что такое продуктивный пласт в бурении
Вскрытие продуктивных пластов
Финальным этапом процесса бурения нефтяных и газовых скважин является вскрытие продуктивных пластов. Показатель продуктивности говорит о том, насколько эффективна будет нефтедобыча в данном месторождении, и по достижении такого пласта необходимо проводить ряд работ, нацеленных на сохранение оптимальных условий разработки и защиту от негативных факторов. Процесс вскрытия продуктивных пластов всегда осуществляется по заданной технологии, регламентирующей алгоритм и контролирующей безопасность работ и их результативность.
Вскрытие продуктивных пластов – что это такое?
Данная процедура представляет собой комплекс действий, направленных на разработку пласта, имеющего подходящее соотношение дебита к депрессии, с целью выкачивания сырья из залежей месторождения. В ходе вскрытия необходимо позаботиться о том, чтобы не произошло открытого фонтанирования, но одновременно с этим важно, чтобы очищающие качества пластов природного происхождения остались неизменными.
В случае, если проницаемость пластов слишком маленькая, требуется увеличить фильтрационные возможности призабойной области, для чего применяются различные методы. Само вскрытие может осуществляться несколькими способами и имеет две разновидности: первичное и вторичное. Под первичным понимается набор действий, которые направлены на пластовое бурение с обеспечением устойчивого и надежного положения скважины, а вторичное является необходимым действием после цементирования колонн.
Технология вскрытия продуктивных пластов
Сформировавшаяся технология процесса мало чем отличается от бурения основного скважинного ствола, поэтому она не берет в расчет механические качества пластов породы. Выбор технологии вскрытия для нефтяной скважины воздействует на особенности освоения месторождения и играет важную роль в формировании характеристик конкретной скважины.
Технология вскрытия продуктивных пластов требует правильного составления рецепта раствора для бурения, использования работ по цементированию того вида, который окажет наиболее низкое отрицательное воздействие на фильтрационные свойства пластов. Плотность смеси должна определяться степенью давления в пластах, сам раствор должен иметь удерживающие способности, обладать гидрофобностью, высокой степенью смазывания, ингибирующими качествами. Технология также предусматривает регулярную очистку смеси механическими и химическими способами.
Комплексная технология по цементированию включает несколько этапов, главные среди которых – установка ванны, буферных пачек и создание состава для тампонажа с низкой отдачей при фильтрации. Смесь для тампонажа делается с применением качественного портландцемента с добавкой специальных элементов, улучшающих его свойства.
Первичное и вторичное вскрытие продуктивного пласта
Первичным вскрытием называется разбуривание продуктивного пласта, а к вторичной работе относится перфорация. Первичное вскрытие считается первой частью работ по завершению, и они проводятся в самом пласте. Качество действий определяет степень загрязненности раствора и самого пласта, что напрямую отражается на проницаемости, поэтому крайне важно подобрать правильную технологию для конкретных условий. Всего выделяют три класса для первичного пластового вскрытия:
Технологии 3 класса известны в мировой практике больше всего.
В ходе перфорирования крайне важны следующие факторы:
Методы вскрытия продуктивных пластов
Ключевые требования, которые применяются к способам вскрытия пластов:
В ходе вторичного вскрытия, которое осуществляется перфорированием, могут использоваться различные перфораторы, выбор которых делается, исходя из давления пластов, механических свойств породы и степени проницаемости. Наиболее популярны пулевые, кумулятивные, гидропескоструйные, фрезерные и торпедные разновидности.
Используемый метод подразумевает, что формы и габариты отверстий для соединения колонны с пластом определяются созданными условиями и самим способом. В ходе вскрытия необходимо исключить попадания в пласт тампонажных и буровых смесей, которые могут существенно ухудшить его свойства. Вскрытие должно создать такие условия, в которых пласт будет эксплуатироваться максимально долго, а нефтяная добыча будет эффективной.
Разновидности оборудования для перфорирования
Большей результативностью обладают устройства торпедной конструкции: они выстреливают снарядами разрывного вида, их диаметр колеблется от 2,2 до 3,2 см. При взрыве таких снарядов формируются глубокие каверны. Минусом этого и предыдущего типа оборудования является то, что после работы могут образоваться трещины на трубах и кольце из цементной смеси.
Применение кумулятивных устройств отверстия образуются в пласте, трубах и кольце при помощи прожигания стенок газовой сконцентрированной струей, которая образуется при взрывании снарядов кумулятивного типа. Давление струи доходит до 30 Гпа, и в породе создается канал длиной до 35 см, который имеет сужающуюся по длине структуру. Его максимальный диаметр составляет 1-1,5 см. минусом метода считается то, что газовая струя влечет подачу жидкости из ствола, из-за чего пласт засоряется, и в будущем при эксплуатации нефтяной приток может существенно уменьшиться.
Также порой для вскрытия вторичного типа используется фрезерная перфорация, при которой по колонне опускается устройство с кругом для резки, вращающимся вокруг оси, и с его помощью в колонне делаются специальные щели. Минусом такого метода считается малая глубина спуска, поэтому его можно применять на скважинах, которые в силу тех или иных причин не могут быть углублены.
Вторичное вскрытие продуктивных пластов
Продуктивный пласт.
Пласт – массив какой-либо породы, заключённого между двумя слоями других пород. Верхняя поверхность пласта называется кровлей, нижняя – подошвой. Расстояние между кровлей и подошвой называют мощностью пласта.
По проницаемости горные породы делятся на проницаемые (коллекторы) непроницаемые (покрышки). Согласно общепринятой теории образования нефти- необходимы остатки растений и животных, а так же определенное давление и температура.
По мере накопления слоев органического вещества, песка. глины, ила и извести. с течением времени масса покрывающих отложений оказывала огромное давление на лежащие ниже осадочные слои. С увеличением массы отложений они постепенно опускались. огромное давление в сочетании с высокой температурой, действием бактерий и химическими реакциями и привели к образованию сырой нефти и природного газа.
В результате постоянного сжигания материнского пласта, по мере трансформации биоостатков углеводородов (нефть и газ в виде флюидов) постепенно выдавливаются вверх пористые проницаемые породы (это первичная миграция флюидов), такие как: песчаник, карбонатные породы, известняк и доломиты. Именно эти породы являются хранилищем мигрировавших углеводородов и такие породы называются коллекторы.
Термобарические условия (пластовые давления и температура) являются важной характеристикой условий залегания скоплений нефти и газа в земной коре.
Пористость— объем породы-коллектора, не заполненный твердым веществом. К пористым породам принадлежат такие, как песчаник, карбонатные породы, известняк и доломиты.
По признаку раскрытия (ширины) пустоты, образуемые порами, условно делятся на крупные (сверхкапиллярные) – диаметром более 0,5 мм, капиллярные – от 0,5 до 0,0002 мм, субкапиллярные –менее 0,0002 мм.
В нефтяной геологии, наряду с понятиями общая и открытая пористость, существует понятие эффективная пористость. Она определяется наличием таких пор, из которых нефть может быть извлечена при разработке. Неэффективными считают субкапиллярные и изолированные поры.
Коэффициент эффективной пористости:
где Vотн – объём открытых пор данной породы; V – общий объём породы.
Проницаемость зависит от размера и конфигурации пор (величины зерен), от плотности укладки и взаимного расположения частиц, от трещиноватости пород.
Коэффициент проницаемости равен:
k= .
где Q – объёмный расход жидкости через породу за 1 с; F – площадь фильтрации; k – коэффициент пропорциональности, называемый иначе коэффициентом проницаемости породы; μ – динамическая вязкость жидкости; Δp – перепад давления на длине образца породы; L – длина пути, на котором происходит фильтрация жидкости.
Удельная поверхностьпороды – суммарная площадь поверхности частиц, приходящаяся на единицу объема образца. От величины удельной поверхности нефтеносных пород зависят их проницаемость, содержание остаточной (реликтовой или связанной) воды и нефти. При этом чем меньше удельная поверхность, тем больше проницаемость. Породы с удельной поверхностью более 230000 м2/м3.
Температура существенно влияет на свойства нефти и газа в пластовых условиях. С повышением темперы уменьшаются плотность, вязкость нефти и увеличивается подвижность, происходят изменения в углеводородном составе нефти (метанизация), а при температурах более 300 ºС начинается деструкция нефтей (газификации).
Для газов характерно увеличение вязкости с увеличением температуры. При низких температурах (0 ºС и ниже) возможно образование кристаллогидратов.
Дата добавления: 2015-05-26 ; просмотров: 3891 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Добыча нефти и газа
Изучаем тонкости нефтегазового дела ВМЕСТЕ!
Вскрытие продуктивного пласта
Падение добычи нефти в стране, наблюдающееся в последние годы, во многом вызвано объективными причинами. Так, за последние15 лет прирост запасов осуществлялся за счет открытия месторождений сложного строения с низкопроницаемыми коллекторами, то есть за счет открытия месторождений с трудноизвлекаемыми запасами. Анализ структуры запасов показал, что уже в настоящее время на предприятиях в Западной Сибири на долю трудноизвлекаемых приходится до 70% общих запасов.
Скважины с дебитом ниже какой-то постоянно изменяющейся величины нерентабельны. Их появление сигнал для проведения работ по оценке эффективности разработки месторождения и поиска решений для увеличения дебита скважин и обеспечения максимально возможной нефтеотдачи пласта. Одной из причин появления малопродуктивных скважин может быть искусственное ухудшение проницаемости пород, в частности, в околоскважинной зоне при заканчивании скважин.
Даже при однородных коллекторских свойствах пласта можно получить скважины с различной продуктивностью. Качество работ при заканчивании скважин, наряду с выбором оптимальной схемы разработки, является важнейшим фактором, определяющим эффективность эксплуатации месторождений.
В настоящее время положение таково, что существующие технологии вскрытия продуктивных пластов в подавляющем большинстве случаев не обеспечивают сохранения естественной проницаемости пород в околоскважинной зоне.
При работе скважины продуктивный пласт может в значительной мере восстановить свою проницаемость за счет очистки околоскважинной зоны, но это касается высокопроницаемых коллекторов. При разработке месторождений с низкопроницаемыми коллекторами такого явления не наблюдается. Дело в том, что при применении одной и той же технологии вскрытия коллекторов низкопроницаемым пластам наносится значительно больший ущерб; чем высокопроницаемым. Определяющим здесь является образование в пласте зон капиллярно-удерживаемой воды, разбухание пластовых глин и кольматация поровых каналов твердой фазой бурового раствора.
Не менее интересен тот факт, что в работающей скважине основная часть энергии на продвижение жидкости к забою скважины тратится в непосредственной ее окрестности. Так, при притоке жидкости к скважине, находящейся в центре кругового пласта радиусом 400 м, половина энергии тратится в зоне пласта скважины радиусом всего 5 м. В такой ситуации при разработке месторождений с низкопроницаемыми коллекторами даже при высоком качестве заканчивания скважин нет оснований ожидать больших дебитов. Поэтому необходимо искать пути снижения потерь энергии пласта при движении пластового флюида в околоскважинной зоне.
При разработке месторождений с низкопроницаемыми коллекторами для условий Западной Сибири продуктивность скважин определяется следующими этапами работ:
· обеспечение высокого качества открытого ствола скважины перед вскрытием продуктивного пласта (если эксплуатационная колонна не спускается до кровли продуктивного пласта);
· качественное вскрытие продуктивного пласта бурением;
· спуск и цементирование эксплуатационной колонны с сохранением коллекторских свойств продуктивного пласта;
· вторичное вскрытие с сохранением коллекторских свойств продуктивного пласта;
· обеспечение проницаемости околоскважинной зоны выше естественной.
10.1. ОБЕСПЕЧЕНИЕ ВЫСОКОГО КАЧЕСТВА ОТКРЫТОГО СТВОЛА СКВАЖИНЫ
Известно, что для сохранения коллекторских свойств пород околоскважинной зоны в продуктивном пласте необходимо поддерживать гидродинамическое давление на забое скважины на уровне пластового или несколько превышающем его. Это способствует уменьшению проникновения в продуктивный пласт фильтрата используемой жидкости и твердой фазы.
Одним из факторов, определяющих величину гидродинамического давления на забое при вскрытии продуктивного пласта бурением, является качество открытого ствола скважины, то есть отклонение его размеров от номинального. Дело в том, что сужение ствола (например, в зонах расположения проницаемых пропластков или в зонах расположения глинистых пород) вызывает дополнительные потери давления в кольцевом пространстве. Наличие же каверн способствует накоплению в них шлама и образованию пробок (сальников), что также приводит к увеличению гидродинамического давления на забое и ухудшению процесса бурения.
Самое нежелательное явление это кавернообразование. Для условий Западной Сибири оно развивается до совершения 13-14 спуско-подъемных операций. Дальнейшее их продолжение не приводит к изменению кавернозности ствола скважины. Следовательно, одной из причин кавернообразования является колебание гидродинамического давления в скважине при спуско-подъемных операциях, связанных, равным образом, с заменой бурового долота или забойного двигателя.
Таким образом, для обеспечения высокого качества открытого ствола скважины перед вскрытием продуктивного пласта при достаточно высоких экономических показателях необходимо создание бурового долота и забойного двигателя, обеспечивающих проходку за рейс не менее 1000 м, а также разработка усовершенствованной конструкции струйно-механичеокого долота шарошечного типа.
10.2. ВСКРЫТИЕ ПРОДУКТИВНОГО ПЛАСТА БУРЕНИЕМ
Одним из наиболее важных условий сохранения естественной проницаемости продуктивного пласта при его вскрытии является, как уже отмечалось, максимально возможное снижение репрессии на продуктивный пласт. При вскрытии продуктивного пласта наибольшая величина гидродинамического давления на забое скважины достигается при работе бурового долота. В этот момент давление на забой скважины складывается из давления столба бурового раствора, потерь давления в кольцевом пространстве за бурильной колонной и гидродинамического давления, вызываемого вибрацией колонны при работе долота.
Уменьшение давления столба бурового раствора достигается за счет снижения его плотности и реализации так называемого способа бурения «на равновесии» (или даже на депрессии).
При решении вопроса о снижении репрессии на продуктивный пласт особое внимание следует обратить на уменьшение вибрации бурильной колонны при работе долота. Дело в том, что в большинстве своем нефтяники пренебрегают этим явлением до тех пор, пока не начинают часто ломаться элементы низа бурильной колонны. Однако из зарубежной печати известно, что при работе бурового долота колебания гидродинамического давления на забое скважины достигают порядка 5 МПа (данные получены прямыми измерениями в процессе бурения). Поэтому, решая вопрос о снижении репрессии на продуктивный пласт при его вскрытии бурением, необходимо создать высокоэффективное амортизирующее наддолотное устройство и включить его в компоновку низа бурильной колонны.
Особого внимания заслуживает также вопрос о регламентации скорости спуско-подьемных операций и соблюдении технологической дисциплины при вскрытии продуктивного пласта. Это связано с тем, что применяемые в практике бурения скорости спуско-подъемных операций могут обеспечить весьма высокие репрессии на пласт, вплоть до получения гидроразрыва.
Однако, как бы ни были совершенны техника и технология минимизации репрессии на продуктивный пласт при его вскрытии бурением, полностью исключить репрессию вряд ли возможно. Поэтому необходимо иметь буровой раствор (практика показывает, что он должен быть безглинистый), который предотвратил бы возможность глубокого проникновения его фильтрата в пласт в момент наличия репрессии. Кроме того, должны обеспечиваться высокая степень его очистки от выбуренной породы для поддержания минимальной плотности бурового раствора и отсутствие физико-химического взаимодействия с породами продуктивной зоны и пластовыми флюидами.
Одним из важных факторов при вскрытии продуктивных пластов является продолжительность контакта бурового раствора со стеной скважины, что определяет степень и глубину загрязнения околоскважинной зоны. В связи с этим необходимо стремиться к уменьшению продолжительности первичного вскрытия за счет приме нения высокопроизводительных технологий и бурового инструмента. Однако и этого не всегда бывает достаточно.
Так, в случае технологической необходимости использования буровых растворов с твердой фазой механическая скорость проходки и проходка на долото резко уменьшается из-за ухудшения условий работы бурового долота. Исключить или существенно уменьшить влияние твердой фазы в буровом растворе можно за счет установки над долотом забойного сепаратора твердой фазы, что позволит направить к инструменту очищенный от нее буровой раствор, а саму эту фазу вывести в кольцевое пространство.
Таким образом, для сохранения естественной проницаемости при первичном вскрытии продуктивного пласта необходимо минимизировать репрессию на пласт (до бурения на «равновесии»). При реализации такой технологии увеличивается вероятность возникновения нефтегазопроявлений и опасности фонтанирования скважины. В связи с этим для управления продуктивным пластом и снижения опасности открытого фонтанирования целесообразно разработать технические средства обнаружения нефтегазопроявления продуктивного пласта на начальной стадии, то есть фиксации момента появления пластового флюида в кольцевом пространстве в зоне продуктивного пласта. Наиболее перспективным направлением в этой области представляется, разработка акустической системы непрерывного контроля за нефтегазопроявлениями при бурении скважин.
10.3. ЦЕМЕНТИРОВАНИЕ ЭКСПЛУАТАЦИОННОЙ КОЛОННЫ
Вскрытие продуктивных пластов, в основном, осуществляют долотом того же диаметра, что и бурение вышележащего интервала. Эксплуатационная колонна спускается до забоя скважины, а цементный раствор за колонной поднимается на большую высоту вплоть до устья скважины. При этом на продуктивный пласт при цементировании создается высокое гидродинамическое давление, которое обеспечивает проникновение цементного раствора в поры и трещины продуктивного пласта и часто приводит к гидроразрыву пласта с последующим уходом в него значительных объемов цементного раствора, на что указывают нередкие случаи недоподъема цементного раствора до расчетного уровня. Вот почему весьма важной задачей при цементировании эксплуатационной колонны является снижение гидродинамического давления цементного раствора на продуктивный пласт и, по возможности, полное исключение контакта цементного раствора с продуктивным пластом.
10.4. ВТОРИЧНОЕ ВСКРЫТИЕ ПРОДУКТИВНОГО ПЛАСТА
Заключительный этап строительства скважины перед ее освоением вторичное вскрытие продуктивного пласта, которое во многом определяет продуктивность скважины. Некачественное выполнение этого вскрытия может свести на нет все усилия, затраченные при выполнении предыдущих этапов работ.
Применяемые в настоящее время технологии вскрытия, в общем-то, дают неплохие результаты. Но они достигаются, как правило, на месторождениях с высокопроницаемыми коллекторами. При разработке месторождений с низкопроницаемыми коллекторами, которые более сильно, чем высокопроницаемые, реагируют на загрязнение пласта, необходимо совершенствовать применяемые технологии и внедрять (пусть более трудоемкие и дорогостоящие) технологии, обеспечивающие высокую продуктивность скважины.
В связи с этим представляется целесообразным уделять большее внимание поиску (разработке) более эффективных жидкостей для вторичного вскрытия продуктивных пластов, а также совершенствовать технику и технологию перфорации.
10.4. УВЕЛИЧЕНИЕ ПРОНИЦАЕМОСТИ ОКОЛОСКВАЖИННОЙ ЗОНЫ
Разработка месторождений с низкопроницаемыми коллекторами сопровождается уменьшением продуктивности скважин по сравнению с высокопроницаемыми коллекторами. Даже при сохранении естественной проницаемости околоскважинной зоны пласта при первичном вскрытии, цементировании эксплуатационной колонны и вторичном вскрытии продуктивность скважины будет низкой.
Нетрудно заметить, что низкие дебиты скважин связаны не только с низкой проницаемостью коллекторов, но и с особенностью притока пластового флюида в скважину. Как отмечалось выше, не менее половины энергии пласта теряется в не большой околоскважинной зоне, что связано с увеличением гидравлического сопротивления движению жидкости по мере приближения к скважине. Поэтому естественно предположить, что, снизив гидравлическое сопротивление движению жидкости в околоскважинной зоне, можно существенно увеличить продуктивность скважины.
Наиболее перспективным направлением в данном случае представляются разработка и внедрение мероприятий, обеспечивающих увеличение проницаемости околоскважинной зоны выше естественной проницаемости продуктивного пласта.
Как показывает мировой опыт извлечения нефти из низкопроницаемых коллекторов, из числа известных и достаточно хорошо отработанных мероприятий наибольший эффект достигается при гидравлическом разрыве пласта (ГРП). За рубежом данный метод начал применяться с 1949 г., и только в США проведено более 900 тыс. успешных операций, благодаря чему гидроразрыв стал хорошо отработанным методом с успешностью около 90%. В настоящее время 35-40% фонда скважин в США обработано этим методом, в результате чего 25-30% запасов нефти и газа переведено из забалансовых в балансовые. В зарубежной практике ГРП стал неотъемлемой частью цикла строительства скважин при разработке месторождений с низкопроницаемыми пластами.
У нас в стране гидроразрыв пласта применяется в весьма незначительных объемах. Провидимому это связано с разработкой до последнего времени месторождений с высокопроницаемыми коллекторами, где эффективность ГРП низка, а также с отсутствием достаточно высокоэффективной отечественной техники и большой стоимостью реализации метода. Свою негативную роль сыграло и практически полное отсутствие целенаправленных НИОКР по совершенствованию и испытанию отечественной техники и технологии.
10.5. МЕТОДЫ ВСКРЫТИЯ ПРОДУКТИВНЫХ ГОРИЗОНТОВ (ПЛАСТОВ)
Вскрытие пластов и освоение скважины должны быть проведены качественно. Под качеством технологии вскрытия пласта и освоения скважин следует понимать степень изменения гидропроводности пласта (или пропластков) после выполнения соответствующей операции. Оценку качества вскрытия пластов и освоения скважин следует производить по Временной методике по оценке качества вскрытия пластов и освоения скважин.
Методы заканчивания скважин и вскрытия продуктивных горизонтов. В разрезе нефтяных и газовых месторождений встречается большое количество пористых пластов-коллекторов (песков, песчаников, известняков), разобщенных друг от друга глинами, мергелями, плотными песчаниками и другими породами. Эти пласты могут быть нефтеносными, газоносными, водоносными и сухими.
Особое внимание должно быть обращено на конструкцию забоя. Конструкцию забоя следует выбирать по РД.
|
В практике бурения применяют следующие основные конструкции забоев при заканчивании скважин (рис. 10.1.).
1. Установка водозакрывающей колонны в кровле продуктивного горизонта и цементирование с последующим вскрытием пласта и спуском специального фильтра (рис. 10.1, б) или хвостовика (рис. 10.1, д). В некоторых случаях в устойчивых породах продуктивной части разреза фильтр или хвостовик не спускаются и водозакрывающая колонна является эксплуатационной (рис. 10.1, а).
2. Полное вскрытие пласта со спуском комбинированной колонны с манжетной заливкой ее выше нефтеносного объекта и с фильтром в нижней части против пласта (рис. 10.1, в).
3. Полное вскрытие пласта со спуском колонны со сплошным цементированием и последующим простреливанием отверстий против продуктивных горизонтов (рис. 10.1, г).
Перечисленные методы направлены на то, чтобы не допустить закупорки пор и создать благоприятные условия для движения нефти из пласта в скважину.
Методы вскрытия пласта в зависимости от пластового давления, степени насыщенности пласта нефтью, степени дренирования и других факторов могут быть различными, но все они должны удовлетворять следующим основным требованиям.
1. При вскрытии пласта с высоким давлением должна быть предотвращена возможность открытого фонтанирования скважины.
2. При вскрытии пласта должны быть сохранены на высоком уровне природные фильтрационные свойства пород призабойной зоны. Если проницаемость пород мала, должны быть приняты меры по улучшению фильтрационных свойств призабойной зоны скважины.
3. Должны быть обеспечены соответствующие интервалы вскрытия пласта, гарантирующие длительную безводную эксплуатацию скважин и максимальное облегчение притока нефти к забою.
При вскрытии продуктивных пластов с низким пластовым давлением особенно тщательно следует выбирать буровой раствор, поскольку может происходить интенсивное поглощение глинистого раствора пластом, сопровождающееся оттеснением нефти от забоя скважины и значительным ухудшением фильтрационных свойств пород призабойной зоны. Для вскрытия продуктивных пластов с низким пластовым давлением применяют специальные буровые растворы на нефтяной основе, эмульсионные буровые растворы, глинистые растворы с добавками поверхностно-активных веществ, аэрированные жидкости и др.
Заканчивание скважин, вскрывших истощенные пласты, в основном производят первыми двумя способами. Перед вскрытием водозакрывающую колонну устанавливают в кровле продуктивного пласта, вскрыв продуктивный пласт, спускают хвостовик или фильтр. При отсутствии водозакрывающей колонны после вскрытия истощенного пласта спускают обсадную колонну с фильтром против пласта и при помощи манжетной заливки центрируют ее выше нефтеносного пласта.
Фильтры могут быть как с круглыми, так и со щелевидными отверстиями. Щелевидные фильтры дороги в изготовлении и не всегда надежно предотвращают поступление песка в скважину или часто засоряются. Поэтому применяют также и другие способы оборудования забоя для предотвращения поступления песка в скважину. Например, забой скважины иногда оборудуют металлокерамическими, песчано-пластмассовыми или гравийными фильтрами.
В скважинах с высоким пластовым давлением должно осуществляться полное вскрытие пласта со всеми мерами предосторожности с последующим спуском эксплуатационной колонны со сплошной цементировкой и простреливанием отверстий против продуктивных горизонтов.
Широкое распространение получила беспулевая перфорация. В этом случае отверстие в колонне создается не пулями, а фокусированными струями газов, которые возникают при взрыве кумулятивных зарядов.
* Сущность кумулятивного эффекта заключается в том, что при взрыве заряда, обладающего выемкой, симметричной относительно направления распространения взрывной волны, происходит направленное истечение продуктов взрыва.
Перфораторы кумулятивные применяются корпусные и бескорпусные. Бескорпусные перфораторы бывают неточными и полностью разрушающимися, т. е. однократного действия. Перфораторы кумулятивные корпусные выпускаются различных диаметров, в том числе и для спуска через насосно-компрессорные трубы (НКТ).
При простреле отверстий в колонне на устье устанавливают специальную задвижку, позволяющую закрыть скважину при проявлении пласта после прострела. В процессе прострелочных работ скважина должна быть заполнена глинистым раствором для создания противодавления на пласт.
В каждом отдельном случае геологической службой в зависимости от коллекторских свойств пласта, конструкции скважины, температуры и давления в интервале перфорации устанавливается плотность прострела (количество отверстий на 1 м) и тип перфоратора. Для улучшения связи скважины с продуктивным пластом может применяться гидропескоструйный метод вскрытия пласта. В скважину на колонне насосно-компрессорных труб спускают струйный аппарат, состоящий из корпуса и сопел. При нагнетании в трубы под большим давлением жидкость с песком выходит из сопел с большой скоростью и песок разрушает колонну, цементное кольцо и породу. Гидропескоструйная перфорация имеет ряд преимуществ перед другими методами: отверстия в колонне и цементе не имеют трещин, имеется возможность регулировать диаметр и глубину отверстий, можно создать горизонтальные и вертикальные надрезы. К недостаткам этого вида перфорации следует отнести большую стоимость и потребность в громоздком наземном оборудовании.
10.6. ХИМИЧЕСКИЙ МЕТОД БОРЬБЫ С УХУДШЕНИЕМ ПРОНИЦАЕМОСТИ ПРИЗАБОЙНОЙ ЗОНЫ
Ухудшение коллекторских свойств пластов, содержащих глины, происходит вследствие их чувствительности к воде. Эффект набухания монтмориллонитовых глин приводит к ухудшению проницаемости призабойной зоны. С другой стороны, набухание каолинитовых глин происходит вследствие их закупоривания частичками твердой фазы
В пласте глины обычно присутствуют во флокулированном состоянии вследствие высокого содержания солей. При бурении скважины растворами на водной основе ионная прочность окружающей глины среды уменьшается за счет расширения ионной оболочки.
В результате происходит редиспергация глины и ее миграция в микропоры. Образующиеся при этом микрофильтрационные корки приводят к закупориванию пласта.
Проблема может быть устранена путем использования электролита или полиэлектролита, что значительно уменьшает расширение ионной оболочки и нейтрализует отрицательный ионный заряд на поверхности глины.
Для предотвращения ухудшения проницаемости призабойной зоны используют КСl, СаСl2, гидроокись алюминия и др. Хлористый кальций используют в пластах, содержащих глины с высокой степенью набухания. Полагают, что обмен ионов калия на ионы натрия в монтмориллонитовых глинах уменьшает набухающие свойства глин. По мере увеличения концентрации КСl в глине образуется не набухающий слой, который снижает общую набухающую способность глины.
Растворы неорганических солей также предотвращают набухание глин. Одним из методов обработки водо-чувствительных пластов является закачка раствора гидроокиси алюминия. Число гидроксильных групп с атомами алюминия находится в пределах 1,5-2,7. Экспериментально было установлено, что хлорид алюминии не обеспечивает сохранения коллекторских свойств пласта в течение длительного промежутка времени.
Хлорид окиси циркония является другой солью поливалентного металла, используемой для сохранения коллекторских свойств пласта. Полагают, что данный материал образует защитную корку, прочно защищающую открытую поверхность частиц глины. Во всех вышеперечисленных системах, используемых для обработки содержащих глины пластов неорганические соли приводят к коагуляции глин.
Коллоидный механизм ухудшения коллекторских свойств пластов следующий. Отдельные диспергированные частицы удерживаются в жидкости и оседают в виде микроскопических фильтрационных корок на суженных поровых каналах.
Проницаемость породы в этом случае зависит от фильтрационных характеристик данных микроскопических фильтрационных корок. Хорошо известно, что флокулированная почва более проницаема, чем диспергированная. Это в свою очередь является основой применения известняка и гипса при обработке почвы. Аналогичных результатов в буровых растворах низкой фильтрации достигают за счет тонкой фильтрационной корки, содержащей глину высокой степени диспергации. Коагуляция в буровых растворах приводит к увеличению фильтрации и последующего внедрения фильтрата. Степень набухания глин зависит от ее набухающих характеристик, а также степени ее диспергации.