что такое переизбыток кислорода
Гипероксия (кислородное отравление)
Физические и физиологические основы дыхания
Если представить систему дыхания в упрощенном виде, она будет выглядеть следующим образом: при вдохе через альвеолярную легочную мембрану происходит проникновение кислорода, который впоследствии связывается с гемоглобином эритроцитов. Доставка кислорода к тканям осуществляется благодаря эритроцитам. Там происходит восстановление гемоглобина, он отдает кислород, а также присоединяет углекислый газ. После возврата в легкие гемоглобин окисляется снова, отдавая углекислый газ, его удаление происходит во время выдоха. Таким образом, при увеличении содержания кислорода и дыхательной смести и увеличении ее давления, транспорт кислорода будет происходить не только при помощи гемоглобина, но и из-за растворения в плазме крови кислорода.
Последствия гипероксии
Избыток кислорода приводит к изменению его метаболизма. В результате нарушается процесс транспортировки газов, повреждаются клеткими мембраны различных тканей и органов. Скрытого периода гипероксии не существует, так как различные биохимические нарушения начинают развиваться мгновенно после увеличения парциального давления в смеси для дыхания. Кислородное отравление усиливается из-за высокого уровня углекислоты в организме, вредных примесей в дыхательной смеси, перегревания, переохлаждения, тяжелой умственной работы. В присутствии нейтрального газа отравление кислородом может носить более ярко выраженный характер.
Формы кислородного отравления
Гипероксия бывает трех форм: сосудистая, судорожная и легочная.
Сосудистая форма является наиболее опасной, она наступает при самом высоком давлении дыхательной смеси. Для нее характерно резкое расширение кровеносных сосудов, падение сердечной деятельности и артериального давления, могут возникать многочисленные кровоизлияния в слизистые оболочки и кожу. Резкое падение давления может приводить к остановке сердца и летальному исходу. Первая помощь при такой форме кислородного отравления сводиться к скорейшему прекращению дыхания смеси и переходу на воздух. На протяжении последующих суток больной должен находится в затемненном, теплом, хорошо вентилируемом помещении, в крайне тяжелых случаях необходима специализированная помощь.
Судорожная форма кислородного отравления наступает при повышении давлении не более, чем на 3 бар. Для нее свойственны изменения в центральной нервной системе: эйфорическое возбуждение или безучастность, нарушение зрения, сонливость, а также потливость, нарастающая бледность. Нарастание отравление сопровождается судорогами, потерей сознания, сильной рвотой, оглушением. Повторные судороги могут спровоцировать остановку дыхания и летальный исход. В случае развития гипероксии под водой очень велика вероятность смерти из-за утопления. Как правило, прекращение дыхания сильным потоком кислорода приводит к прекращению судорог и возвращению сознания. Для полного восстановления пострадавшему необходим полноценный сон.
Легочная форма гипероксии возникает при минимальном превышении парциального давления. Для нее характерно поражение легких и дыхательных путей. Сперва о себе дают знать свойства кислорода – возникает сухость в горле, слизистая носа отекает, возникает чувство заложенности. После этого наступает кашель, который продолжает усиливаться, он сопровождается ощущением жжения за грудиной, повышается температура тела. Если отравление продолжается, развивается кровоизлияние в спинной и головной мозг, кишечник, легкие, печень, сердце. После прекращения дыхания симптомы снижаются на протяжении нескольких часов, в через 2-4 суток полностью уходят.
Признаки кислородного отравления:
Среди первых признаков гипероксии можно отметить онемение пальцев ног и рук, чувство беспокойства, подергивание лицевых мышц, особенно губ. После этого достаточно быстро развиваются судороги, а также наступает потеря сознания. Кроме того, среди симптом гипероксии можно выделить следующие: ухудшение периферического зрения, затуманивание зрения, присутствие посторонних звуков, тошнота, рвота, ощущения покалывания или подергивания как в мышцах конечностей, так и в мышцах лица, раздражительность, конвульсии.
Образование: Окончил Витебский государственный медицинский университет по специальности «Хирургия». В университете возглавлял Совет студенческого научного общества. Повышение квалификации в 2010 году ‑ по специальности «Онкология» и в 2011 году ‐ по специальности «Маммология, визуальные формы онкологии».
Опыт работы: Работа в общелечебной сети 3 года хирургом (Витебская больница скорой медицинской помощи, Лиозненская ЦРБ) и по совместительству районным онкологом и травматологом. Работа фарм представителем в течении года в компании «Рубикон».
Представил 3 рационализаторских предложения по теме «Оптимизация антибиотикотерапиии в зависимости от видового состава микрофлоры», 2 работы заняли призовые места в республиканском конкурсе-смотре студенческих научных работ (1 и 3 категории).
Что такое переизбыток кислорода
В течение последних двух десятилетий исследования токсического действия кислорода достигли высокой активности, что «обусловлено широким применением кислорода в различных областях промышленности и в медицине, в том числе при изучении подводных погружений. Развитие гипербарической оксигенотерапии, связанное с риском кислородное лечение легочной недостаточности под действием атмосферного давления способствовало увеличению числа больных, подвергающихся воздействию повышенного давления кислорода. Кроме того, широкое использование гипероксии для сокращения продолжительности и повышения эффективности декомпрессионных процедур, необходимых для работы военных и промышленных водолазов, привело к тому, что большой контингент здоровых людей также испытывает влияние повышенного давления кислорода.
В связи с широким применением гипербарической оксигенации глобальная зависимость живых биологических процессов от клеточных механизмов антиокислительной защиты, развившихся на протяжении многих веков адаптации организма к парциальному давлению кислорода в атмосфере Земли, получила глубокое осознание. В настоящее время стало очевидным, что при отсутствии этих механизмов кислород, необходимый для жизни, может вызвать смертельное отравление [McCord, Fridovich, 1978]. Следовательно, антиокислительная защита, которая, как считали раньше, была необходимой только в экстремальных условиях, в настоящее время считается одним из основных биологических процессов.
В дальнейших статьях будут подробно рассмотрены аспекты, сопутствующие кислородному отравлению, и освещены общие введения о биохимических изменениях, предшествующих явным токсическим поражениям, и антиокислительные механизмы, препятствующие таким изменениям. Безопасное и оптимальное использование полезных свойств кислорода требует знания его токсического влияния на чувствительные органы и функции организма и разработки эффективных способов развития врожденной устойчивости к его вредному воздействию на организм. Глубокое понимание основных механизмов кислородного отравления и противодействующей ему антиокислительной защиты способствует достижению этих целей.
Проявления кислородной интоксикации
Тяжесть кислородного отравления прогрессивно возрастает по мере повышения парциального давления кислорода во вдыхаемой газовой смеси и увеличения экспозиции. При достаточных давлении и продолжительности воздействия кислород вначале будет вызывать функциональные нарушения, а затем химическую деструкцию любой живой клетки. Многие из разнообразных проявлений кислородного отравления представлены на рис. 33 в обобщенном виде.
К признакам кислородного отравления легких относятся деструкция как эндотелия капилляров, так и эпителия альвеол, гиперплазия альвеолярных клеток, отек, геморрагия, утолщение и гиалинизация артериол, образование фибрина, ателектазы, сопровождаемые тяжелыми нарушениями газообмена, гипоксемией и приводящие к летальному исходу. Проявления кислородной интоксикации ЦНС по степени тяжести могут находиться в пределах от локальных судорог мышц до эпилептического припадка и, если экспозиция после появления этих признаков продолжается, то до прогрессирующей деструкции нервной ткани, стойкого паралича и смерти.
Среди проявлений кислородного отравления описаны также отслойка сетчатки, разрушение зрительных клеток и развитие слепоты, гемолиз эритроцитов, нарушение функций почек, сердца, печени, эндокринных органов.
В связи с тем что альвеолярное Ро2 превышает артериальное Ро2, на легкие оказывает влияние более высокое напряжение кислорода, чем на любой другой орган. При давлении кислорода в пределах 0,5—2 кгс/см2 экспозиция ограничивается развитием кислородного отравления легких. Однако во время воздействия кислорода под давлением 3 кгс/см2 или выше наиболее серьезные ограничения экспозиции обусловлены кислородным отравлением нервной системы, поскольку относительно высокая чувствительность ткани мозга обусловливает его поражение при меньшем парциальном давлении кислорода, чем большинства других органов.
Гипероксия: механизм развития, симптомы, лечение
Гипероксия – это отравление в результате потребления кислородосодержащей газовой смеси с высоким парциальным давлением кислорода (pO2).
Дабы понять, что такое гипероксия и чем она опасна, следует рассмотреть сам процесс дыхания: как он осуществляется, какие явления происходят.
Если говорить предельно просто, дыхание осуществляется следующим образом: в момент вдыхания через альвиолярнокапиллярный барьер О2 поступает в кровоток, а далее – образует связь с белком гемоглобином в эритроцитах. Эти клетки транспортируют молекулы О2 ко всем тканям организма, гемоглобин восстанавливается, отсоединяет О2, связывая СО2. Далее кровь оказывается в легких, а железосодержащий белок снова окисляется и отсоединяет О2, последний, в свою очередь, удаляется при выдохе.
Как развивается гипероксия и что происходит в организме
Хотя механизмы токсического воздействия кислорода на ткани изучен недостаточно, отмечается, что при гипероксии О2 воздействует на весь организм, и основа этого действия лежит в угнетении важнейших процессов жизнедеятельности – тканевого дыхания.
Процессы, патологические явления, вызываемые кислородным отравлением, и проникающей радиацией требуют средств защиты одинакового действия – антиокислителей.
Нарушение метаболизма кислорода, что включает нарушение процесса транспортировки газов, приводит к повреждению мембран клеток всего организма.
Первый признак отравления кислородом и поражения легких называют снижение максимального объема воздуха, который может вдохнуть человек. Обусловливается это страхом перед усилением боли за грудиной и сильным кашлем.
Также возможны небольшие ателектазы – спадение легких, что происходит по следующим причинам:
Отеки легких провоцируются спазмами и увеличением проницаемости капилляров при гипероксии. Так, по причине повреждающего действия кислорода для альвеолярнокапиллярной мембраны и патологии вентиляционно-перфузионных процессов ухудшается и способность легких к диффузии.
Описанные функционально-морфологические изменения в легких приводят к кислородному голоданию и вероятному летальному исходу даже в том случае, если во вдыхаемой смеси избыток кислорода, а не дефицит.
Также кислородное отравление токсически воздействует на кровеносную и кардиоваскулярную системы. Наблюдается снижение осмотической сопротивляемости красных кровяных телец, уменьшается активность лимфоцитов и нейтрофилов. Также возникают изменения на кардиограмме: уширение и деформация зубцов P, увеличение амплитуды T.
Резкое возбуждение ЦНС, перенасыщение кислородом мозга, в большей части – стволового отдела, возникают конвульсии.
Утяжеляется степень гипероксии при высокой концентрации углекислоты, ядовитых газов во вдыхаемом воздухе, а также при высокой и пониженной температуре.
Клинические формы
Выделяют 3 вида гипероксии, в зависимости от типа и формы проявлений: легочную, судорожную и сосудистую. В самом начале отмечаются такие симптомы отравления кислородом, как дрожание нижней части лица, сильная рвота, шаткость, головокружение, парестезии. Далее – конвульсии, потеря сознания, тяжелая рвота, развитие туннельного зрения и слепота.
Признаки и их выраженность вариабельны, и зависят от личных особенностей, компенсаторных возможностей и устойчивости организма к кислородной интоксикации.
Усугубляют проявления гипероксии тяжелый физический труд, пониженная температура окружающей среды, СО2 и наркотическая концентрация индифферентных газов во вдыхаемой смеси.
Форма гипероксии | Что происходит? |
Легочная форма | Развивается при длительном вдыхании воздуха с pO2 от 1.5 бар. Преимущественно отмечаются негативные влияния на дыхательные пути, что сопровождается жжением, першением в горле, сухостью и отеком слизистой носа, сильным кашлем с болью в груди. Поднимается температура до субфебрильных значений. С повышением степени гипероксии возможна геморрагия. При возвращении к нормальному кислородному дыханию выраженность симптомов гипероксии спадает и ослабевает в течение пары часов, а полностью они пропадают спустя несколько дней. |
Судорожная форма | Возникает при pO2 во вдыхаемом воздухе в 2,5 бар и выше. По большей части поражается ЦНС. Кожа влажная, бледная, синюшная, либо землистая. Отмечается сонливость, вялое состояние, апатия, либо, наоборот, – эйфория и возбуждение. В некоторых случаях возникает растерянность и смятение, сменяющиеся панической атакой. По мере повышения степени гипероксии нарушается слух, отмечается возникновение сильной рвоты со спазмами, подергивание мышц лица, обморок и судороги с последующей потерей памяти. Хотя есть риск получения физической травмы либо утопления (у водолазов, например) судорожная форма гипероксии не дает остаточных симптомов. При переключении на дыхание нормальной газовой смесью судороги проходят спустя пару мин, пострадавший приходит в сознание. Далее он может быстро заснуть и проспать 2-3 ч, как после эпилептического припадка. |
Сосудистая форма | Развивается при pO2 свыше 3,5 бар. Достаточно опасная форма гипероксии. Во внутренние органы возможны кровоизлияния. В тяжелых случаях переизбыток кислорода в организме может привести к летальному исходу. Симптомы
ЦНС наиболее чувствительна к кислородной интоксикации. Существует 7 групп проявлений гипероксии со стороны нервной системы: Хотя в большинстве случаев кислородное отравление начинает проявлять себя парестезиями (онемение конечностей), тиками лица и ощущением тревоги, в некоторых случаях таких проявлений может и не быть, либо предсудорожная аура быстро переходит в судороги и обморок. Последние иногда наступают абсолютно внезапно. Причиной тому может стать очень быстрое повышение pO2 газовой смеси. Как помочь пострадавшему
При кислородном отравлении, развившимся в барокамере, следует как можно быстрее перевести человека на потребление обычного воздуха либо бедной кислородом газовой смесью. Если возникли судороги, следует держать, защищая от физических травм. Лечение
При легочной форме кислородного отравления показаны препараты, уменьшающие гидратацию легких, а также противовоспалительные средства. При судорожном кислородном отравлении необходим покой в палате с комфортной температурой, а также постоянное наблюдение для контроля возобновления приступов. В наиболее тяжелых случаях показано введение агуахлорала, димедрола, седуксена. ПрофилактикаДабы предупредить развитие гипероксии, следует строго придерживаться следующих правил: Не следует паниковать. Необходимо обеспечить пострадавшему безопасность, поспособствовать его быстрому восстановлению, придерживаться мер безопасности, дабы предупредить переход физреакций на кислородное отравление в патологию. Основная причина смерти при COVID-19 — острый респираторный дистресс-синдром. Объясняем, что это такое и почему он так опасенЧто такое острый респираторный дистресс-синдром — ОРДС?Во многих случаях новая коронавирусная инфекция не вызывает симптомов или вызывает лишь незначительные. Когда заболевание проявляется серьезнее, у человека развивается пневмония, то есть воспаление легких. Это может привести к состоянию под названием «острый респираторный дистресс-синдром» (ОРДС). Если коротко, при ОРДС легкие повреждены из-за воспаления, они вмещают меньше воздуха, альвеолы схлопываются и кислород не может в нужном объеме попадать в кровь. В результате у человека появляется сильная одышка и до органов доходит меньше кислорода, чем нужно. ОРДС — основная причина смерти при новой коронавирусной инфекции. Еще о кислороде в кровиПо имеющимся данным, если у человека с COVID-19 развивается ОРДС, то обычно это происходит так: на шестой-седьмой день после появления симптомов возникает одышка, а на второй-третий день после этого — острый респираторный дистресс-синдром. Это происходит, по разным данным, в 3–17% случаев. Риск, что пневмония закончится ОРДС, выше, если заболевший — человек старшего возраста, если он злоупотребляет алкоголем, курил раньше или курит сейчас, проходит химиотерапию или у него ожирение. Правда, ОРДС возникает не только из-за пневмонии (хотя это основная причина), но и из-за других повреждений легких вплоть до тупой травмы груди. Такого рода состояние врачи стали замечать еще во времена Первой мировой войны, название у него появилось в 1967 году, а определение — только в 1994-м. Главное, что человек чувствует при ОРДС, — одышка. Он не может договорить предложение без вдоха, ему не хватает воздуха. Но одышка часто бывает и при менее серьезных состояниях, которые, правда, могут постепенно достигнуть тяжести, которая будет определяться как ОРДС. Поставить точный диагноз помогает компьютерная томография (она в этом плане гораздо лучше обычной рентгенографии и тем более флюорографии) и оценка других показателей, касающихся работы легких. Почему этот синдром особенно часто встречается при COVID-19 Новый коронавирус умеет попадать в клетки дыхательных путей, альвеол, сосудов, сердца, почек и желудочно-кишечного тракта. Хотя легкие все же страдают больше всего. Пораженные клетки производят множество копий коронавируса и в итоге погибают. Все это запускает и поддерживает воспалительный ответ иммунной системы. В норме сама иммунная система со временем подавляет это воспаление, и человек выздоравливает. Но при инфицировании коронавирусом чаще, чем во многих других случаях, бывает, что тормозящие механизмы иммунной системы не срабатывают как надо. В худшем варианте развития событий это приводит к состоянию под названием «цитокиновый шторм». Тогда захватывается весь организм, и могут поражаться даже почки и сердце. И, конечно, кроме прочего, развивается ОРДС. Другими словами, в масштабных повреждениях может принимать участие уже не вирус, который запустил агрессивный ответ, а непосредственно иммунная система человека, которая вышла из-под контроля. Справиться с ОРДС очень непростоПри ОРДС по-хорошему нужно решить две задачи: добиться того, чтобы уровень насыщения крови кислородом был достаточным и чтобы иммунная система перестала уничтожать легкие. Первая проблема изучена лучше второй, и решения там, можно сказать, есть. Насыщение крови кислородомЕсли стандартная версия ИВЛ не помогает, человека могут положить на живот, продолжая вентиляцию легких (это предлагает и Всемирная организация здравоохранения). Так, судя по всему, перераспределяется кровоток в легких, и кровь протекает по тем участкам, в которых кислород может в нее попасть. При тяжелом ОРДС еще используют препараты для нейромышечной блокады и — редко — оксид азота. Хотя польза от этих препаратов вызывает споры. Российский Минздрав предлагает в этих случаях также использовать смесь гелия и кислорода, но в зарубежных рекомендациях ничего подобного нет, и оснований для применения такой тактики, судя по всему, тоже. В крайнем случае можно использовать экстракорпоральную мембранную оксигенацию (ЭКМО), то есть пропускать кровь пациента через аппарат, который обогащает ее кислородом, забирает углекислый газ и возвращает ее человеку. Но такие аппараты редки и требуют большого количества специально обученного персонала. Кроме того, эффективность ЭКМО при новой коронавирусной инфекции под сомнением, хотя Всемирная организация здравоохранения предлагает рассмотреть такой вариант. Налаживание работы иммунной системыЧто касается работы иммунной системы, сейчас есть средства, которые, предположительно, могут сработать точечно и повлиять на нужные механизмы. Но, как обычно бывает в случае COVID-19, достаточно хороших исследований еще нет. При похожих состояниях — когда иммунная система ведет себя агрессивно — иногда назначаются некоторые моноклональные антитела (например, тоцилизумаб). Они могут снижать уровень веществ, участвующих в процессе воспаления. Есть небольшие работы, которые показывают эффективность тоцилизумаба, но пока нет по-настоящему надежных исследований, которые бы показывали эффективность этого подхода при новой коронавирусной инфекции. По всей видимости, если он и работает, то в тяжелых случаях, но при этом до развития ОРДС. Более грубое вмешательство может привести к распространению вируса. Поэтому, например, глюкокортикоиды, которые подавляют работу иммунной системы, рекомендуют использовать только в крайних случаях, и то не все организации. С этим синдромом есть еще одна проблема, которая делает новый коронавирус особенно опаснымДаже если человек пережил ОРДС, это не значит, что он станет прежним и в психическом, и в физическом смысле. Примерно у 40% бывших пациентов в той или иной степени нарушается мышление. Возможно, это связано с тем, что какое-то время мозг получал недостаточно кислорода. У таких людей чаще бывают депрессия, тревога и посттравматическое стрессовое расстройство. Части из них сложнее выдерживать прежние физические нагрузки, а легкие обычно работают хуже, чем раньше. Что такое переизбыток кислородаВведение Влияние концентрации кислорода на клеточном уровне Кислород необходим всем аэробным организмам. Значение кислорода в жизненном цикле организмов сложно переоценить, но слишком большое количество этого элемента становится главный фактором образования токсичных для организма веществ. Образуются активные формы кислорода: атомарный кислород, пероксид водорода, пероксиды липидов (одно из проявлений пагубных воздействий пероксидов липидов является взаимодействие свободных радикалов с ненасыщенными жирными кислотами мембран, нарушая их структуру), пероксильные радикалы (протонированная форма супероксида с формулой HO2•), оксид азота, гипохлорид (НОСl). Эти вещества являются сильными окислителя биологических жидкостей и может повреждать ткани в результате реакции с липидами, белками, ДНК, аминокислотами и некоторыми другими молекулами. [1] Образование активных форм кислорода в клетке Молекулярный кислород (O2) имеет два неспаренных электрона на отдельных орбиталях во внешней электронной оболочке. Эта химическая структура усиливает генерацию АФК. В целом, основными эндогенными источниками АФК у человека и, в частности, у новорожденного являются метаболизм митохондрий, повышенное содержание переходных металлов в свободном обращении, воспаление через реакции НАДФН-оксидазы, гипоксия-реоксигенация, гипероксия, и парадоксальным образом, гипоксия. АФК в клетке образуются в процессе окислительно-восстановительных реакций. Одними из главных генераторов являются пероксисомы, образуя пероксид водорода. Н2О2 является самым стабильным соединением из возможных восстановленных форм кислорода и менее реакционно способным, по сравнению с другими. Он играет сигнальную функцию, а при присутствии активаторов из пероксида образуется гидроксильный радикал. Гидроксильный радикал обладает высокой реакционной способностью и может разрушить практически все клеточные структуры, но он имеет очень короткое время жизни и не способен диффундировать на значительные расстояния.[2] Так же АФК образуется в лизосомах, микросомах, эндоплазматическом ретикулуме, цитозоле, протеосомах, а также цитоплазматической мембране. Дыхательная цепь митохондрий служит основным источником активных форм, в которых потребляемый кислород восстанавливается до воды в процессе окислительного фосфорилирования кислорода. В большинстве случаев образование АФК связано с метаболическими путями в клетках, такими как окисление жирных кислот и углеводов, окислительной конформации белков. При этом образование АФК находится под строгим метаболическим контролем, который включает компартментализацию окислительных реакций. Роль АФК в патологии клетки Основные виды повреждения биомолекул гидроксильным радикалом: · отрыв атома водорода (таким образом повреждается лецитин — компонент биологических мембран, а также сахара в составе нуклеозидов ДНК) · присоединение к молекулам по двойным связям (взаимодействие с пуринами и пиримидинами ДНК и РНК, перенос электронов также является важным в повреждающем действии ОН) Прямое повреждение ДНК при этом характеризуется разрывом цепи, окислением оснований, их модификации, образованием гидропероксидов ДНК, повреждением хромосом. С белками ОН образует гидропероксиды, что может изменить третичную структуру белков и даже вызывать их агрегацию и денатурацию. Это приводит к нарушению ферментативной и регуляторной активности многих процессов. С липидами ОН образует перекисные соединения. Митохондрии более всех других органелл подвержены атаке АФК и, как следствие, повреждению мембранных липидов, белков, ДНК и даже гибели. Причем для гибели митохондриям не требуется никаких дополнительных белков, кроме тех, которые присутствуют в них самих. АФК служат элементом отрицательной обратной связи, блокируя ферменты цикла Кребса и осуществляя переход с аэробного на анаэробный гликолиз, а также обеспечивая соответствие энергетического метаболизма потребности и возможности клетки. Митохондрии обладают мощной антиоксдантной системой для защиты от пагубных влияний АФК. Она включает в себя ферменты супероксиддисмутазу, пероксидазу и глутатионпероксидазу (деградация перекиси водорода), а также глутатион, восстановленную форму коэнзима Q, аскорбиновую кислоту и другие низкомолекулярные антиоксиданты. Если защитная система не справляется, то в клетке развивается окислительный стресс. АФК перестают выполнять сигнальные функции и проявляют деструктивные. Начинается разрушение липидов, белков и практически всех клеточных структур. Наблюдается разрушение митохондриальных структур от мембраны до митохондриальных ДНК (мтДНК). Окислительный стресс является причиной множества дегенеративных заболеваний (болезнь Альцгеймера, появление онкологических заболеваний, и т.д.), старения и гибели клетки. Активные формы кислорода, образующиеся в митохондриях, рассматриваются в качестве основного фактора развития внутриклеточного окислительного стресса под воздействием гипоксии, ишемии и реперфузии. Гипоксия и гипероксия у недоношенных и влияние АФК на развитие ребенка В течение родов ребенок из относительной гипоксии попадает в относительную гипероксию, а высокая концентрация кислорода после гипоксии вызывает окислительный стресс. Так как у новорожденных повышен риск к оксидативному стрессу (из-за недостатка анти- и прооксидантов таких как: глутатионпероксидазы, аскорбиновая кислота, рибофлавин, суперооксидимудазы и т.д.), терапия новорожденных в первую неделю после рождения (ИВЛ, оксигенотерапия, парентеральное кормление) усугубляет оксидативный стресс. Уровень и активность наиболее важных антиоксидантных ферментов динамически изменяются в процессе развития и созревают в последние недели беременности, подготавливая плод к дыханию легким. Следовательно, недоношенные младенцы особенно подвержены окислительному стрессу поскольку они не готовы к относительной гипероксии во внематочной жизни. Показано, что 30-минутное воздействие 100% О2 при рождении может вызвать значительное увеличение перекисного окисление липидов у новорожденных овец. В клинических условиях было признано, что генерация АФК после гипероксии ответственна за повреждения легких, центральной нервной системы, сетчатки и эритроцитов, а также за общее повреждение тканей, о котором можно сообщать как в неонатальном периоде, так и во взрослой жизни. Сосредоточившись на неонатальном периоде, следующие параграфы объясняют механизмы как краткосрочных, так и долгосрочных токсических эффектов введения кислорода и гипероксии на различные органы и системы организма. Развитие легких недоношенных при гипероксии Респираторные нарушения занимают ведущее место в структуре патологии недоношенных детей. Дыхательная недостаточность, возникшая в раннем неонатальном периоде у недоношенного ребенка, является наиболее частой причиной смертности новорожденного и формирования хронической патологии дыхательной системы в последующем. Гипероксия и генерация АФК крайне вреден для легких. Токсические радикалы кислорода запускают реакции, которые приводят к развитию воспалительного процесса в легких, к инактивации сурфактанта и антипротеаз, нарушению проницаемости альвеолярно-капилярной мембраны, усилению притока в интерстиций нейтрофилов и макрофагов, выходу из сосудов больших количеств провоспалительных цитокинов и медиаторов воспаления. Моделирование кислородного повреждения легких на животных помогает в исследовании и лечении данных повреждений на людях. North et al. показали, что 100% концентрация кислорода вызывает у мышей фетотипически похожее на бронхолегочную дисплазию (БЛД) заболевание. Так же было обнаружен, что новорожденные мыши могли жить при максимальной концентрации кислорода в течение недели, тогда как взрослые особи умирали в течение нескольких дней. Еще одно исследование, которое доказывает, что кислород тоже вызывает у животных БЛД было проведено Делемосом Р.А и др. Они сообщили, что недоношенные павианы имели наименьшее повреждение легких при оптимальном системном артериальном давлении ( 93–95% частоту РН. При строгом контроле O2насыщения, частота РН и потребность в лазерной терапии резко снизились во всех категориях веса при рождении.Подобный опыт изменения практики отделения интенсивной терапии новорожденных с минимального акцента на насыщении на строгое целевое значение насыщения до 85–93% привел к снижению РН и БЛД.[4] Эти отчеты в совокупности предоставляют информацию о том, что у недоношенных детей можно лечить с насыщением
|