что такое падение давления в гидравлике
Что такое падение давления в гидравлике
В данном посте опишу теорию гидравлики простыми словами, чтобы понимать принципы поведения воды в трубе.
Как показала практика, многие работающие с системами автоматического полива люди, имеют ошибочное представление о поведении воды в трубопроводе. Так что опытным монтажникам думаю так же будет полезна данная статья.
Статическое давление
Статическое давление- характеризует свойства воды когда она в покое т.е она не движется.
Динамическое давление- свойство воды, характеризующее ее при ее движении в заданном направлении по трубопроводу для обеспечения, например полива. Параметры двигающейся воды, с которыми мы будем в дальнейшем иметь дело это расход и давление.
Итак, статическое давление воды мы имеем в закрытой системе (перекрытые клапана) при неподвижном потоке воды. Значения давления в этом случае меняются только с изменением высоты водного уровня. Статическое давление показывает потенциал давления, с которым система сможет работать.
Следует запомнить, что значение статического давления на плоской местности остается постоянным и действующим с одинаковой силой во всех направлениях. Перепады высот оказывают влияние на его значение. Повышение высоты снижает, а снижение высоты повышает уровень статического давления.
Как только мы открываем, клапан или кран, вода начинает двигаться и, в этом случае, мы уже имеем дело с динамическим давлением. В этом случае появляются новые потери давления, а именно потери давления на трение по трубопроводу и местные потери (фитинги, обратные клапана, электромагнитные клапана и т.д.). Шероховатость стенок трубы, турбулентность — вот лишь та малая часть явлений, которые отрицательным образом сказываются на значении давления в трубопроводе при движении воды от магистрали к дождевателям.
Динамическое давление
Динамическое давление или «рабочее давление» отличается от статического тем, что оно зависит от потерь связанных с движением воды, и его необходимо также учитывать, как и изменение статического давления связанного с изменением высоты. Динамическое давление непосредственно связанно с расходом или тем количеством воды, которое проходит по трубе или в месте местного сопротивления.
С увеличением количества воды протекающего по трубопроводу, увеличивается скорость движения потока, увеличивая потери в давлении. Можно найти ряд таблиц с потерями на трение, учитывающих диаметры трубопровода, его материал и скорость потока воды. А также вы всегда сможете найти таблицу местных потерь давления в зависимости от расхода в каталогах производителей поливочного оборудования.
ВАЖНО!!
Самое частое заблуждение и стереотип даже у опытных людей, много лет работающих с системами автоматического полива- это святая вера в то, что ПРИ ПОСЛЕДОВАТЕЛЬНОМ ЗАУЖЕНИЕМ ДИАМЕТРА ТРУБОПРОВОДА- СОХРАНЯЕТСЯ ИЛИ УВЕЛИЧИВАЕТСЯ ДАВЛЕНИЕ. Это не ТАК.
Увеличение скорости течения жидкости при переходе из участка трубы с большей площадью поперечного сечения в участок трубы с меньшей площадью поперечного сечения означает, что жидкость движется с ускорением.
Согласно второму закону Ньютона, причиной ускорения является сила. Этой силой в данном случае является разность сил давления, действующих на текущую жидкость в широкой и узкой частях трубы. Следовательно, в широкой части трубы давление жидкости должно быть больше, чем в узкой.
Закон Бернулли
Скорость потока (м3/ч, л/с), значение с которым вода двигается через компоненты трубопровода системы полива, очень важный фактор в анализе гидравлического расчета. Чем быстрее вода движется по трубе, тем выше потери на трение. Слишком большие скорости потока воды могут, также быть причинами других проблем (гидравлические удары, выход из строя запорного оборудования и т.д.).
Опытным путем и с помощью расчетов установлено, что скорость потока равная 1,5 м/с, является оптимальной для движения воды по пластиковым трубам. Дальнейшее увеличение скорости потока, приводит к непропорциональному увеличению значения потерь давления, порой в разы, что может привести к неприятным последствиям, когда на отдаленных зонах вы будете иметь давление, при котором полив осуществляться будет некорректно. А также, при скоростях меньших или равных 1,5 м/с, в системе снижается вероятность появления повреждений, связанных с гидравлическим ударом.
Напомню, что в сервисе по проектированию систем автоматического полива IRRISketch весь гидравлический расчёт делается автоматически, но знать азы всё равно полезно даже опытным работникам.
Гидравлические потери
Гидравлические потери принято разделять на два вида:
Гидравлические потери выражают либо в потерях напора в линейных единицах столба среды, либо в единицах давления
:
, где
— плотность среды, g — ускорение свободного падения.
Содержание
Коэффициенты потерь
Для линейных потерь обычно пользуются коэффициентом потерь на трение по длине (также коэффициент Дарси) λ, фигурирующего в формуле Дарси — Вейсбаха [2]
,
;
таким образом, для линейного элемента относительной длины L/d коэффициент сопротивления трения ζтр=λL/d.
Влияние режима течения в трубах на гидравлические потери
Значение в технике
На преодоление гидравлических потерь в различных технических системах затрачивается работа таких устройств, как насосы, воздуходувки.
Для уменьшения гидравлических потерь рекомендуется в конструкциях гидроборудования избегать применения деталей, способствующих резкому изменению направления потока — например, заменять внезапное расширение трубы постепенным расширением (диффузор), придавать телам, движущимся в жидкостях, обтекаемую форму и др. Даже в абсолютно гладких трубах имеются гидравлические потери [2] ; при ламинарном режиме шероховатость мало на них влияет, однако при обычных в технике турбулентных режимах её увеличение, как правило, вызывает рост гидродинамического сопротивления.
Иногда, напротив, требуется ввести гидравлическое сопротивление в поток. Для этого применяются дроссельные шайбы, редукционные установки, регулирующие клапана. По измерению давления на некотором элементе, график коэффициента гидравлического сопротивления которого известен, можно узнать скорость потока в некоторых распространённых типах расходомеров.
Что такое падение давления в гидравлике
Потери давления приводят к дополнительным затратам энергии. Они порождают шумы в трубопроводах и незначительный нагрев воды. Чем больше скорость воды, тем больше шум, особенно там, где поток испытывает сужения. Например, в кранах, вентилях и т.п. Этот шум может доставлять определенные неудобства в тех случаях, когда трубопроводы проложены в жилых помещениях или поблизости от них.
Поэтому диаметры трубопроводов должны выбираться таким образом, чтобы скорость жидкости в них не превышала определенных значений при максимальных потребных расходах. Например, сегодня существуют такие рекомендации:
► Для труб с внутренним диаметром 15 мм максимальная скорость жидкости равна 0,5 м/с.
► Для труб с внутренним диаметром 80 мм максимальная скорость жидкости равна 1,2 м/с.
Такая разница в рекомендуемых значениях скоростей обусловлена следующим
В трубах диаметром 15 мм периметр поверхности трения П=1,5смх7г«5 см, площадь проходного сечения S1 « 2 см2, а в трубах диаметром 80 мм периметр поверхности трения П = 8 см х п к 25 см при площади проходного сечения S2 * 50
Таким образом, при переходе от трубы с внутренним диаметром D1 = 15 мм к трубе с диаметром D2 = 80 мм
периметр поверхности трения возрастает в 5 раз, тогда как площадь проходного сечения увеличивается в 25 раз. В результате сила трения (а следовательно, и потери давления) в трубе диаметром 15 мм при скорости потока 0,5 м/с будет примерно такой же, как и в трубе диаметром 80 мм при скорости потока 1,2 м/с. Поэтому чем больше диаметр трубы, тем больше в ней может быть скорость потока при одной и той же величине потерь давления на трение.
В существующих сегодня установках диаметры жидкостных трубопроводов выбирают с таким расчетом, чтобы при максимальном расходе скорость потока в них приводила бы к потерям давления, как правило, в диапазоне от 10 до 20 мм вод. ст. на погонный метр длины трубопровода.
75.1. УПРАЖНЕНИЕ 1. Оценка потерь давления |
Для оценки потерь давления, обусловленных местными сопротивлениями (повороты, тройники, запорные вентили и т.д.), принято использовать понятие эквивалентной длины. Например, можно считать, что потери давления при повороте потока на 90° эквивалентны потерям давления на трение на отрезке трубы того же диаметра длиной 0,8 м*.
Теперь попробуйте оценить порядок величины потерь давления в трубе внутренним диаметром 65 мм и полной длиной 50 м, имеющей 6 поворотов на 90° (см. рис. 75.4).
Решение упражнения 1
При условии, что диаметр трубы определен правильно, можно предположить, что потери давления на трение составляют от 10 до 20 мм вод. ст. на погонный метр длины трубы. При выполнении оценки допустим, что потери давления на трение равны среднему значению указанного диапазона, то есть 15 мм вод. ст./м. В тоже время, 6 поворотов на 90° эквивалентны по величине потерь давления участку прямой трубы того же диаметра длиной 6 х 0,8 м = 4,8 м. Следовательно, полная эквивалентная длина нашей трубы будет равна 50 м + 4,8 м « 55 м. Таким образом, полные потери давления в этой трубе составят 55 м х 15 мм вод. ст/м = 825 мм вод. ст « 0,8 м вод. ст.
* Это утверждение не всегда справедливо. В общем случае длину участка прямой трубы, эквивалентную по величине потерь давления какому-либо местному сопротивлению, находят по формуле Ьэкв = Щм/Ялтл Т№ D — внутренний диаметр трубы, §м — коэффициент местных потерь и Ятр — коэффициент трения жидкости о внутреннюю поверхность стенок трубы (прим. ред.).
ВЛИЯНИЕ РАЗНОСТИ УРОВНЕЙ НА ПОТЕРИ ДАВЛЕНИЯ
Продолжим наши мысленные эксперименты. На рис. 75.5 представлены две абсолютно одинаковые схемы, отличающиеся только тем, что высота бака градирни на схеме 1 над сливным краном больше, чем высота бака на схеме 2.
Длина сливных труб в обеих схемах одна и та же, диаметры труб также одинаковы. Из-за разности уровней давление в точке В схемы 1 будет выше, чем давление в точке В схемы 2. Следовательно, если полностью открыть сливные краны в обеих схемах, расход Qvl будет выше, чем расход Qv2. Для того, чтобы сравнивать величины потерь давления в зависимости от разности уровней, необходимо прикрыть кран схемы 1 с целью выравнивания расходов, а следовательно, и скоростей потоков жидкости в трубопроводах схем 1 и 2.
Как только мы это сделаем, то сразу же увидим, что при равенстве расходов Qvl и Qv2 потери давления для обеих схем будут в точности совпадать: Ahl = Ah2.
Вывод: потери давления на трение и местные сопротивления никоим образом не зависят от разности уровней трубопровода. Они определяются только расходом жидкости, длиной трубопровода, внутренним диаметром и шероховатостью стенок трубы.
75.2. УПРАЖНЕНИЕ 2. Влияние потерь давления на характеристики потока |
Рассмотрим систему, представленную на рис. 75.6.
При движении воды по трубопроводу появляются потери давления АЫ, которые зависят от длины трубопровода, его диаметра и расхода воды (то есть скорости воды в трубе).
Установим на выходе из бака фильтр.
► Как изменятся потери давления Ahl?
► Как изменится расход?
► Как изменится скорость воды?
Решение на следующей странице.
Решение упражнения 2
Фильтр, установленный на трубопроводе (см. рис. 75.7 справа), ведет себя точно так же, как любое местное сопротивление (поворот, вентиль и др.): он является дополнительным препятствием потоку жидкости, то есть создает дополнительные потери давления при прохождении воды. Эти потери добавляются к потерям на трение. В результате полные потери давления на участке от точки С до точки В возрастут (Ah2 > Ah 1).
Теперь рассмотрим, как изменится скорость течения воды в трубе. При установке дополнительного сопротивления, например, фильтра, потери давления на отрезке С-В возрастают (Ah2 > Ah 1). Но это сопротивление также препятствует и прохождению воды (как это делал бы ручной вентиль, сопротивление которого возрастает при его закрытии): следовательно, расход воды будет уменьшаться.
Поскольку при этом в обоих случаях внутренний диаметр трубы на участке С-В не меняется, уменьшение расхода приводит к снижению скорости потока воды в трубе: скорость V2 будет заметно ниже сорости VI.
При росте потерь давления в контуре расход жидкости падает. Поскольку расход падает, неизбежно снижается и скорость потока.
Обратите внимание на дополнительные условия: следует отчетливо понимать, что скорость потока воды абсолютно одинакова на входе в фильтр и на выходе из него. Поскольку внутренний диаметр трубы одинаков по всей длине, скорость будет в точности одна и та же в каждом сечении трубы.
Скорость потока жидкости при постоянном расходе строго одна и та же в каждом сечении трубы постоянного внутреннего диаметра.
75.3. УПРАЖНЕНИЕ 3. Изменение расхода при изменении скорости |
По трубе длиной 50 м с внутренним диаметром 80 мм вода течет со скоростью 1 м/с. Как по-вашему, что произойдет с расходом, если скорость удвоится?
Решение на следующей странице.
Решение упражнения 3
Мы нарушим традицию, которая действует в нашем руководстве, поскольку здесь мы вынуждены привести несложные формулы и выполнить очень простые расчеты. Пожалуйста, извините нас за это, но вопросы гидравлики довольно сложны и иногда вам могут потребоваться отдельные базовые понятия для того, чтобы разобраться в некоторых явлениях, которые, тем не менее, мы будем стараться объяснять как можно проще.
Для начала вы должны вспомнить, что объемный расход, как правило, измеряется в м3/ч или м3/с (см. раздел 41 «Измерение расхода воздуха»>.
Скорость потока и расход воды находятся в тесной взаимосвязи:
Qv V х S
(м3/с) = (м/с) х (м2)
Расход = Скорость х Площадь
Рассчитаем площадь проходного сечения трубы диаметром 80 мм (см. рис. 75.9): Рис. 75.9. S = 3,14 х 0,082 / 4 = 0,005 м2.
Теперь можно найти расходы:
► Qvl = 1 м/с х 0,005 м2 = 0,005 м3/с = 0,005 х 3600 = 18 м3/ч.
► Qv2 = 2 м/с х 0,005 м2 = 0,01 м3/с = 0,01 х 3600 = 36 м3/ч.
Таким образом, для данного диаметра трубы расход прямо пропорционален скорости потока.
При удвоении скорости потока жидкости в трубе расход также удваивается.
75.4. УПРАЖНЕНИЕ 4. Изменение расхода при изменении диаметра трубы |
Мы только что нашли, что при скорости потока жидкости 1 м/с в трубе диаметром 80 мм расход жидкости равен 18 м3/ч.
Теперь удвоим внутренний диаметр трубы, то есть возьмем трубу с внутренним диаметром 160 мм. Чему будет равен расход жидкости в этой трубе при той же скорости потока
Решение упражнения 4
При скорости потока 1 м/с расход в трубе с внутренним диаметром 80 мм равен 18 м3/ч. Если внутренний диаметр трубы будет равен 160 мм, то площадь ее проходного сечения станет S = 3,14 х 0,1 б2 / 4 = 0,02 м2. При скорости потока 1 м/с расход в этой трубе будет равен 1 х 0,02 = 0,02 м3/с или 0,02 х 3600 = 72 м3/ч вместо прежних 18 м3/ч. Иначе говоря, расход вырастет в 4 раза.
Внимание! Не путайте понятие «внутренний диаметр » и площадь проходного сечения: если диаметр удваивается, то площадь проходного сечения увеличивается в 4 раза!
СООТНОШЕНИЕ МЕЖДУ РАСХОДОМ И ДАВЛЕНИЕМ
Рассмотрим поплавковый клапан, предназначенный для подачи водопроводной воды в бак градирни (см. рис. 75.11). Допустим, что полностью открытый клапан при давлении воды в сети 2 бара обеспечивает расход 10 л/мин.
Для того, чтобы удвоить расход, то есть обеспечить расход через клапан, равный 20 л/мин. необходимо давление воды в сети увеличить в 4 раза.
Запомните! При слабом давлении воды в водопроводной сети расход будет небольшим. Чтобы удвоить расход, давление в сети нужно повысить в 4 раза.
Разумеется, что на практике для удвоения расхода так не поступают. Если бы на самом деле повышали давление в сети, это породило бы многие проблемы: диаметр трубопровода пришлось бы делать очень малым, вода бы в трубах сильно «гудела» и т. д.
Проведем такую аналогию: если автомагистраль загружена, то для того, чтобы повысить ее пропускную способность, водителей не заставляют ехать быстрее, а либо делают новую полосу, либо строят объездной путь! То же самое предпринимают и для увеличения расхода жидкости в трубе: увеличивают площадь проходного сечения трубы.
При заданном расходе это приводит к снижению скорости потока воды в трубе (и, следовательно, шума), а потребное для обеспечения этого расхода давление уменьшается
СООТНОШЕНИЕ МЕЖДУ РАСХОДОМ И ПОТЕРЯМИ ДАВЛЕНИЯ
В трубе с внутренним диаметром 80 мм предполагается удвоить расход. Что произойдет с потерями давления? На первый взгляд может показаться, что поскольку при удвоении расхода скорость потока удваивается, то и потери давления также должны удваиваться. К сожалению, это не так.
При удвоении расхода потери не удваиваются, а увеличиваются в четыре раза: если расход вырос в 2 раза, потери давления возрастут в 4 раза!
В примере на рис. 75.13 при скорости потока 1 м/с потери давления АР = 2 м вод. ст., а при увеличении скорости до 2 м/с потери давления умножаются на 4: АР = 2 х 4
Потери давления пропорциональны квадрату расхода.
Для получения дополнительной информации см. раздел 95 «Несколько примеров расчета потерь давления «.
75.5. УПРАЖНЕНИЕ 5. Изменение потерь давления при изменении расхода |
Решение упражнения 5
Гидравлическое сопротивление: виды и коэффициенты
Местные гидравлические сопротивления — зачастую причина кавитации. Как рассчитывать коэффициенты разных сопротивлений? Какова зависимость между сопротивлениями и кавитацией?
Одно из основных понятий в гидравлике — гидравлические потери (сопротивление). Речь идет о потерях, которые наблюдаются при движении жидкости по водопроводящим каналам.
Условно гидравлические потери можно разделить на две группы:
Исследования потерь энергии потока (потерь напора насосов), обусловленных местными сопротивлениями, проводятся уже не одно десятилетие. В разное время в России и за рубежом проводились различные экспериментальные исследования, которые позволили получить множество данных относительно разных местных сопротивлений. В теории ученые продвинулись не так далеко: до сих пор не удается создать универсальные формулы, которые можно было бы применять с любыми типами локальных сопротивлений, — пока речь идет о некоторых местных сопротивлениях.
Коэффициент гидравлического сопротивления: что это такое и как высчитывается
Выражаться гидравлические потери могут по-разному — в единицах давления или линейных единицах столба жидкости, потерях напора.
Общая формула потери напора выглядит так:
где △P — потери в единицах давления,
p — плотность среды,
g — ускорение свободного падения.
В сфере промышленности, в производственной практике перемещение жидкостей в потоках неразрывно связано с необходимостью преодоления гидравлического сопротивления трубы по всему пути потока. Кроме этого, гидравлические потери обуславливаются местным сопротивлением встречающихся на пути ответвлений и кранов, задвижек и вентилей, поворотов и диафрагм.
Чтобы преодолевать местные сопротивления, поток затрачивает определенную часть энергии — в этом случае речь идет о потере напора на локальные сопротивления. Как правило, такие потери выражают в долях от скоростного напора, который соответствует средней скорости среды в трубах до местного сопротивления либо после него.
Найти данные о коэффициентах разных местных сопротивлений можно в соответствующих учебниках, пособиях, справочниках по гидравлике — данные могут быть представлены в разном виде, например как отдельные значения коэффициента гидравлических потерь, в виде диаграмм, таблиц, эмпирических формул.
При желании или необходимости потери напора на локальные гидравлические сопротивления можно рассчитать самостоятельно. Для этого используется формула:
где ξ представляет собой коэффициент местного сопротивления. Как правило, его определяют опытным путем,
g — ускорение свободного падения.
Местные гидравлические сопротивления: свойства и характеристики
Как мы уже упоминали, потери напора жидкости в случае с местными сопротивлениями определяются в большинстве случаев только опытным путем. Но и в теоретическом обосновании есть некоторые прорывы — так, местное сопротивление по своим свойствам и характеристикам аналогично сопротивлению, которое наблюдается при внезапном расширении струи. И это логично, если учитывать, что поведение потока жидкости при преодолении любого локального сопротивления сопровождается сужением или расширением сечения.
2. При изменении направления трубы под углом гидравлические потери рассчитываются по формуле: ξ поворот = 0,946sin(α/2) + 2,047sin(α/2)², где α — это угол поворота трубы. Поток ведет себя следующим образом: сначала струя сжимается, после чего расширяется, так как при повороте по инерции поток отжимается от стенок трубы.
3. При входе в трубу цилиндрической формы с острой кромкой, которая наклонена к горизонту под углом α, коэффициент местного сопротивления высчитывается по формуле Вейсбаха: ξвх = 0,505 + 0,303sin α + 0,223sin α². Иногда труба имеет закругленную форму или в сечении входа стоит диафрагма, которая сужает сечение, — в любом случае сначала струя потока будет сжиматься, потом расширяться, то есть местное сопротивление при входе в водопровод можно свести к внезапному расширению струи потока.
4. В промышленности, в частности при работе с насосным оборудованием, часто приходится рассчитывать местные сопротивления, которые создаются запорной арматурой — вентилями и клапанами, кранами и задвижками и так далее. Вне зависимости от того, какую геометрическую форму имеет проточная часть, ограниченная запорной арматурой, гидравлический характер течения при преодолении сопротивлений не меняется. Если мы говорим о полностью открытой запорной арматуре, гидравлическое сопротивление будет колебаться в диапазоне от 2,9 до 4,5. Коэффициенты для определенного вида запорной арматуры можно найти в соответствующих справочниках.
5. Гидравлические потери диафрагмы определяются сужением струи потока и последующим ее расширением. Степень сужения потока и его последующего расширения определяется несколькими факторами — это особенности конструкции диафрагмы, отношение диаметров отверстия трубы и диафрагмы, режим движения жидкости и так далее.
6. Наконец, часто бывает необходимо рассчитать коэффициент местного сопротивления при входе струи потока под уровень жидкости. Впрочем, сложных расчетов проводить не потребуется, коэффициент сопротивления при входе струи в большой резервуар под уровень жидкости или в среду без жидкости связан с потерей кинетической энергии и равен 1.
О гидравлическом сопротивлении, насосах и кавитации
Работа насосов и гидравлических машин направлена в том числе на преодоление гидравлических потерь. Чтобы снизить влияние таких потерь, при создании трассы стоит избегать узлов, которые будут резко менять направления потока. Оптимальный вариант — конструкции обтекаемой формы. Но нужно понимать, что даже максимально гладкие трубы не обеспечат отсутствие потерь: ламинарный режим течения не сопровождается большими потерями из-за шероховатых стенок, но турбулентный режим приводит и к росту гидравлического сопротивления трубы.
Иногда при движении жидкости по закрытым руслам меняется ее агрегатное состояние — она превращается в пар, то есть из жидкости выделяются газы, в ней растворенные. Если скорость небольшая, видимых изменений в ее движении не будет. Но при увеличении скорости движения на узком участке трубы появится отчетливая зона с пузырьками газа. Далее, когда жидкость подходит к широкой части трубы, пузырьки начинают резко уменьшаться в размерах, а затем исчезать — схлопываться. В месте схлопывания пузырьков резко увеличивается давление, которое затем передается на соседние объемы среды и далее на стенки трубы. Многочисленные местные повышения давлений приводят к вибрации.
Кавитация — нежелательное явление, которое может привести к очень быстрому износу определенных частей трубопроводного и насосного оборудования. Часто она возникает в местах локальных сопротивлений — в вентилях, кранах, задвижках и так далее. При этом кавитация снижает КПД, а в долгосрочной перспективе разрушает детали, стенки трубопроводов, уменьшая их пропускную способность.