что такое поликристалл и монокристалл
Моно- или поликристалл?
О том, что солнечные батареи – выгодное приобретение, рассказывает множество источников. И если в первое время их появления на украинском рынке к такой покупке потребители относились чаще как к показателю статусности и роскоши, то сегодня практичность альтернативного энергетического решения вытеснила «модные веяния» с топов позиций в рейтинге причин купить преобразующие фотомодули. Осталось выяснить, какие лучше – поликристаллические или монокристаллические солнечные батареи?
В чем разница? В структуре кристаллов кремния, являющихся основным компонентом гелиопанелей. В случае моно-модулей – это целостный кристалл. Цвет таких батарей черный, поверхность – гладкая, форма – с закругленными углами. Поли- модели в основе имеют 6 десятков различных кристаллов кремния, образовывающих единую структуру. Отличаются оттенком – темно-синий, формой – с прямыми углами, текстурой – она неоднородная, «шершавая». Но только ли из-за внешнего вида потребители делают выбор в пользу того или иного решения?
Целостность – залог долговечности, монокристалл и поликристалл отличия
Правда ли, что срок эксплуатации монокристаллов длительнее, чем у их изделий на базе единого кристалла? Как показывает практика, монокристаллические модели могут прослужить владельцу более 50 лет. Но производители редко указывают данный показатель в официальных документах, уравнивая эксплуатационные возможности моно- и поликристаллов и обозначая период их гарантированного действия 25 лет.
Эффективность – гарантия результата, поли или монокристалл
Чем отличаются монокристаллические панели от поликристаллических в плане их работоспособности? Заявленный коэффициент полезного действия монокристаллов достигает 23,5%, тогда как поликристаллические модификации демонстрируют максимальные показатели в 18%. Что это означает? Всего лишь дает потребителям понять, что за одинаковый период времени монокристаллические панели на выходе дадут больше тепла, чем их аналоги. В среднем, цифры могут достигать разницы в 35–40% за 10 лет.
Моно и поликристаллы, габариты и внешний вид
Долговечность и практичность – важные аргументы «за» покупку одного из приглянувшихся устройств. Но стоит учесть и другой немаловажный момент – удобство и возможность монтажа систем. При сравнении размеров панелей двух видов одинаковой мощности можно сделать вывод – монокристаллические фотоэлементы более компактные. Если вы ограничены в месте для размещения панелей – выбирайте данный вариант.
Сравнение монокристаллических и поликристаллических солнечных батарей помогает выявить более утонченный дизайн монокристаллов. Как уже упоминалось, их цвет однородный, поверхность без неровностей. Поликристаллические панели имеют неоднородную расцветку, напоминающую переливы на граните.
Моно и поли, главное – цена
Этот критерий служит весомым аргументом в пользу покупки поликристаллических панелей. Да, монокристаллы – это очень дорого. Стоимость обусловлена совокупностью факторов – высокой эффективностью, производительностью, компактными размерами, длительным сроком службы, красивым дизайном и др. Но стоит ли платить больше? Сравнивая поликристаллические и монокристаллические солнечные батареи, отличия вы найдете легко. Для одних потребителей они будут иметь важное значение. Для других – весомыми аргументами окажутся совсем другие показатели, такие как универсальность, окупаемость, доступность.
В чем отличие между моно и поликристаллами и что выбирают украинцы?
Для того чтобы наглядно увидеть разницу между двумя типами солнечных панелей, сравните показатели по разным характеристикам.
Монокристаллы ориентированы в едином направлении, их зерна размещены параллельно
Ориентация кристаллов в разных направлениях, зерна не параллельные
Кремниевые монокристаллы нарезаются на пластинки, которые в последствие доводятся до формы квадрата
Прямоугольные поликристаллические заготовки нарезаются на пластины
Прямоугольная форма с закругленными углами, цвет – однородный, черный, толщина Комментарии
Физика. 10 класс
§ 7. Строение и свойства твёрдых тел
В повседневной жизни мы считаем твёрдым любое тело, сохраняющее форму и объём в отсутствие внешних воздействий, например, тела, изготовленные из металлов, пластмассы, льда, стекла. Твёрдые тела делят на две группы, различающиеся по своим свойствам: кристаллические и аморфные. Чем же отличаются кристаллические твёрдые тела от аморфных?
Кристаллы. К кристаллическим телам относят минералы, например поваренную соль, медный купорос, кварц, квасцы (рис. 40), горный хрусталь и металлы в твёрдом состоянии.
Кристаллы — твёрдые тела, атомы, ионы или молекулы которых совершают тепловые колебания около определённых, упорядоченных в пространстве положений равновесия.
Упорядоченное размещение частиц твёрдого кристаллического тела обусловливает его правильную геометрическую форму, вследствие чего поверхность кристалла образована плоскими гранями (рис. 41).
Частицы кристалла удерживаются на определённом усреднённом расстоянии друг от друга (∼ 0,1 нм) силами межатомного и межмолекулярного взаимодействий. Несмотря на тепловые колебания, они образуют упорядоченную пространственную структуру. Геометрическим образом этой структуры является кристаллическая решётка. Узлы кристаллической решётки — положения устойчивого равновесия колеблющихся частиц (ионов, атомов или молекул), образующих кристалл.
Основой строения кристалла служит так называемая элементарная кристаллическая ячейка — многогранник наименьших размеров, последовательным переносом без изменения ориентации которого вместе с частицами, находящимися внутри этого многогранника, можно построить весь кристалл.
На рисунках 42 представлены самые простые элементарные ячейки: кубические (а — примитивная, б — объёмно-центрированная, в — гранецентрированная) и гексагональная призма (г).
В кристаллических телах упорядоченное размещение частиц повторяется во всём объёме кристалла, поэтому говорят, что в кристалле существует дальний порядок в расположении частиц.
Интересно знать
Чтобы понять, почему в кристаллических телах упорядоченное размещение частиц, проделаем опыт. Насыплем на вогнутое стекло одинаковые маленькие шарики (рис. 43, а) и слегка встряхнём их несколько раз. Можно увидеть, что шарики разместятся в строгом порядке (рис. 43, б). Шарики располагаются на стекле в самом низком из возможных положений, что соответствует минимуму их потенциальной энергии в гравитационном поле Земли.
Кристаллическая структура также связана с минимумом потенциальной энергии, т. е. при образовании кристаллов частицы самопроизвольно располагаются так, чтобы потенциальная энергия их взаимодействия была минимальной.
Учебники
Журнал «Квант»
Общие
Содержание
Твёрдое тело — это агрегатное состояние вещества, характеризующееся стабильностью формы и объема. По своему внутреннему строению твердые тела разделяются на кристаллические и аморфные.
Кристаллические тела
Точнее, частицы колеблются около определенных положений равновесия. Если их мысленно соединить прямыми линиями, то получается своего рода «скелет» кристалла. Такое изображение кристалла называется кристаллической решеткой.
Чаще всего кристаллическая решетка строится из ионов (положительно и отрицательно заряженных атомов), которые входят в состав молекулы данного вещества. Например, решетка поваренной соли содержит ионы Na+ и Cl– (рис. 1). Такие кристаллы называются ионными.
Теоретически доказано, что всего может существовать 230 различных пространственных кристаллических структур. Большинство из них (но не все) обнаружены в природе или созданы искусственно. На рис. 2 приведены примеры простых кристаллических решеток: 1 – простая кубическая решетка; 2 – гранецентрированная кубическая решетка; 3 – объемноцентрированная кубическая решетка; 4 – гексагональная решетка.
Монокристаллы и поликристаллы
Если периодически повторяющаяся структура (кристаллическая решетка) распространяется по всему объему тела, то образуется «одиночный кристалл» — монокристалл. Монокристаллы имеют форму правильных симметричных многоугольников. Но они редко достигают размеров в несколько сантиметров. Примерами монокристаллов могут служить драгоценные камни, исландский шпат (рис. 3), топаз (рис. 4).
В природе чаще встречаются беспорядочно сросшиеся между собой монокристаллы. Такие твердые тела называются поликристаллы. Примерами поликристаллов являются: каменная соль (рис. 5), кварц (рис. 6), сахар, лед, железо, медь.
Анизотропия
Упорядоченность в строении кристалла приводит к анизотропии, т.е. зависимости физических свойств от выбранного направления. Оно объясняется различием в плотности расположения частиц в кристаллической решетке по разным направлениям. На рисунке 7 условно изображено расположение атомов в одной из плоскостей монокристалла. Через узлы этой плоской решетки проведены различно ориентированные параллельные прямые (1, 2, 3, 4). Видно, что на единицу длины прямых приходится не одинаковое количество атомов. А многие механические свойства кристалла зависят от плотности размещения образующих его частиц.
Прежде всего, бросается в глаза различная механическая прочность кристаллов по разным направлениям. Например, кусок слюды легко расслаивается в одном из направлений на тонкие пластинки, но разорвать его в направлении, перпендикулярном пластинкам, гораздо труднее. Так же легко расслаивается в одном направлении кристалл графита. Когда вы пишете карандашом, такое расслоение происходит непрерывно и тонкие слои графита остаются на бумаге. Многие кристаллы по-разному проводят теплоту и электрический ток в различных направлениях. От направления зависят и оптические свойства кристаллов. Так, кристалл алмаза по-разному преломляет свет в зависимости от направления падающих на него лучей.
Монокристаллы обладают анизотропией, поликристаллы изотропны.
Температура плавления
Кристаллические тела имеют определенную температуру плавления tпл, не изменяющуюся в процессе плавления при постоянном давлении (рис. 8, кривая 1).
Зная температуру плавления и температуру тела, всегда можно определить в каком агрегатном состоянии будет находиться кристаллическое тело: если температура тела больше температуры плавления, то тело в жидком состоянии, если меньше – в твердом.
Полиморфизм
Практически все вещества в твердом состоянии могут существовать в двух или более кристаллических разновидностях (модификациях), отличающихся физическими свойствами. Это явление называется полиморфизмом. Так, у углерода две разновидности — алмаз и графит: графит отличается мягкостью, алмаз тверд, графит — проводник, алмаз — диэлектрик. Известны 4 модификации железа, 9 модификаций серы и др. Каждая модификация устойчива в определенном интервале температур и давлений.
См. так же
Аморфные тела
Свойства аморфных тел
Все аморфные тела изотропные, т.е. их физические свойства одинаковы по всем направлениям. К аморфным телам относятся стекло, смола, канифоль, сахарный леденец и др.
При внешних воздействиях аморфные тела обнаруживают одновременно упругие свойства, подобно твёрдым телам, и текучесть, подобно жидкости. Аморфное тело обладает слабо выраженной текучестью. Так, если воронку наполнить кусочками воска, то через некоторое время (различное для разных температур) кусочки воска будут «расплываться». Воск примет форму воронки и начнет «вытекать» из нее.
Аморфные тела при низких температурах по своим свойствам напоминают твёрдые тела. Текучестью они почти не обладают, но по мере повышения температуры постепенно размягчаются и их свойства всё более и более приближаются к свойствам жидкостей. Это происходит потому, что с ростом температуры постепенно учащаются перескоки атомов из одного положения в другое. Определённой температуры плавления у аморфных тел, в отличие от кристаллических, нет. Вещество в аморфном состоянии при нагревании постепенно размягчается и переходит в жидкость (рис. 8, кривая 2). Вместо температуры плавления приходится говорить о температурном интервале размягчения.
Жидкие кристаллы
Жидкие кристаллы — вещества, обладающие одновременно свойствами как жидкостей (текучесть), так и кристаллов (анизотропия).
По структуре они представляют собой жидкости, похожие на желе, состоящие из молекул вытянутой формы, определённым образом упорядоченных во всем объёме этой жидкости (рис. 10).
Жидкие кристаллы — это почти прозрачные субстанции, проявляющие одновременно свойства кристалла и жидкости. Их внешнее состояние при нагревании может изменяться от твердого до жидкокристаллического и полностью переходить в жидкую форму при дальнейшем повышении температуры.
Применение жидких кристаллов
Одно из важных направлений использования жидких кристаллов — термография. Подбирая состав жидкокристаллического вещества, создают индикаторы для разных диапазонов температуры и для различных конструкций. Например, жидкокристаллический индикатор на коже больного быстро диагностирует скрытое воспаление и даже опухоль.
С помощью жидких кристаллов обнаруживают пары́ вредных химических соединений и опасные для здоровья человека гамма- и ультрафиолетовое излучения. На основе жидких кристаллов созданы измерители давления, детекторы ультразвука.
Но самая многообещающая область применения жидкокристаллических веществ — информационная техника. В настоящее время цветные жидкокристаллические экраны используются в сотовых телефонах, мониторах и телевизорах. Они обладают малой толщиной, малой потребляемой мощностью, высоким разрешением и яркостью.
См. так же
Полимеры
По своим необычным свойствам из всей группы твердых тел выделяются полимеры — вещества, молекулы которых состоят из большого числа повторяющихся групп атомов (мономеров).
Например, молекула полимеров образуется повторением группы СH2:
Число мономерных единиц в молекуле определяет относительную молекулярную массу полимера, которая, как правило, очень велика — десятки и сотни тысяч атомных единиц массы. Например, полиэтилен имеет относительную массу 35000 а.е.м., каучук — 400000 а.е.м.
К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. Большое число полимеров получают синтетическим путём. Названия полимеров образуются из названия мономера с приставкой поли-: полиэтилен, полипропилен, поливинилацетат и т. п.
Человек давно использует природные полимерные материалы в своей жизни. Например, кожа, меха, шерсть, шёлк, хлопок, используемые для изготовления одежды. На основе целлюлозе производят плёнки, волокна, лакокрасочные материалы и загустители. Развитие кино и фотографии оказалось возможным лишь благодаря появлению прозрачной плёнки из нитроцеллюлозы. Освоено производство тканей на основе полиэфирного волокна под названием лавсан или полиэтилентерефталат. Полипропилен и нитрон —синтетические волокна, которые использует современный человек для одежды и производственной деятельности.
Какие солнечные батареи лучше? Монокристалл или поликристалл
Солнечные батареи в последние десять лет перешли из разряда ноу-хау и дорогостоящей разработки с низкой эффективностью в прикладные и популярные сферы. Их можно использовать для подзарядки гаджетов в походе, а также применять в роли основного или резервного источника питания для бытовых помещений и не только. Кроме того, некоторые инженерные решения могут показаться необычными, например, использование в качестве дополнительного источника энергии на транспортных средствах.
Элемент, получающий электрическую энергию прямо от солнца в достаточном количестве, не способен давать ее постоянно. Ее нужно запасать в аккумуляторах, чтобы можно было использовать по необходимости в любое время.
Солнечные панели устроены по простой схеме, куда входят полупроводниковый фотоэлемент из кремния, соединительные провода и корпус. Лучи света воздействуют на свободные электроны фотоэлемента, заставляют их двигаться. Образующийся при этом ток по проводам поступает к нагрузке. Вместо нагрузки в цепь панели может быть включен аккумулятор, который обеспечивает электрической энергией потребители в ночное время суток, когда по погодным условиям интенсивность дневного освещения мала.
Как монокристаллический модуль, так и ячейка на основе поликристаллов, в своем устройстве используют полупроводниковые пластины из кремния. Пластина монокристаллической панели состоит из одного полупроводникового кремниевого кристалла, а поликристаллическая панель использует структуру из множества кристаллов.
Конструкция и применение
По устройству все солнечные преобразователи разделяют на монокристаллические и поликристаллические. От конструктивного исполнения каждой панели зависит ее эффективность и стоимость. Мировые производители этих устройств используют в качестве рабочего тела кремний, теллурид кадмия и соединения на основе меди, индия, галлия, селена. Последними достижениями в этой области считаются батареи, рабочим материалом которых является арсенид галлия.
монокристаллические и поликристаллические панели
Отечественная промышленность для производства солнечных генераторов использует преимущественно кремниевые полупроводниковые пластины. Готовые модули, предназначенные для выработки электрического тока, объединяют своей конструкцией набор ячеек. Плоские панели устанавливают на специальные стеллажи с поворотными устройствами, при помощи которых в течение дня устанавливается максимально возможный угол падения лучей солнца на полупроводник. Дешевым, но менее эффективным вариантом является использование неподвижных конструкций, настроенных на определенный постоянный угол.
Важным элементом любой солнечной сборки являются аккумуляторы, которые накапливают электрическую энергию для использования ее ночью или в мало освещенное время суток. Дальше она из аккумуляторов поступает непосредственно в нагрузку, либо сначала на инвертор 12(24)–220 В, а затем к потребителю, в зависимости от его типа.
Что такое монокристаллическая солнечная батарея
Мы уже упомянули о том, что панели бывают двух типов: поли- и монокристаллические. Для начала рассмотрим монокристаллический элемент – он дороже, но мощнее.
Особенности
Для такой батареи выращивается специальный монокристалл кремния по способу Чохральского. Этот материал стоит дороже, чем поликристаллическая пластина, но из-за своего высокого качества монокристаллический модуль имеет больший КПД. Монокристаллические солнечные панели, собранные из отдельных кремниевых ячеек, обладают эффективностью работы, которая равна примерно 20–22%.
Лучи света, попадая на поверхность монокристалла кремния, приводят свободные электроны к направленному движению. С обеих сторон кристалла к нему присоединены провода, идущие к потребителю.
КПД такой пластины достаточно высок, так как в ней лучи солнца не рассеиваются, а равномерно распределяются по всей поверхности кристалла. Площадь р-п перехода в пластине велика, за счет чего электроны проникают из одной части полупроводника в другую беспрепятственно.
устройство монокристаллических солнечных панелей
Стоимость
Технология выращивания монокристаллов полупроводника больших размеров довольно трудоемка, из-за чего цена такой батареи всегда выше, чем аналогичного изделия на основе поликристаллов. Разница в стоимости устройств – 10%, что является главным недостатком монокристаллической батареи.
Цена монокристаллической панели мощностью 150 Вт равна 5400 руб., а такая же по конструкции батарея мощностью 200 Вт стоит 11700 руб. Гораздо дороже устройства мощностью 230 Вт и 300 Вт
Что такое поликристаллическая батарея
Если основной элемент монокристаллической батареи – это искусственно выращенный монокристалл больших размеров, то другой вид светоприемников имеет полупроводниковый элемент поликристаллической структуры.
Считается, что для потребления энергии Солнца оптимальным вариантом являются поликристаллические солнечные батареи. Они дешевле своего монокристаллического аналога, так как для производства используют обрезки, оставшиеся после монокристаллических элементов. Кремний при изготовлении рабочего элемента поликристаллической панели просто охлаждается из горячего расплава, что не требует высоких затрат и сложных технологий.
По внешнему виду поликристалл кремния отличается от монокристалла неоднородностью цветовой гаммы, отливающей голубым и светло-синим цветом. Непрерывное совершенствование технологии производства приближает по качеству поликристаллические батареи к сборкам на монокристаллах.
Особенности
Кроме более низкой стоимости, поликристаллические модули отличаются от монокристаллов тем, что снижение их мощности по мере увеличения эксплуатационного периода происходит значительнее медленнее.
Очень важно и то, что при нагреве полупроводникового элемента поликристаллического типа он не так сильно снижает свои рабочие качества, как монокристаллы.
Стоимость
Поликристаллические солнечные элементы производителя SilaSolar мощностью 50 ватт и напряжением 12 В на момент написания статьи стоят 2790 руб. Такая же по устройству батарея этого же производителя, но на 100 ватт, имеет цену 4200 руб.
Сравнение поликристаллической и монокристаллической солнечных батарей
Когда потребитель делает выбор между различными по конструкции световыми модулями, он старается дать ответ на вопрос: какие солнечные панели лучше, поли или моно? При этом ему необходимо учитывать результаты тестирования устройств, проводимых независимыми компаниями.
Приведем основные результаты тестов на отличие этих световых модулей:
Из приведенных данных можно сделать вывод, что, первые дешевле и менее прихотливы, а вторые мощнее, но привередливее. Выбирая поликристаллические или монокристаллические кремниевые солнечные батареи, решайте исходя из своих финансовых возможностей обслуживать и обновлять модули, и сделайте выбор между долговечностью и мощностью. К тому же качественно произведенный поликристаллический модуль намного дешевле. Окончательный выбор остается за покупателем.
Установка солнечной панели
Для более эффективного применения батареи нужно обязательно учитывать следующие факторы ее установки:
Собрать солнечную установку можно своими руками, предварительно изучив соответственную литературу.
Но если у вас нет, хотя бы базовых познаний в электричестве и электронике, то стоит доверить дело специалистам.
Тестирование
Чтобы сравнить две солнечные сборки одинаковой мощности на эффективность, разумно выполнить их рабочее тестирование. Для этого необходимо установить mono- и poly-батареи одинаково по отношению к солнцу и измерять реальную мощность устройств в зависимости от времени суток, от степени нагрева полупроводникового элемента.
Также учтите все другие параметры, которыми они будут отличаться. В том числе снижение мощности устройств после определенного периода эксплуатации. Полученные результаты дадут исчерпывающую информацию, какая из панелей (solar panels) лучше и кому из производителей этих устройств нужно в дальнейшем отдавать предпочтение.