что такое пифагоровы штаны

Теорема Пифагора

Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

Доказательство

Доказательство теоремы Пифагора, используя алгебру

что такое пифагоровы штаны. pitagor proof fotor cke. что такое пифагоровы штаны фото. что такое пифагоровы штаны-pitagor proof fotor cke. картинка что такое пифагоровы штаны. картинка pitagor proof fotor cke. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

Нужно доказать, что c² = a² + b²:

Это квадрат, в котором есть 4 одинаковых треугольника abc:

Что и требовалось доказать.

«Пифагоровы штаны на все стороны равны»

Это шуточная фраза, которая именует ещё одно доказательство теоремы Пифагора

что такое пифагоровы штаны. pifagorovy shtani gotovo cke. что такое пифагоровы штаны фото. что такое пифагоровы штаны-pifagorovy shtani gotovo cke. картинка что такое пифагоровы штаны. картинка pifagorovy shtani gotovo cke. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

На этой фигуре c — гипотенуза, a и b — катеты.

Проведём перпендикулярную линию к гипотенузе (c):

что такое пифагоровы штаны. pifagor feito shtani2 cke. что такое пифагоровы штаны фото. что такое пифагоровы штаны-pifagor feito shtani2 cke. картинка что такое пифагоровы штаны. картинка pifagor feito shtani2 cke. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

Таким образом появились два новых прямоугольных треугольника (A и B) внутри большого (исходный треугольник С).

что такое пифагоровы штаны. shtanialldone 1 cke. что такое пифагоровы штаны фото. что такое пифагоровы штаны-shtanialldone 1 cke. картинка что такое пифагоровы штаны. картинка shtanialldone 1 cke. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

Что и требовалось доказать.

Примеры

Задача 1

что такое пифагоровы штаны. gipotenuza example cke. что такое пифагоровы штаны фото. что такое пифагоровы штаны-gipotenuza example cke. картинка что такое пифагоровы штаны. картинка gipotenuza example cke. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

На рисунке видно, что длина одной стороны прямоугольного треугольника составляет 3 см, длина другой — 4 см. Найдите длину гипотенузы.

Подставить известные значения

Ответ: длина гипотенузы равна 5.

Задача 2

что такое пифагоровы штаны. exemplo1 done cke. что такое пифагоровы штаны фото. что такое пифагоровы штаны-exemplo1 done cke. картинка что такое пифагоровы штаны. картинка exemplo1 done cke. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

Длина одной стороны прямоугольного треугольника составляет 12 см, длина гипотенузы 13 см. Найдите длину другой стороны треугольника.

Подставить известные значения

Ответ: длина другой стороны треугольника равна 5.

Следствия из теоремы Пифагора

Это основные следствия теоремы:

Кто придумал теорему Пифагора

Концепция теоремы Пифагора была известна ещё в древнем Египте и Вавилоне (около 1900 г. до н. э.). Связь между катетами и гипотенузой в прямоугольном треугольнике была изображена на вавилонской глиняной табличке (которой около 4000 лет). Однако это знание стало широко использоваться лишь после того, как сам Пифагор заявил о нём (он жил в 6 веке до н. э.).

Узнайте также, что такое Теорема Виета и Аксиома.

Источник

10 фактов о теореме Пифагора

что такое пифагоровы штаны. sv large. что такое пифагоровы штаны фото. что такое пифагоровы штаны-sv large. картинка что такое пифагоровы штаны. картинка sv large. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².Пифагоровы штаны – на все стороны равны.
Чтобы это доказать, нужно снять и показать.

Этот стишок известен всем со средней школы, с тех самых пор, когда на уроке геометрии мы изучали знаменитую теорему Пифагора: квадрат длины гипотенузы прямоугольного треугольника равен сумме квадратов катетов. А вот вам 10 фактов о знаменитой теореме.

1. Происхождение штанов понятно: построенные на сторонах треугольника и расходящиеся в разные стороны квадраты напоминали школьникам покрой мужских штанов. Правда, это как посмотреть: средневековые школяры называли эту теорему «pons asinorum», что означает «ослиный мост».

2. Книга рекордов Гиннесса называет теорему Пифагора теоремой с максимальным числом доказательств. И поясняет в 1940 году была опубликована книга, которая содержала триста семьдесят доказательств теоремы Пифагора, включая одно предложенное президентом США Джеймсом Абрамом Гарфилдом.

3. Теорему Пифагора доказывали через подобные треугольники, методом площадей и даже через дифференциальные уравнения – это сделал английский математик начала двадцатого века Годфри Харди. Известны доказательства теоремы Пифагора, предложенные Евклидом и Леонардо Да Винчи. А Электроник – мальчик из чемоданчика в книге Евгения Велтистова знал целых двенадцать способов, а среди них «метод укладки паркета» и «стул невесты».

4. Только одно доказательство теоремы Пифагора нам не известно: доказательство самого Пифагора. Долгое время считалось, что доказательство Евклида и есть доказательство Пифагора, но теперь считают, что это доказательство принадлежит Евклиду.

5. К настоящему моменту историки математики обнаружили, что теорема Пифагора не была открыта Пифагором – ее знали в разных странах задолго до древнегреческого философа и математика родом с острова Самос, жившего в VI веке до н.э.

6. Крупнейший историк математики Мориц Кантор разглядел папирус из Берлинского музея и обнаружил, что равенство три в квадрате плюс четыре в квадрате равно пяти в квадрате было известно уже египтянам около 2300 года до нашей эры во времена царя Аменемхета I.

7. Приближенное вычисление гипотенузы прямоугольного треугольника обнаруживается в вавилонских текстах времен правления царя Хаммурапи, то есть за два тысячелетия до нашей эры. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около VIII века до нашей эры.

8. Голландский математик Бартель Ван дер Варден сделал важный вывод: «Заслугой первых греческих математиков, таких как Пифагор, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку».

9. «В день, когда Пифагор открыл свой чертёж знаменитый,
Славную он за него жертву быками воздвиг».

Со слов неизвестного древнего стихотворца легенда о гекатомбе – жертвоприношении ста быков пошла гулять по умам и страницам изданий. Остряки шутят, что с тех самых пор все скоты боятся нового.

10. Сам Пифагор никогда не носил штанов – в те времена греки их не знали.

Источник

Теорема Пифагора: история, формулы и доказательства

что такое пифагоровы штаны. 56f174036c06743464. что такое пифагоровы штаны фото. что такое пифагоровы штаны-56f174036c06743464. картинка что такое пифагоровы штаны. картинка 56f174036c06743464. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

Теорема Пифагора – одна из самых известных геометрических теорем, которая устанавливает, что в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Большинство ученых считают, что теорема Пифагора была доказана древнегреческим математиком и философом Пифагором (или Питагором). Однако есть версия, что теорему знали и до его рождения. Доказательством этого является то, что в Древнем Египте знали, что треугольник, у которого стороны имеют 3 см, 4 см и 5 см, является прямоугольным. А о других теоремах можно узнать в учебнике по геометрии за 8 класс А.Г. Мерзляка.

Еще в детстве Пифагор отличился интересом к точным наукам. Впоследствии он переехал жить на остров Лесбос, где познакомился с Фалесом Милетским – древнегреческим философом и математиком, который доказал теоремы о трех точках на окружности и пропорциональных отрезках. За время, когда Пифагор учился в Милетской школе, он изучал астрологию, медицину, прогнозы затмений и другие важные в то время науки. Лекции Фалеса и его ученика Анаксимандра сыграли важную роль для Пифагора.

После обучения в Египте, плена в Вавилоне, в 60 лет Пифагор решает вернуться домой, чтобы поделиться своими знаниями с народом. Впоследствии он открыл собственную школу, в которой геометрия впервые выступает как самостоятельная наука.

О том, что квадрат гипотенузы равен сумме квадратов катетов, знали задолго до рождения Пифагора. Но именно он считается первым ученым, который доказал соотношение сторон треугольника.

В теореме Пифагора говорится, что в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Пусть ВС = а; АС = b; АВ = с.

Тогда имеем такую формулу, которая применяется при нахождении неизвестной стороны в прямоугольном треугольнике, когда две другие – известны:

что такое пифагоровы штаны. screenshot64. что такое пифагоровы штаны фото. что такое пифагоровы штаны-screenshot64. картинка что такое пифагоровы штаны. картинка screenshot64. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

Когда мы определили квадрат гипотенузы, нужно найти квадратный корень. Такую же формулу мы можем применить к неизвестному катету:

что такое пифагоровы штаны. screenshot73. что такое пифагоровы штаны фото. что такое пифагоровы штаны-screenshot73. картинка что такое пифагоровы штаны. картинка screenshot73. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

А больше рисунков и формул можно увидеть в онлайн уроке за 8 класс по геометрии на тему «Метрические соотношения в прямоугольном треугольнике. Теорема Пифагора».

Самый популярный и самый простой метод доказательства теоремы связан с площадями фигуры.

Нужно расположить одинаковые прямоугольные треугольники так, чтобы внутри образовался квадрат. Каждая сторона внешнего квадрата должна состоять из суммы катетов прямоугольного треугольника a + b.

что такое пифагоровы штаны. image001. что такое пифагоровы штаны фото. что такое пифагоровы штаны-image001. картинка что такое пифагоровы штаны. картинка image001. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

Площадь этого квадрата можно будет найти благодаря формуле:

что такое пифагоровы штаны. screenshot117. что такое пифагоровы штаны фото. что такое пифагоровы штаны-screenshot117. картинка что такое пифагоровы штаны. картинка screenshot117. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

Внутренний четырехугольник можно считать квадратом, ведь, если добавить два острые углы прямоугольного треугольника, то получится 90°. Следует считать, что площадь внешнего квадрата состоит из площади внутреннего квадрата и четырех площадей одинаковых прямоугольных треугольников. Итак, в заключении:

что такое пифагоровы штаны. screenshot5. что такое пифагоровы штаны фото. что такое пифагоровы штаны-screenshot5. картинка что такое пифагоровы штаны. картинка screenshot5. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

Итак, теорема Пифагора доказана.

2. Доказательство Евклида

Доказательство Евклида также называется «Пифагоровы штаны». Ее так назвали, потому что сумма площади квадратов, образованных с использованием катетов прямоугольного треугольника равна площади квадрата, который построен на гипотенузе этого же треугольника. Квадраты напоминали ученикам мужские штаны.

На примере приведенных картинок ниже можно увидеть, как оригинально передали суть доказательства Евклида.

что такое пифагоровы штаны. screenshot35. что такое пифагоровы штаны фото. что такое пифагоровы штаны-screenshot35. картинка что такое пифагоровы штаны. картинка screenshot35. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

что такое пифагоровы штаны. screenshot212. что такое пифагоровы штаны фото. что такое пифагоровы штаны-screenshot212. картинка что такое пифагоровы штаны. картинка screenshot212. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

В вашем учебнике не было таких доказательств? Вы можете найти другой в разделе «Учебники по геометрии за 8 класс».

Пример задачи на применение теоремы Пифагора

Условия задачи. В треугольнике ABC дано: ∠C = 90 °, BC = 20 см, AC = 15 см. Найти сторону AB.

что такое пифагоровы штаны. 111. что такое пифагоровы штаны фото. что такое пифагоровы штаны-111. картинка что такое пифагоровы штаны. картинка 111. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

Решение. Поскольку в треугольнике АВС ∠С = 90°, следовательно, по теореме Пифагора имеем:

АВ² = BС² + АС²; AВ² = 20² + 15², AВ² = 625, AB = √625| AB = 25 см.

Если вам нужно решить задачу с помощью теоремы Пифагора, а вы сомневаетесь в конечном ответе, тогда можете проверить свои знания благодаря разделу «ГДЗ и решебники по геометрии за 8 класс».

А если вы хотите крепче закрепить знания по другим темам по геометрии, то можете просматривать видео в разделе «Онлайн уроки за 8 класс по геометрии». Узнайте больше о перпендикуляре и наклонной, сумме углов выпуклого треугольника, площадь квадрата и прямоугольника, решение задач методом площадей и тому подобное.

Источник

Сокровище геометрии

Римский архитектор Витрувий особо выделял теорему Пифагора «из многочисленных открытий, оказавших услуги развитию человеческой жизни», и призывал относиться к ней с величайшим почтением. Было это ещё в I веке до н. э. На рубеже XVI–XVII веков знаменитый немецкий астроном Иоганн Кеплер назвал её одним из сокровищ геометрии, сравнимым с мерой золота. Вряд ли во всей математике найдётся более весомое и значимое утверждение, ведь по числу научных и практических приложений теореме Пифагора нет равных.

Пифагоровы штаны

что такое пифагоровы штаны. sokrovishe geometrii 01 300. что такое пифагоровы штаны фото. что такое пифагоровы штаны-sokrovishe geometrii 01 300. картинка что такое пифагоровы штаны. картинка sokrovishe geometrii 01 300. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

Теорема Пифагора для случая равнобедренного прямоугольного треугольника

Теорема Пифагора едва ли не самая узнаваемая и, несомненно, самая знаменитая в истории математики. В геометрии она применяется буквально на каждом шагу. Несмотря на простоту формулировки, эта теорема отнюдь не очевидна: глядя на прямоугольный треугольник со сторонами a 2 + b 2 = c 2 невозможно. Однажды известный американский логик и популяризатор науки Рэймонд Смаллиан, желая подвести учеников к открытию теоремы Пифагора, начертил на доске прямоугольный треугольник и по квадрату на каждой его стороне и сказал: «Представьте, что эти квадраты сделаны из кованого золота и вам предлагают взять себе либо один большой квадрат, либо два маленьких. Что вы выберете?» Мнения разделились пополам, возникла оживлённая дискуссия. Каково же было удивление учеников, когда учитель объяснил им, что никакой разницы нет! Но стоит только потребовать, чтобы катеты были равны, — и утверждение теоремы станет явным (рис. 1). И кто после этого усомнится, что «пифагоровы штаны» во все стороны равны? А вот те же самые «штаны», только в «сложенном» виде (рис. 2). Такой чертёж использовал герой одного из диалогов Платона под названием «Менон», знаменитый философ Сократ, разбирая с мальчиком-рабом задачу на построение квадрата, площадь которого в два раза больше площади данного квадрата. Его рассуждения, по сути, сводились к доказательству теоремы Пифагора, пусть и для конкретного треугольника.

что такое пифагоровы штаны. sokrovishe geometrii 02 300. что такое пифагоровы штаны фото. что такое пифагоровы штаны-sokrovishe geometrii 02 300. картинка что такое пифагоровы штаны. картинка sokrovishe geometrii 02 300. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

4000 лет спустя

Теперь, почти 4000 лет спустя, мы имеем дело с теоремой-рекордсменом по количеству всевозможных доказательств. Между прочим, их коллекционирование — давняя традиция. Пик интереса к теореме Пифагора пришёлся на вторую половину XIX — начало XX столетия. И если первые коллекции содержали не более двух-трёх десятков доказательств, то к концу XIX века их число приблизилось к 100, а ещё через полвека превысило 360, и это только тех, что удалось собрать по разным источникам. Кто только не брался за решение этой нестареющей задачи — от именитых учёных и популяризаторов науки до конгрессменов и школьников. И что примечательно, в оригинальности и простоте решения иные любители не уступали профессионалам!

Самым древним из дошедших до нас доказательствам теоремы Пифагора около 2300 лет. Одно из них — строгое аксиоматическое — принадлежит древнегреческому математику Евклиду, жившему в IV–III веках до н. э. В I книге «Начал» теорема Пифагора значится как «Предложение 47». Самые наглядные и красивые доказательства построены на перекраивании «пифагоровых штанов». Они выглядят как хитроумная головоломка на разрезание квадратов. Но заставьте фигуры правильно двигаться — и они откроют вам секрет знаменитой теоремы.

Вот какое изящное доказательство получается на основе чертежа из одного древнекитайского трактата (рис. 3), и сразу проясняется его связь с задачей об удвоении площади квадрата.

что такое пифагоровы штаны. sokrovishe geometrii 03 600. что такое пифагоровы штаны фото. что такое пифагоровы штаны-sokrovishe geometrii 03 600. картинка что такое пифагоровы штаны. картинка sokrovishe geometrii 03 600. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

Иллюстрация к теореме Пифагора из «Трактата об измерительном шесте» (Китай, III век до н. э.) и реконструированное на его основе доказательство

Именно такое доказательство пытался объяснить своему младшему другу семилетний Гвидо, не по годам смышлёный герой новеллы английского писателя Олдоса Хаксли «Маленький Архимед». Любопытно, что рассказчик, наблюдавший эту картину, отметил простоту и убедительность доказательства, поэтому приписал его. самому Пифагору. А вот главный герой фантастической повести Евгения Велтистова «Электроник — мальчик из чемодана» знал 25 доказательств теоремы Пифагора, в том числе данное Евклидом; правда, ошибочно назвал его простейшим, хотя на самом деле в современном издании «Начал» оно занимает полторы страницы!

Первый математик

что такое пифагоровы штаны. sokrovishe geometrii 05 300. что такое пифагоровы штаны фото. что такое пифагоровы штаны-sokrovishe geometrii 05 300. картинка что такое пифагоровы штаны. картинка sokrovishe geometrii 05 300. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

Пифагора Самосского (570–495 годы до н. э.), чьё имя давно и неразрывно связано с замечательной теоремой, в известном смысле можно назвать первым математиком. Именно с него математика начинается как точная наука, где всякое новое знание — результат не наглядных представлений и вынесенных из опыта правил, а итог логических рассуждений и выводов. Лишь так можно раз и навсегда установить истинность любого математического предложения. До Пифагора дедуктивный метод применял только древнегреческий философ и учёный Фалес Милетский, живший на рубеже VII–VI веков до н. э. Он высказал саму идею доказательства, но применял его не систематически, избирательно, как правило, к очевидным геометрическим утверждениям типа «диаметр делит круг пополам». Пифагор продвинулся гораздо дальше. Считается, что он ввёл первые определения, аксиомы и методы доказательства, а также создал первый курс геометрии, известный древним грекам под названием «Предание Пифагора». А ещё он стоял у истоков теории чисел и стереометрии.

Другая важная заслуга Пифагора — основание славной школы математиков, которая более столетия определяла развитие этой науки в Древней Греции. С его именем связывают и сам термин «математика» (от греческого слова μαθημa — учение, наука), объединивший четыре родственные дисциплины созданной Пифагором и его приверженцами — пифагорейцами — системы знаний: геометрию, арифметику, астрономию и гармонику.

Отделить достижения Пифагора от достижений его учеников невозможно: следуя обычаю, они приписывали собственные идеи и открытия своему Учителю. Никаких сочинений ранние пифагорейцы не оставили, все сведения они передавали друг другу устно. Так что 2500 лет спустя историкам не остаётся ничего иного, кроме как реконструировать утраченные знания по переложениям других, более поздних авторов. Отдадим должное грекам: они хоть и окружали имя Пифагора множеством легенд, однако не приписывали ему ничего такого, чего он не мог бы открыть или развить в теорию. И носящая его имя теорема не исключение.

Такое простое доказательство

Неизвестно, Пифагор сам обнаружил соотношение между длинами сторон в прямоугольном треугольнике или позаимствовал это знание. Античные авторы утверждали, что сам, и любили пересказывать легенду о том, как в честь своего открытия Пифагор принёс в жертву быка. Современные историки склонны считать, что он узнал о теореме, познакомившись с математикой вавилонян. Не знаем мы и о том, в каком виде Пифагор формулировал теорему: арифметически, как принято сегодня, — квадрат гипотенузы равен сумме квадратов катетов, или геометрически, в духе древних, — квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах.

Считается, что именно Пифагор дал первое доказательство теоремы, носящей его имя. Оно, конечно, не сохранилось. По одной из версий, Пифагор мог воспользоваться разработанным в его школе учением о пропорциях. На нём основывалась, в частности, теория подобия, на которую опираются рассуждения. Проведём в прямоугольном треугольнике с катетами a и b высоту к гипотенузе c. Получим три подобных треугольника, включая исходный. Их соответствующие стороны пропорциональны, a : с = m : a и b : c = n : b, откуда a 2 = c · m и b 2 = c · n. Тогда a 2 + b 2 = c · (m + n) = c 2 (рис. 4).

что такое пифагоровы штаны. sokrovishe geometrii 06 600. что такое пифагоровы штаны фото. что такое пифагоровы штаны-sokrovishe geometrii 06 600. картинка что такое пифагоровы штаны. картинка sokrovishe geometrii 06 600. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

Чертёж к возможному доказательству Пифагора

Это всего лишь реконструкция, предложенная одним из историков науки, но доказательство, согласитесь, совсем простое: занимает всего-то несколько строк, не нужно ничего достраивать, перекраивать, вычислять. Неудивительно, что его не раз переоткрывали. Оно содержится, например, в «Практике геометрии» Леонардо Пизанского (1220), и его до сих пор приводят в учебниках.

Такое доказательство не противоречило представлениям пифагорейцев о соизмеримости: изначально они считали, что отношение длин любых двух отрезков, а значит, и площадей прямолинейных фигур, можно выразить с помощью натуральных чисел. Никакие другие числа они не рассматривали, не допускали даже дробей, заменив их отношениями 1 : 2, 2 : 3 и т. д. Однако, по иронии судьбы, именно теорема Пифагора привела пифагорейцев к открытию несоизмеримости диагонали квадрата и его стороны. Все попытки численно представить длину этой диагонали — у единичного квадрата она равна √2 — ни к чему не привели. Проще оказалось доказать, что задача неразрешима. На такой случай у математиков есть проверенный метод — доказательство от противного. Кстати, и его приписывают Пифагору.

Существование отношения, не выражаемого натуральными числами, положило конец многим представлениям пифагорейцев. Стало ясно, что известных им чисел недостаточно для решения даже несложных задач, что уж говорить обо всей геометрии! Это открытие стало поворотным моментом в развитии греческой математики, её центральной проблемой. Сначала оно привело к разработке учения о несоизмеримых величинах — иррациональностях, а затем — и к расширению понятия числа. Иными словами, с него началась многовековая история исследования множества действительных чисел.

Мозаика Пифагора

что такое пифагоровы штаны. sokrovishe geometrii 09 600. что такое пифагоровы штаны фото. что такое пифагоровы штаны-sokrovishe geometrii 09 600. картинка что такое пифагоровы штаны. картинка sokrovishe geometrii 09 600. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

«Мозаика Пифагора» и разбиение ан-Найризи трёх квадратов в доказательстве теоремы Пифагора

Если покрыть плоскость квадратами двух разных размеров, окружив каждый малый квадрат четырьмя большими, получится паркет «мозаика Пифагора». Такой рисунок издавна украшает каменные полы, напоминая о древних доказательствах теоремы Пифагора (отсюда его название). По-разному накладывая на паркет квадратную сетку, можно получить разбиения квадратов, построенных на сторонах прямоугольного треугольника, которые предлагались разными математиками. Например, если расположить сетку так, чтобы все её узлы совпали с правыми верхними вершинами малых квадратов, проявятся фрагменты чертежа к доказательству средневекового персидского математика ан-Найризи, которое он поместил в комментариях к «Началам» Евклида. Легко видеть, что сумма площадей большого и малого квадратов, исходных элементов паркета, равна площади одного квадрата наложенной на него сетки. А это означает, что указанное разбиение действительно пригодно для укладки паркета: соединяя в квадраты полученные многоугольники, как показано на рисунке, можно заполнить ими без пробелов и перекрытий всю плоскость.

что такое пифагоровы штаны. sokrovishe geometrii 08 600. что такое пифагоровы штаны фото. что такое пифагоровы штаны-sokrovishe geometrii 08 600. картинка что такое пифагоровы штаны. картинка sokrovishe geometrii 08 600. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b². что такое пифагоровы штаны. zoomnw2. что такое пифагоровы штаны фото. что такое пифагоровы штаны-zoomnw2. картинка что такое пифагоровы штаны. картинка zoomnw2. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

Правильный паркет из квадратов и «мозаика Пифагора» на картинах голландских мастеров. Слева: П. де Хох. Хозяйка и служанка во внутреннем дворике. Около 1660 года. Справа: Я. Охтервелт. Бродячие музыканты в дверях богатого дома. 1665 год

* Паркет, или замощение, — разбиение плоскости многоугольниками (или пространства многогранниками) без пробелов и перекрытий.

Источник

Теорема Пифагора

что такое пифагоровы штаны. 5f21798fc2452946152968. что такое пифагоровы штаны фото. что такое пифагоровы штаны-5f21798fc2452946152968. картинка что такое пифагоровы штаны. картинка 5f21798fc2452946152968. Теорема Пифагора — квадрат гипотенузы равен сумме квадратов катетов (в прямоугольном треугольнике); формула: c² = a² + b².

Основные понятия

Теорема Пифагора, определение: в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Гипотенуза — сторона, лежащая напротив прямого угла.

Катет — одна из двух сторон, образующих прямой угол.

Формула Теоремы Пифагора выглядит так:

где a, b — катеты, с — гипотенуза.

Из этой формулы можно вывести следующее:

Для фигуры со сторонами a, b и c, где c самая длинная сторона действуют следующие правила:

Теорема Пифагора: доказательство

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Дано: ∆ABC, в котором ∠C = 90º.

Пошаговое доказательство:

a 2 + b 2 = c * HB + c * AH

a 2 + b 2 = c * (HB + AH)

Обратная теорема Пифагора: доказательство

Если сумма квадратов двух сторон треугольника равна квадрату третьей стороны, то такая фигура является прямоугольной.

Дано: ∆ABC

Доказать: ∠C = 90º

Пошаговое доказательство:

Обратная теорема доказана.

Решение задач

Задание 1. Дан прямоугольный треугольник ABC. Его катеты равны 6 см и 10 см. Какое значение у гипотенузы?

значит c 2 = a 2 + b 2 = 6 2 + 10 2 = 36 + 100 = 136

Задание 2. Является ли фигура со сторонами 8 см, 9 см и 11 см прямоугольным треугольником?

Ответ: треугольник не является прямоугольным.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *