предохранитель, заряжающая конденсаторы, для работы её нужно постоянно держать. Для удобства можно использовать прищепку. После заряда убираем зажималку с кнопки и производим выстрел.
Так как Gauss Gun электромагнитная пушка, хорошо бы это подчеркнуть, значком с магнитом и уникальным знаком, который предупреждает о том, что рядом падают коровы.
Проведя пару примитивных расчётов, нам удалось выяснить начальную скорость пули, её энергию запасенную в конденсаторах и КПД устройства в целом. Как мы это узнали, всё просто, с помощью классического баллистического маятника, который пользовался своей популярностью еще много веков назад.
Для начала расчетов нужно узнать массу пули, в нашем случае это 2.6 грамма, массу маятника 391.9 грамма, длину подвеса, которая в нашем случае ровно 70 см. Так же нужно знать расстояние отклонения маятника при попадании в него пули. С обратной стороны разместим линейку и небольшой кусок пенопласта, который отодвинется на нужное нам расстояние. По этим цифрам и будем вести расчёт.
Посмотрим, что у нас получилось по результатам голосования. Сравнение двух пушек проводились в одинаковых условиях и с соблюдением всех мер безопасности.
Результаты расчетов получились следующими: пуля Гаусса имела начальную скорость 42 м/С, в то время как пневмат выдал скорость в 3.5 раза больше, 152 м/С. То же самое касалось энергии пули, для своей массы и скорости, пуля от пневматического пистолета имеет энергию в 3.2 джоуля, в то время как Гаусс показал это значение на единицу меньше.
Ещё рассчитали общий заряд конденсаторов, и энергию, которую они способны накопить.
Дальше мы ударились в религию, и решили посмотреть, что нам покажет программа, которая специально создана для расчетов Пушки Гаусса. Вводим туда все необходимые параметры, включая толщину провода катушки, ёмкость конденсаторов и прочие заранее известные параметры. Итак, с пулей длиной 45 мм максимальный КПД, который удалось выжать из программы 0.46 процента.
Теперь проверим это на практике. Отрезаем кусок от гвоздя длиной 45 мм и взвешиваем, масса пули 4.14 грамма, все остальные параметры нам уже известны. Производим выстрел. Результаты измерения программы и баллистического маятника оказались близки друг к другу, 0.46 % против 0.44 %. Что это означает, а то что, 99.5 процентов энергии накопленной в конденсаторах, всего на 0.44 процента переходит в пулю через энергию магнитного поля, которое возникает в катушке. По большей части мощный импульс просто рассеивается в воздухе, не выполняя никакого полезного действия. Вот поэтому КПД Пушек Гаусса редко превышают 2%.
Важный момент при настройке! Когда намотан трансформатор, важно подключить его правильной полярностью, грубо говоря, если вы запустили схему, ток потребления бешеный, а лампочка еле горит, значит нужно поменять местами один из концов обмоток.